A Simple Accelerometer Calibrator

Similar documents
A Simple Microcontroller-Based 4-20 ma Current Loop Receiver for Sensors with Current Transmitters

Realization of 16-channel digital PGC demodulator for fiber laser sensor array

Control of motion stability of the line tracer robot using fuzzy logic and kalman filter

Accelerometer Products

Low-Frequency Vibration Measurement by a Dual-Frequency DBR Fiber Laser

Localization of underwater moving sound source based on time delay estimation using hydrophone array

Reliability and availability analysis for robot subsystem in automotive assembly plant: a case study

Development of High Temperature Acoustic Emission Sensing System Using Fiber Bragg Grating

Tsunami detection in the ionosphere

Realization of station for testing asynchronous three-phase motors

(i) Sine sweep (ii) Sine beat (iii) Time history (iv) Continuous sine

Experiment on signal filter combinations for the analysis of information from inertial measurement units in AOCS

Mechatronics System Design - Sensors

Energy efficient active vibration control strategies using electromagnetic linear actuators

New Long Stroke Vibration Shaker Design using Linear Motor Technology

50 MHz Voltage-to-Frequency Converter

Computer Control System Application for Electrical Engineering and Electrical Automation

Theoretical and Experimental Investigation of Fiber Bragg Gratings With Different Lengths for Ultrasonic Detection

Design of double loop-locked system for brush-less DC motor based on DSP

Ultrahigh precision synchronization of optical and microwave frequency sources

A fully autonomous power management interface for frequency upconverting harvesters using load decoupling and inductor sharing

Counterfeit identification method of plastic encapsulated microcircuits using scanning acoustic microscope

Validation of significant wave height product from Envisat ASAR using triple collocation

Long range magnetic localization- accuracy and range study

Velocity and Acceleration Measurements

Response characteristic of high-speed on/off valve with double voltage driving circuit

DASL 120 Introduction to Microcontrollers

The influence of non-audible plural high frequency electrical noise on the playback sound of audio equipment (2 nd report)

Airborne Wireless Optical Communication System in Low Altitude Using an Unmanned Aerial Vehicle and LEDs

3-Degrees of Freedom Robotic ARM Controller for Various Applications

The VIRGO suspensions

AN ARDUINO CONTROLLED CHAOTIC PENDULUM FOR A REMOTE PHYSICS LABORATORY

Statistical analysis of low frequency vibrations in variable speed wind turbines

Fire Extinguisher Robot Using Ultrasonic Camera and Wi-Fi Network Controlled with Android Smartphone

Research on the smart measuring system for DC resistance box

Development of Earthquake Early Warning System Using ADXL335 Accelerometer

A Low-Cost Collision Detection System for Compact Vehicles (aka Ping Around the Rosey )

Mechatronic demonstrator for testing sensors to be used in mobile robotics functioning on the inverted pendulum concept

Research on the Surface Subsidence Monitoring Technology Based on Fiber Bragg Grating Sensing

TitleApplication of MEMS accelerometer t. AIZAWA, Takao; KIMURA, Toshinori; M Toshifumi; TAKEDA, Tetsuya; ASANO,

DEVELOPMENT OF A FIBRE OPTIC ANEMOMETER (FOA) Nor Hayati Saad 1, Zuriati Janin 2, Shah Alam, Selangor, Malaysia

X3M. Multi-Axis Absolute MEMS Inclinometer Page 1 of 13. Description. Software. Mechanical Drawing. Features

School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei, China 2

Use of grooved clamping plate to increase strength of bolted moment connection on cold formed steel structures

MAGNETIC LEVITATION SUSPENSION CONTROL SYSTEM FOR REACTION WHEEL

Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

Batteryless wireless transmission system for electronic drum uses piezoelectric generator for play signal and power source

Distance Measurement of an Object by using Ultrasonic Sensors with Arduino and GSM Module

The software and hardware for the ground testing of ALFA- ELECTRON space spectrometer

Response spectrum Time history Power Spectral Density, PSD

SmartSenseCom Introduces Next Generation Seismic Sensor Systems

DC motor control using arduino

Electronics Design Laboratory Lecture #6. ECEN2270 Electronics Design Laboratory

Performance Test of gphone (#123, #126, and #127) in Kyoto and ITB Jatinangor

Natural frequencies of rotating disk-like structures submerged viewed from the stationary frame

1. Introduction. Fig. 1 Epsilon-1 on the launch pad. Taken from

Development of excavator training simulator using leap motion controller

Sensors and Sensing Motors, Encoders and Motor Control

ISSCC 2006 / SESSION 16 / MEMS AND SENSORS / 16.1

Lab 5: Inverted Pendulum PID Control

PRESENTED BY HUMANOID IIT KANPUR

PCB & Circuit Designing (Summer Training Program) 6 Weeks/ 45 Days PRESENTED BY

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge

Utilization of Digital Image Processing In Process of Quality Control of The Primary Packaging of Drug Using Color Normalization Method

Introducing the Quadrotor Flying Robot

Characteristic Analysis Light Intensity Sensor Based On Plastic Optical Fiber At Various Configuration

Michael Hermansen. Low-Noise Piezoelectric Driver for External Cavity Diode Lasers. Physics 492R Capstone. 10 April Advisor: Dr.

MEASUREMENT, PROTECTION, SPEED CONTROL AND GRAPHICAL OBSERVATION OF DC MOTOR PARAMETERS BY ATMEGA-16 USING EMBEDDED SYSTEMS

Research on Retro-reflecting Modulation in Space Optical Communication System

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G

Photovoltaic Cells Mppt Algorithm and Design of Controller Monitoring System

Designing neuro-fuzzy controller for electromagnetic anti-lock braking system (ABS) on electric vehicle

Investigation of Passive Filter for LED Lamp

Sensors and Sensing Motors, Encoders and Motor Control

MSK4310 Demonstration

Simulation comparison of proportional integral derivative and fuzzy logic in controlling AC-DC buck boost converter

Available online at ScienceDirect. Procedia Computer Science 76 (2015 )

Polarization Dependence of an Edge Filter Based on Singlemode-Multimode-Singlemode Fibre

SISMALARM 5.0 TEST REPORT

ARDUINO / GENUINO. start as professional. short course in a book. faculty of engineering technology

A Fiber Bragg Grating Sensing Based Triaxial Vibration Sensor

Non-intrusive refractometer sensor

Sensor system of a small biped entertainment robot

PVA Sensor Specifications

Wirelessly powered micro-tracer enabled by miniaturized antenna and microfluidic channel

Strong Motion Data: Structures

SELF-BALANCING MOBILE ROBOT TILTER

Design and Experiment of Electrooculogram (EOG) System and Its Application to Control Mobile Robot

A Comparison of Performance Characteristics of On and Off Axis High Resolution Hall Effect Encoder ICs

Developer Techniques Sessions

DYNAMIC CHARACTERISTICS OF A BRIDGE ESTIMATED WITH NEW BOLT-TYPE SENSOR, AMBIENT VIBRATION MEASUREMENTS AND FINITE ELEMENT ANALYSIS

Improvement of Ultrasonic Distance Measuring System

Acquisition and Analysis of Continuous Acoustic Emission Waveform for Classification of Damage Sources in Ceramic Fiber Mat

International Journal of Pure and Applied Mathematics

Receiving, Filtering and Amplifying Earthquake Signals

Design and Implementation of an Inverted Pendulum Controller to be used as a Lab Setup

Light Intensity and Power Meter Based On LDR and Microcontroller

International Journal of Advance Engineering and Research Development

Active Structural Acoustic Control in an Original A400M Aircraft Structure

Research Article An Investigation of Structural Damage Location Based on Ultrasonic Excitation-Fiber Bragg Grating Detection

Transcription:

Journal of Physics: Conference Series PAPER OPEN ACCESS A Simple Accelerometer Calibrator To cite this article: R A Salam et al 2016 J. Phys.: Conf. Ser. 739 012099 View the article online for updates and enhancements. Related content - Three-axis MEMS Accelerometer for Structural Inspection E Barbin, A Koleda, T Nesterenko et al. - Piezoelectric-Ceramic Biaxial Accelerometer Yasunori Ohtsuki and Tetsuo Yoshida - High-Sensitivity Accelerometer Using Multilayer Piezoelectric Ceramics Yasunori Ohtsuki, Yoshiaki Fuda and Tetsuo Yoshida This content was downloaded from IP address 148.251.232.83 on 23/04/2018 at 09:17

A Simple Accelerometer Calibrator R A Salam 1, M R F Islamy 1, M M Munir 2, 5, a, H Latief 3, 5, M Irsyam 4, 5, and 1, 5, b Khairurrijal 1 Physics of Electronics Material Research Division, Faculty of Mathematics and Natural Science 2 Theoretical High Energy and Instrumentation Research Division, Faculty of Mathematics and Natural Science 3 Oceanography Research Division, Faculty of Earth Science and Technology 4 Geotechnical Engineering Research Division, Faculty of Civil and Environment Engineering 5 Research Center for Disaster Mitigation Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia a) miftah@fi.itb.ac.id b) krijal@fi.itb.ac.id Abstract. High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM. 1. Introduction Earthquake is one of the most inevitable hazards around the world which typically caused by the movement of Earth s plates. When the plates move, they will rub against each other. The plates friction makes the crust releases the energy and propagates toward the surface [1]. The earthquake can also induce aftershock around the initial earthquake location [2, 3]. Moreover, it can cause many disasters such as tsunami and landslide which are some of the most frequent and hazardous disaster that triggered by it. For tsunami itself, the occurrences of tsunami are mostly produced by earthquakes that take place around sea floor [4-6]. About 82 % of tsunami all over the world is caused by tectonic plate movement [6]. Therefore, a system that can read the occurrence of earthquake is needed to prevent the hazard caused by it. Recently, there are many researches on seismic sensor developments. Starting from the use of the accelerometer [7-11], fiber-optic Bragg grating [12, 13], to the use of micro electromechanical systems [14, 15]. Although the developments of seismic sensors have been widely studied, the use of Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by Ltd 1

accelerometers in earthquake monitoring system is still the most developed part. It is associated with the usability of the accelerometer system and also the easiness it offered. To read the earthquake incidence using accelerometer sensor, the accelerometer needs to be calibrated first before being used. Many researchers have successfully developed the accelerometer calibrator [16-20]. However, the calibrator manufactured is difficult to build and maintain. It needs a complex procedure to develop and testing the system. Moreover, acceleration calibration mechanism of an accelerometer still has to be investigated. This paper describes the development of an accelerometer calibrator using DC motor, optocoupler, and an accelerometer. 2. System design This section describes the design of accelerometer calibrator employing 12 V DC motor for plate actuation of the calibrator, an optocoupler for measuring the motor rotational speed, an AVR ATMega with Arduino bootloader for controlling the motor and all processes occurring in this system, liquid crystal display (LCD) and personal computer (PC) for displaying set point and readings of the optocoupler, and an accelerometer MMA8451Q GY-45 for testing the calibrator. Block diagram of this system is shown in Figure 1. In this system, the 8-bit pulse-width modulation (PWM) port of ATMega 328p microcontroller is used to control the rotational speed of motor. The rotation of motor will make the disc, which is equipped by four blades spin, rotates. This disc rotation is then read by the optocoupler to obtain the actual rotation speed which indicating the frequency of linear acceleration produced by it. Figure 1. Diagram Block of Accelerometer Calibrator In obtaining the actual angular velocity of the motor, the output voltage of the optocoupler is compared with the reference voltage by using comparator circuit as signal conditioning. The comparator circuit scheme is shown in Figure 2. The output of optocoupler is connected to the noninverting input of the operational amplifier (op-amp) and the reference is connected to the inverting input. When the non-inverting signal is higher than the inverting input, then the op-amp output will set to high (the value of the output is same with the positive supply) and vice versa. The result obtained 2

from this comparison is then fed to the interrupt port of microcontroller. From these processes, when the signal output changes by the alteration of the reading of the optocoupler from high to low, the microcontroller will count and calculate the occurrence of interruption for one second to obtain the rotational speed. The result is then sent to the computer using the USB to serial communication and is compared to the set value. The result is also presented on the LCD to display the data in real time. After the system had been built, the accelerometer MMA8451Q was used to test the calibrator. Figure 2. Comparator Circuit Scheme Figure 3. Accelerometer Calibrator System Schematic Diagram (a) Top view, (b) Side view Since the motor required a 12 V power source to get the maximum rotational speed, this system used a 12 V DC power supply on operating all parts of system. The power was also regulated to 5 V to give power to the microcontroller, LCD, and also for the accelerometer. The developed calibrator diagram is displayed in Figure 3. 3. Results and discussion The correlation between average rotational speed of the system and duty cycle has been investigated. The results are displayed in Figure 4. The duty cycle was varied from 0 to 100 % by controlling the PWM values started from 0 to 255. In this project, the value of PWM was set to be tested from 75 to 250 with the increment of 25 because the PWM value under 75 would not cause the motor to rotate. It means that the duty cycle of the pulse to the motor varied from 30 to 98 %. The results show that average angular velocity produced by the motor are exponentially correlated with the duty cycle resulted by the controlled PWM. 3

Figure 4. Average rotational speeds and duty cycle correlation Figure 5. Calibrator testing for various set points (a) 2 rps, (b) 3 rps, (c) 4 rps Figure 5 shows the test results of the system for various set points. Measurement test was performed for two minutes for every set point. Overall, the results have shown that the system has 4

worked well in reaching a predetermined set point. Especially for the set point of 2 rps (rotation per second), there are just a few errors found for this test. The error from this measurement was caused by the reading of optocoupler sensor. With only four blades on the disc to calculate the motor rotational speed, the optocoupler gave a wide range of reading especially when the projected rotational speed has a great value. Therefore, when the set point was lowered, the readings of optocoupler would show smaller error as proven by the results at set point of 2 rps. With a lower set point, the rotational speed would be slower so that the optocoupler sensor accurately read the four blades. Figure 6. Accelerometer vibration data For more accurate measurement results, the tests had been done on the system by using the MMA8451Q accelerometer with the set point of 2 rps. The result from this test procedure is displayed in Figure 6. The rotational speed of motor could be determined by knowing the frequency of the acceleration shown by the figure. From these results, the maximum peak read by the sensor was about 0.68 g. Therefore, using the wave acceleration function expressed by equation (1) the frequency/ motor rotational speed can be obtained. a max 2 A (1) where A is the amplitude of wave function which has a value of 5 cm and g is gravitational acceleration. By assuming the gravitational acceleration to be 9.78 ms -2, the frequency obtained from the graph was 1.84 Hz. The difference between the set point and the actual rotational speed read by the sensor was caused by the friction between the place for the accelerometer and the body of the system around it. The friction also caused instability on the maximum peaks produced by the systems. However, the actual angular velocity resulted from the system was about 2 rps proximate to the predetermined set point. 4. Conclusion A simple calibrator for accelerometer has been developed using a 12 V DC motor, optocoupler, and AVR ATMega 328. The calibrator was developed using PWM of the microcontroller to control the motor rotational speed. The results have showed that the angular velocity resulted from the system was exponentially correlated with the PWM value. The system could also reach the set point well with a lowest set point resulting in the smallest error. It has been shown that the system could adjust the rotational speed of the motor to approach the predetermined value with the negligible errors. 5

Acknowledgments This work was supported by Riset Unggulan ITB 2015 research grant in the fiscal year 2015. References [1] Zheng H, Shi G, Zeng T and Li B 2011 IEEE Proc. 2011 Int. Conf. on Consumer Electronics, Communications and Networks (XianNing) (IEEE Consumer Electronic Society) pp 5481 84 [2] Belardinelli M E, Bizzarri A and Cocco M 2003 J. Geophys. Res-Atmos. 108 ESE 1-1 [3] Freed A M 2005 Annu. Rev. Earth Planet. Sci. 33 335-67 [4] Liu P L F, Wang X and Salisbury A J 2009 J. Asian Earth Sci. 36 2-12 [5] Levin B and Nosov M 2009 Physics of Tsunamis (Springer) pp 32-49 [6] Joseph A 2011 Tsunamis: detection, monitoring, and early-warning technologies (Burlington: Academic Press) pp 11-20. [7] Bertolini A, DeSalvo R, Fidecaro F, Francesoni M, Marka S, Sannibale V, Simonetti D, Takamori A and Tariq H 2006 Nucl. Instrum. Meth. A 556 616-23 [8] Bertolini A, DeSalvo R, Fidecaro F and Takamori A 2006 IEEE T. Geosci. Remote 44, 273-6 [9] Agafonov V M, Egorov E V and Zaitsev D L 2010 Gyroscopy and Navigation 1 246-51 [10] Beresik R, Puttera J and Nebus F 2014 IEEE Proc. Int. Conf. on Applied Electronics (Pilsen) (IEEE Computer Society) pp 31-6 [11] Jiang D, Zhang W and Li F 2013 IEEE Sens. J. 13, 4556-60 [12] Laudati A, Mennella F, Giordano M, D Altrui G, Tassini C and Cusano A 2007 IEEE Photonic Tech. L. 19, 1991-3 6