Guan, L, Gu, F, Shao, Y, Fazenda, BM and Ball, A

Similar documents
University of Huddersfield Repository

Time-Frequency Enhancement Technique for Bevel Gear Fault Diagnosis

Gearbox fault detection using a new denoising method based on ensemble empirical mode decomposition and FFT

Ensemble Empirical Mode Decomposition: An adaptive method for noise reduction

Vibration-based Fault Detection of Wind Turbine Gearbox using Empirical Mode Decomposition Method

DIAGNOSIS OF ROLLING ELEMENT BEARING FAULT IN BEARING-GEARBOX UNION SYSTEM USING WAVELET PACKET CORRELATION ANALYSIS

Investigation on Fault Detection for Split Torque Gearbox Using Acoustic Emission and Vibration Signals

Fault Diagnosis of Wind Turbine Gearboxes Using Enhanced Tacholess Order Tracking

Empirical Mode Decomposition: Theory & Applications

Study of Improper Chamfering and Pitting Defects of Spur Gear Faults Using Frequency Domain Technique

Novel Spectral Kurtosis Technology for Adaptive Vibration Condition Monitoring of Multi Stage Gearboxes

INDUCTION MOTOR MULTI-FAULT ANALYSIS BASED ON INTRINSIC MODE FUNCTIONS IN HILBERT-HUANG TRANSFORM

Fault Diagnosis of Gearbox Using Various Condition Monitoring Indicators for Non-Stationary Speed Conditions: A Comparative Analysis

VIBRATIONAL MEASUREMENT ANALYSIS OF FAULT LATENT ON A GEAR TOOTH

Fault Detection of Double Stage Helical Gearbox using Vibration Analysis Techniques

KONKANI SPEECH RECOGNITION USING HILBERT-HUANG TRANSFORM

IET (2014) IET.,

Current-Based Diagnosis for Gear Tooth Breaks in Wind Turbine Gearboxes

Development of a New Signal Processing Diagnostic Tool for Vibration Signals Acquired in Transient Conditions

Effect of parameters setting on performance of discrete component removal (DCR) methods for bearing faults detection

Frequency Demodulation Analysis of Mine Reducer Vibration Signal

Telemetry Vibration Signal Trend Extraction Based on Multi-scale Least Square Algorithm Feng GUO

Bearing fault detection of wind turbine using vibration and SPM

Rotating Machinery Fault Diagnosis Techniques Envelope and Cepstrum Analyses

Measurement 45 (2012) Contents lists available at SciVerse ScienceDirect. Measurement

A simulation of vibration analysis of crankshaft

GEARBOX FAULT DETECTION BY MOTOR CURRENT SIGNATURE ANALYSIS. A. R. Mohanty

University of Huddersfield Repository

Wavelet Transform for Bearing Faults Diagnosis

Fault diagnosis of Spur gear using vibration analysis. Ebrahim Ebrahimi

Extraction of tacho information from a vibration signal for improved synchronous averaging

Atmospheric Signal Processing. using Wavelets and HHT

Enhanced Fault Detection of Rolling Element Bearing Based on Cepstrum Editing and Stochastic Resonance

A Novel Fault Diagnosis Method for Rolling Element Bearings Using Kernel Independent Component Analysis and Genetic Algorithm Optimized RBF Network

2151. Fault identification and severity assessment of rolling element bearings based on EMD and fast kurtogram

The Improved Algorithm of the EMD Decomposition Based on Cubic Spline Interpolation

Cepstral Removal of Periodic Spectral Components from Time Signals

Current based Normalized Triple Covariance as a bearings diagnostic feature in induction motor

Empirical Mode Decomposition (EMD) of Turner Valley Airborne Gravity Data in the Foothills of Alberta, Canada

A Review on Fault Diagnosis of Gear-Box by Using Vibration Analysis Method

Application of Hilbert-Huang Transform in the Field of Power Quality Events Analysis Manish Kumar Saini 1 and Komal Dhamija 2 1,2

FAULT DIAGNOSIS OF SINGLE STAGE SPUR GEARBOX USING NARROW BAND DEMODULATION TECHNIQUE: EFFECT OF SPALLING

Vibration Signature Analysis for Gearbox Spalling Detection

Application of Singular Value Energy Difference Spectrum in Axis Trace Refinement

SEPARATING GEAR AND BEARING SIGNALS FOR BEARING FAULT DETECTION. Wenyi Wang

How to Use the Method of Multivariate Statistical Analysis Into the Equipment State Monitoring. Chunhua Yang

Tribology in Industry. Bearing Health Monitoring

Detection of Wind Turbine Gear Tooth Defects Using Sideband Energy Ratio

Empirical Mode Decomposition (EMD) of Turner Valley Airborne Gravity Data in the Foothills of Alberta, Canada*

Chapter 4 REVIEW OF VIBRATION ANALYSIS TECHNIQUES

Compensating for speed variation by order tracking with and without a tacho signal

Automobile Independent Fault Detection based on Acoustic Emission Using FFT

An Improved Method for Bearing Faults diagnosis

Modern Vibration Signal Processing Techniques for Vehicle Gearbox Fault Diagnosis

AUTOMATED BEARING WEAR DETECTION. Alan Friedman

1032. A new transient field balancing method of a rotor system based on empirical mode decomposition

Application Note. Monitoring strategy Diagnosing gearbox damage

FAULT DETECTION OF ROTATING MACHINERY FROM BICOHERENCE ANALYSIS OF VIBRATION DATA

Detection of gear defects by resonance demodulation detected by wavelet transform and comparison with the kurtogram

This is a repository copy of A time-frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions.

Wavelet analysis to detect fault in Clutch release bearing

Vibration based condition monitoring under fluctuating load and speed conditions

In situ blocked force measurement in gearboxes with potential application for condition monitoring

Assistant Professor, Department of Mechanical Engineering, Institute of Engineering & Technology, DAVV University, Indore, Madhya Pradesh, India

1733. Rolling element bearings fault diagnosis based on correlated kurtosis kurtogram

Broken-Rotor-Bar Diagnosis for Induction Motors

CONDITIONING MONITORING OF GEARBOX USING VIBRATION AND ACOUSTIC SIGNALS

Review on Fault Identification and Diagnosis of Gear Pair by Experimental Vibration Analysis

MISALIGNMENT DIAGNOSIS OF A PLANETARY GEARBOX BASED ON VIBRATION ANALYSIS

Gearbox Vibration Source Separation by Integration of Time Synchronous Averaged Signals

Analysis Of Induction Motor With Broken Rotor Bars Using Discrete Wavelet Transform Princy P 1 and Gayathri Vijayachandran 2

Rolling Bearing Diagnosis Based on LMD and Neural Network

University of Huddersfield Repository

The Tracking and Trending Module collects the reduced data for trending in a single datafile (around 10,000 coils typical working maximum).

Tools for Advanced Sound & Vibration Analysis

Assessment of Power Quality Events by Empirical Mode Decomposition based Neural Network

Fault detection of a spur gear using vibration signal with multivariable statistical parameters

Application of Wavelet Packet Transform (WPT) for Bearing Fault Diagnosis

Research Article High Frequency Acceleration Envelope Power Spectrum for Fault Diagnosis on Journal Bearing using DEWESOFT

The Application of the Hilbert-Huang Transform in Through-wall Life Detection with UWB Impulse Radar

1311. Gearbox degradation analysis using narrowband interference cancellation under non-stationary conditions

APPLICATION NOTE. Detecting Faulty Rolling Element Bearings. Faulty rolling-element bearings can be detected before breakdown.

Machine Diagnostics in Observer 9 Private Rules

Research Article Vibration Sideband Modulations and Harmonics Separation of a Planetary Helicopter Gearbox with Two Different Configurations

ICA & Wavelet as a Method for Speech Signal Denoising

2212. Study on the diagnosis of rub-impact fault based on finite element method and envelope demodulation

Automated Bearing Wear Detection

Appearance of wear particles. Time. Figure 1 Lead times to failure offered by various conventional CM techniques.

1. Introduction. P Shakya, A K Darpe and M S Kulkarni VIBRATION-BASED FAULT DIAGNOSIS FEATURE. List of abbreviations

240 JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEB 2018, VOL. 20, ISSUE 1. ISSN

Research on Analysis of Aircraft Echo Characteristics and Classification of Targets in Low-Resolution Radars Based on EEMD

PHASE DEMODULATION OF IMPULSE SIGNALS IN MACHINE SHAFT ANGULAR VIBRATION MEASUREMENTS

Enayet B. Halim, Sirish L. Shah and M.A.A. Shoukat Choudhury. Department of Chemical and Materials Engineering University of Alberta

Automatic Fault Classification of Rolling Element Bearing using Wavelet Packet Decomposition and Artificial Neural Network

DIAGNOSIS OF GEARBOX FAULT USING ACOUSTIC SIGNAL

Prognostic Health Monitoring for Wind Turbines

ANALYSIS OF POWER SYSTEM LOW FREQUENCY OSCILLATION WITH EMPIRICAL MODE DECOMPOSITION

Combining synchronous averaging with a Gaussian mixture model novelty detection scheme for vibration-based condition monitoring of a gearbox

Comparison of Fault Detection Techniques for an Ocean Turbine

NOISE AND VIBRATION DIAGNOSTICS IN ROTATING MACHINERY

Transcription:

Gearbox fault diagnosis under different operating conditions based on time synchronous average and ensemble empirical mode decomposition Guan, L, Gu, F, Shao, Y, Fazenda, BM and Ball, A Title Authors Type URL Published Date 9 Gearbox fault diagnosis under different operating conditions based on time synchronous average and ensemble empirical mode decomposition Guan, L, Gu, F, Shao, Y, Fazenda, BM and Ball, A Conference or Workshop Item This version is available at: http://usir.salford.ac.uk/99/ USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non commercial private study or research purposes. Please check the manuscript for any further copyright restrictions. For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.

Gearbox Fault Diagnosis under Different Operating Conditions Based on Time Synchronous Average and Ensemble Empirical Mode Decomposition Luyang Guan, Yimin Shao, Fengshou Gu, Bruno Fazenda, Andrew Ball Department of Computing and Engineering, University of uddersfield, UK (E-mail: l.guan@hud.ac.uk; f.gu@hud.ac.uk; b.fazenda@hud.ac.uk; a.ball@hud.ac.uk) Mechanical Transmission Lab, Chongqing University, P. R. China (E-mail: ymshao@cqu.edu.cn) Abstract: In this paper, a new method is proposed by combining ensemble empirical mode decomposition (EEMD) with tracking techniques to analyse the vibration signals from a two stage helical gearbox. The method improves EEMD results in that it overcomes the potential deficiencies and achieves better spectrum representation for fault diagnosis. Based on the analysis, a diagnostic feature is designed based on the spectra of extracted IFMs for detection and separation of gearbox faults. Experimental results show this feature is sensitive to different fault severities and robust to the influences from operating conditions and remote sensor locations. Keywords: Empirical mode decomposition, Gearbox fault diagnosis, Time synchronous average. INTRODUCTION Gearbox is used widely as one of critical mechanical components in industry. Its condition monitoring and fault diagnosis are essential for achieving maximum service availability. In recent years, a great deal of amount of work has been carried out to develop accurate diagnosis methods based on vibration measurement. The main direction in this field is to research more effective signal processing techniques including time domain statistical parameters (kurtosis, crest factor etc.), frequency domain analysis methods (Fourier spectrum, cepstrum, wavelet, etc.), joint-time frequency representation and so on [-] to obtain reliable and sensitive features for incipient fault diagnosis. The challenge in processing vibration signal from gear box is that the signal to noise ratio is low. Many factors such as operating conditions, background noise and interferences from driving motor or other equipment are all included in the measured signal. In addition, vibration sensors have to be installed remotely in many cases because of access limitation. The signals recorded far away from gear box have is more interferences due to long vibration transmission path. Therefore, more advanced methods are required to process the signals to obtain a feature which is robust to different noise and independent of operating conditions. In this paper, an ensemble empirical model decomposition (EEMD) based method is proposed by combing EEMD with tracking technique to extract the diagnostic feature from vibration signal adaptively. Time synchronous average (TSA) in tracking method can help to obtain a definite periodic signal and reduce the influences from noise and the uncertainty during the adaptive process of EEMD. This method is then evaluated using the vibration data of a two stage helical gearbox diagnosis with different severity of gear damages under different operating conditions from different sensor locations.. ENSEMBLE EMD Empirical mode decomposition (EMD) algorithm first proposed by uang [] is to decompose a signal into a sum of functions named intrinsic mode functions (IMFs) which have the same number of zero crossings and extrema and are symmetric with respect to the local mean. EMD algorithm has been proven to be quite versatile in many applications for extracting signals from nonlinear and non-stationary processes [5-7]. The basic EMD algorithm can be summarized as follows []: Supposing the original signal is, the residue is, the ith IMF is () Initialize residue:,, () Initialize IMF, () Identify all the local maxima and minima. Form the upper and lower envelopes, and by cubic spline interpolation. () Calculate the local mean: (5) (6) If stopping criterion is satisfied,, else go to () with (7) (8) If has more than extram, go to () with, else EMD finishes and is the residue owever, the major drawback of EMD is mode mixing which means that a single IMF either consisting of signals of disparate scales, or a signal of a similar scale residing in different IMF components. To resolve this problem, EEMD algorithm was proposed in [8]. This new noise-assisted data analysis method defines IMF as the mean of an ensemble of trials, each consisting of the signal plus white noise. The basic idea of this method is that the added white noise will provide a uniform reference scale distribution to facilitate EMD and enhance it to avoid mode mixing[8].

Based on the original EMD algorithm introduced above, EEMD can be described briefly as follows [8]: () Add white noise to original data () Decompose the new data into IMFs by classic EMD algorithm () Repeat step() and () with independent white noise series for hundreds epochs () Calculate the mean of corresponding IMFs as the final output pattern In this work, EEMD method is adopted as an adaptive signal extractor to obtain vibration components which are relevant to gearbox dynamics.. GEARBOX VIBRATION SIGNAL ANALYSIS BY EEMD AND ORDER TRACKING Order tacking has been applied to rotating machinery vibration signal processing extensively. It removes the interference of rotating speed and additive random noise so that it can obtain reliable spectrum. owever, it is difficult to eliminate the noise mixed with original signal, especially multiplicative noise. Fig. shows the spectrum of the vibration signals from healthy and faulty gearboxes under two different loads. Fault has 5% damage in one tooth in tooth width direction whereas Fault has 5% damage in two teeth. So Fault is more serious than Fault due to more damaged teeth. owever, from these figures, the amplitudes of the tooth meshing frequency ( which is the tooth number of the pinion of the st gear pair) and its sidebands cannot provide a trend consistent with the severity of the damage. Although the figure shows some increase feature by amplitudes, it is hard to decide the severity of the faults based on it. To extract a reliable feature from gearbox vibration signal, time synchronous average for tracking technique is used to process the raw signal firstly. It is not only to remove random noise including short time transient interference, but also generate the definite periodical signal to release over-decomposition or mode mixing in EEMD and select special IMFs for the following analysis. Secondly, The TSA signal is decomposed into IMFs by EEMD method. Since TSA signal retains the periodic feature of gear vibration to maximum. According to IMF s periodicity feature, only several IMFs are be identified and selected for fault diagnosis. Additionally, to avoid the problem with mode mixing more, three improvements are also applied to the analysis process: () Terminate EEMD when the frequency range of IMF is lower than shaft frequency. Because characteristic frequencies are usually higher than shaft frequency in gearbox vibration signal processing. () Select the IMFs which exhibit more periodic characteristics. In theory, the vibration signal of gearbox should be periodic. IMFs obtained from TSA signal thus should be periodic. In contrast, the non-periodic IMFs may result from the noise or the other origins in the EMD process and could be ignored. () Combine the selected IMFs into one IMF as gearbox feature signal for subsequent processing if more than one IMF is selected. This avoids the over-decomposition problem. Then the spectrum of the combined IMF is calculated. Finally, based on the spectrum of IMF, feature for gearbox fault diagnosis is extracted to achieve robust performance under different operating conditions from remote locations. Fig.....8.6.. 6 8 Order....8.6.. (a) 5% load, % speed (b) 75% load, % speed ealthy Fault Fault ealthy Fault Fault 6 8 Order Order spectrum of vibration signals from different gearboxes. EXPERIMENTAL STUDY The test rig consists of a reduction gearbox with two stages of helical gears as shown in Fig.. The gear faults were simulated be 5% of one tooth ( Fault or F ) and 5% of two teeth ( Fault or ) of the pinion gear. Table presents the details of the two sets of gears. In the experiment, speed signal is measured with rotary encoder attached to the motor shaft. The vibration signals were recorded with 5 kz sampling rate by accelerometers mounted at two locations: gearbox casing and motor casing respectively. The signals from location have more influences from other vibration origins such as driving motor. The modified EEMD method described above was applied to the vibration

signals, and then spectrum was calculated based on the combined IMF, in comparison with the traditional spectrum achieved by computing tracking method. Table Gearbox specification Parameters st Stage nd Stage number of teeth /7 9/5 full speed of shaft.z 6.59z tooth meshing frequency 87.7z.7z contact ratio.59.79 overlap ratio.89.78. IMFs obtained by modified EEMD Fig. (a) and (b) show the first five IMFs obtained by EEMD and EMD respectively from the same vibration signal with 75% load and % speed. Comparing the time domain waveforms, the IMFs obtained by EEMD are less influenced by boundary effect which can results in distorted peaks at the beginning and end of data frames, as shown in the 5 th IMF of Fig. (a). Moreover, it can be seen that the nd and rd IMF have more element of periodicity over time for different operating conditions. In the conventional frequency domain, the nd IMF contains several higher harmonics of tooth meshing frequency. Especially, the amplitude of the st harmonic varies significantly with the severity of the fault evolution. On the other hand, the rd IMF contains only the fundamental tooth meshing frequency and its sidebands. They also vary with fault severity. These characteristics mean that IMFs can be the potential signal components for fault diagnosis. Fig. Gearbox test rig im f im f im f im f im f5 75% Load.5 -.5 8 6 5 7 9 8. -. 8 6 5 7 9 8. -. 8 6 5 7 9 8.5 -.5 8 6 5 7 9 8. -. 8 6 5 7 9 8 imf imf imf imf imf5.5 75% Load -.5 8 6 5 7 9 8. -. 8 6 5 7 9 8. -. 8 6 5 7 9 8.5 -.5 8 6 5 7 9 8.5 -.5 8 6 5 7 9 8 (a) The first 5 IMFs obtained by EMD (b) The first 5 IMFs obtained by EEMD Fig. IMFs obtained by EMD and EEMD respectively from the identical vibration signal

. x - 75% load; 5% speed..8.6 F.5 x - 75% load; 7% speed.5 F..8.6. 75% load; % speed F...5. 6 66 68 7 7 Fig. 6 66 68 7 7 6 66 68 7 7 Order spectrum at st harmonic of tooth meshing frequency obtained by traditional tracking method.5 x - 75% load; 5% speed.5.5.5 F 5 x - 75% load; 7% speed F..5..5..5 75% load; % speed F 6 66 68 7 7 Fig. 5 6 66 68 7 7 6 66 68 7 7 Order spectrum of IMF at the st harmonic of tooth meshing frequency (75% load) x - 5% load; 5% speed.5 F.5.5 x - 5% load; 7% speed.5.5.5 F..5..5 5% load; % speed F 6 66 68 7 7 Fig. 6 6 66 68 7 7 6 66 68 7 7 Order spectrum of IMF at the st harmonic of tooth meshing frequency (5% load).5 x - 5% load; 5% speed F x - 5% load; 7% speed.5 F... 5% load; % speed F.5.5.5.8.6.. 6 66 68 7 7 Fig. 7 6 66 68 7 7 6 66 68 7 7 Order spectrum of IMF at the st harmonic of tooth meshing frequency (5% load)

. Order spectrum of selected IMFs under different operating conditions Fig. and Fig. 5 are the spectra for traditional tracking method and the proposed method respectively. The spectra are calculated at shaft 68 (the tooth number multiplied by for the st harmonic component) based on the same datasets recorded under 75% of load at 5%, 7% % of full speed respectively. In comparison with traditional spectrum, the spectrum of the selected IMFs shows that the amplitude of the sidebands around tooth meshing frequencies increase with the severity of the faults, providing more consistent results with the fault severity. Especially, the spectrum of IMFs for the condition of 75% load and 7% speed shown by the middle graph in Fig. 5, show much higher amplitude for the Fault, compared with that of the traditional method. To examine the performance of IMF s spectrum under different operating conditions, the spectra is obtained from the nd and rd IMFs which are selected based on the periodicity feature. Fig. 5- Fig. 7 show the spectra of IMFs around the st harmonic of tooth meshing frequency respective to different speed and load. In general, the amplitude is the lowest for the healthy gear and the highest for the Fault. The spectral amplitudes show an increase trend consistent with the fault severity for all the operating conditions.. Diagnostic feature from spectrum From the spectrum of selected IMF under multiple operating conditions, it has been observed that the amplitudes of sidebands around tooth meshing frequency and its harmonics increase with the fault severity. Thus the values of these can be used to measure the fault directly. For an overall measure, a diagnostic feature is obtained by averaging the amplitudes over pairs of sidebands at the tooth meshing frequency and its first harmonics. Fig. 8 shows the performance of this diagnostic feature. Obviously, the value of the feature increases with the fault severity and varies with the operation condition consistently. To evaluate the effectiveness and robustness of the EEMD based method to changes of sensor locations, the signal recorded by the sensor located on the motor casing (shown in Fig. ) is also processed with this method to extract the feature under the same operating conditions. The results in Fig. 9 show that the feature values extracted from the signal recorded by sensor also has a gradual increase trend with fault severity under all operating conditions, demonstrating that the method can produce correct results even if the signal have more noise. 6 x - 5 5% speed ealthy Fault Fault 8 x - 7 6 5 7% speed ealthy Fault Fault..5. % speed ealthy Fault Fault.5..5 5 5 75 Fig. 8 5 5 75 5 5 75 Average amplitude of the sidebands around tooth meshing frequency and its harmonics (Sensor is fixed on the gearbox casing) 5 x - 5% speed 8 x - 7% speed. % speed ealthy Fault Fault 7 6 5 ealthy Fault Fault.5. ealthy Fault Fault.5..5 5 5 75 Fig. 9 5 5 75 5 5 75 Average amplitude of the sidebands around tooth meshing frequency and its harmonics (Sensor is fixed on the motor casing)

5. CONCLUSIONS In this paper, a combination of the modified EEMD and tracking is proposed as feature extraction method for gearbox fault diagnosis. It reduces influences of noise contamination and mode mixing problem in EMD methods significantly and allows meaningful IMFs of the TSA signal to be selected based on their frequency range and periodicity for feature extraction. The spectrum of the selected IMFs produces more effective representation of the gear vibration for diagnostic feature development. Experimental results show that this method produces a measure consistent with gear fault severity over different operating conditions and robust to the relative remote sensor locations. Future work will focus on developing multi-dimensional features with more advanced AI techniques based on the proposed analysis method. ACKNOWLEDGEMENTS The authors are grateful for the financial support provided by the National Natural Science Foundation of China under Contact No.5675. REFERENCES [] B. Liu, S. Riemenschneider, and Y. Xu, Gearbox Fault Diagnosis Using Empirical Model Decomposition and ilbert Spectrum, Mechanical Systems and Signal Processing, Vol., pp. 78-7. 6. [] M. E. Badaoui, F. Guillet and J. Daniere, New Applications of the Real Cepstrum to Gear Signals Including Definition of A Robust Fault Indicator, Mechanical Systems and Signal Processing, Vol.8, pp. -6,. [] F. Combet, L. Gelman, Optimal Filtering of Gear Signals for Early Damage Detection Based on the Spectral Kurtosis, Mechanical Systems and Signal Processing, Vol., pp. 65-668, 9 [] N. E. uang, Z. Shen etc, The Empirical Mode Decomposition and the ilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proc. R. Soc. Lond. A. pp. 9-995, 998. [5] A. O. Boudraa, J. C. Cexus and Z. Saidi, EMD-Based Signal Noise Reduction, International Journal of Signal Processing, Vol, No., 5. [6] Q. Gao, C. Duan,. Fan and Q. Meng, Rotating Machine Fault Diagnosis Using Empirical Mode Decomposition, Mechanical Systems and Signal Processing, Vol, pp. 7-8, 8. [7] Q. Du, S. Yang, Application of the EMD Method in the Vibration Analysis of Ball Bearings, Mechanical Systems and Signal Processing, Vol, pp. 6-6, 7. [8] Z. Wu, N. E. uang, Ensemble Empirical Mode Decomposition: A Noise Assisted Data Analysis Method, Advances in Adaptive Data Analysis, Vol, No., 8.