Broken Rotor Bar Fault Detection using Wavlet

Similar documents
AC : APPLICATIONS OF WAVELETS IN INDUCTION MACHINE FAULT DETECTION

Analysis Of Induction Motor With Broken Rotor Bars Using Discrete Wavelet Transform Princy P 1 and Gayathri Vijayachandran 2

A Comparative Study of FFT, STFT and Wavelet Techniques for Induction Machine Fault Diagnostic Analysis

ROTOR FAULTS DETECTION IN SQUIRREL-CAGE INDUCTION MOTORS BY CURRENT SIGNATURE ANALYSIS

Frequency Converter Influence on Induction Motor Rotor Faults Detection Using Motor Current Signature Analysis Experimental Research

LabVIEW Based Condition Monitoring Of Induction Motor

Current Signature Analysis of Induction Motor Mechanical Faults by Wavelet Packet Decomposition

Wavelet Transform for Classification of Voltage Sag Causes using Probabilistic Neural Network

GEARBOX FAULT DETECTION BY MOTOR CURRENT SIGNATURE ANALYSIS. A. R. Mohanty

INDUCTION MOTOR MULTI-FAULT ANALYSIS BASED ON INTRINSIC MODE FUNCTIONS IN HILBERT-HUANG TRANSFORM

INDUCTION MOTOR FAULT DIAGNOSTICS USING FUZZY SYSTEM

Fault Diagnosis in H-Bridge Multilevel Inverter Drive Using Wavelet Transforms

Current Signature Analysis to Diagnose Incipient Faults in Wind Generator Systems

Fault Detection in Three Phase Induction Motor

Vibration Analysis of Induction Motors with Unbalanced Loads

BROKEN ROTOR BARS DETECTION IN SQUIRREL-CAGE INDUCTION MACHINES BY MOTOR CURRENT SIGNATURE ANALYSIS METHOD

NON-INVASIVE ROTOR BAR FAULTS DIAGNOSIS OF INDUCTION MACHINES USING VIRTUAL INSTRUMENTATION

Wireless Health Monitoring System for Vibration Detection of Induction Motors

Fault Location Technique for UHV Lines Using Wavelet Transform

Current-Based Diagnosis for Gear Tooth Breaks in Wind Turbine Gearboxes

Design and Implementation of ZigBee based Vibration Monitoring and Analysis for Electrical Machines

Current based Normalized Triple Covariance as a bearings diagnostic feature in induction motor

ELECTRIC MACHINES MODELING, CONDITION MONITORING, SEUNGDEOG CHOI HOMAYOUN MESHGIN-KELK AND FAULT DIAGNOSIS HAMID A. TOLIYAT SUBHASIS NANDI

Rotating Machinery Fault Diagnosis Techniques Envelope and Cepstrum Analyses

Detection of Voltage Sag and Voltage Swell in Power Quality Using Wavelet Transforms

Detection, localization, and classification of power quality disturbances using discrete wavelet transform technique

Stator Winding Fault in Induction Motor

Condition monitoring methods, failure identification and analysis for Induction machines

A Comparison of Different Techniques for Induction Motor Rotor Fault Diagnosis

Vibration and Current Monitoring for Fault s Diagnosis of Induction Motors

MULTI-FAULT ANALYSIS IN INDUCTION MOTORS USING MULTI-SENSOR FEATURES

Time- Frequency Techniques for Fault Identification of Induction Motor

ANALYSIS OF EFFECTS OF VECTOR CONTROL ON TOTAL CURRENT HARMONIC DISTORTION OF ADJUSTABLE SPEED AC DRIVE

[Nayak, 3(2): February, 2014] ISSN: Impact Factor: 1.852

Fault Diagnosis of an Induction Motor Using Motor Current Signature Analysis

Wavelet Transform. From C. Valens article, A Really Friendly Guide to Wavelets, 1999

Selection of Mother Wavelet for Processing of Power Quality Disturbance Signals using Energy for Wavelet Packet Decomposition

Locating Earth Fault of Synchronous Generator using Wavelet Transform and ANFIS

CHAPTER 3 WAVELET TRANSFORM BASED CONTROLLER FOR INDUCTION MOTOR DRIVES

Stator Fault Detector for AC Motors Based on the TMS320F243 DSP Controller

TRANSIENT STABILITY ENHANCEMENT OF POWER SYSTEM USING INTELLIGENT TECHNIQUE

ARM BASED WAVELET TRANSFORM IMPLEMENTATION FOR EMBEDDED SYSTEM APPLİCATİONS

Wavelet Transform. From C. Valens article, A Really Friendly Guide to Wavelets, 1999

Simulation Analysis of Three Phase & Line to Ground Fault of Induction Motor Using FFT

Signal Processing based Wavelet Approach for Fault Detection of Induction Motor

INVESTIGATION OF THE IMPACT OF SPEED-RIPPLE AND INERTIA ON THE STEADY-STATE CURRENT SPECTRUM OF A DFIG WITH UNBALANCED ROTOR

Short Circuit Detection in Stator Winding Of Three Phase Induction Motor Using Wavelet Transform and Quadratic Discriminant Analysis

Sound pressure level calculation methodology investigation of corona noise in AC substations

Detection of Stator Winding Inter-turn Short Circuit In Induction Motor Using Vibration Specified Harmonic Amplitude

Bearing fault detection of wind turbine using vibration and SPM

Time-Frequency Enhancement Technique for Bevel Gear Fault Diagnosis

Characterization of Voltage Sag due to Faults and Induction Motor Starting

FAULT DETECTION AND DIAGNOSIS OF HIGH SPEED SWITCHING DEVICES IN POWER INVERTER

Assessment of Energy Efficient and Standard Induction Motor in MATLAB Environment

Keywords Wavelet, induction motor, fault diagnosis, fast Fourier transform, fault indicator, fault tolerant control.

Research Article A Novel Technique for Rotor Bar Failure Detection in Single-Cage Induction Motor Using FEM and MATLAB/SIMULINK

TRANSFORMS / WAVELETS

Wavelet Transform Based Islanding Characterization Method for Distributed Generation

Modelling for Interior Faults of Induction Motors and Its Simulation on EMTDC

EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME

World Journal of Engineering Research and Technology WJERT

A COMPARATIVE STUDY: FAULT DETECTION METHOD ON OVERHEAD TRANSMISSION LINE

A Comparative Study of Wavelet Transform Technique & FFT in the Estimation of Power System Harmonics and Interharmonics

Detection of Broken Bars in Induction Motors Using a Neural Network

BEARING FAULT DETECTION BY FOUR-BAND WAVELET PACKET DECOMPOSITION. Yalcin CEKİC. Mechatronics Program, Vocational School of Bahcesehir University

Comparative Investigation of Diagnostic Media for Induction Motors: A Case of Rotor Cage Faults

Detection, Protection from, Classification, and Monitoring Electrical Faults in 3-Phase Induction Motor Based on Discrete S-Transform

How to Use the Method of Multivariate Statistical Analysis Into the Equipment State Monitoring. Chunhua Yang

DIAGNOSIS OF STATOR FAULT IN ASYNCHRONOUS MACHINE USING SOFT COMPUTING METHODS

Prognostic Health Monitoring for Wind Turbines

Electrical Machines Diagnosis

Introduction to Wavelet Transform. Chapter 7 Instructor: Hossein Pourghassem

Nonlinear Filtering in ECG Signal Denoising

Distribution System Faults Classification And Location Based On Wavelet Transform

Wavelet Transform for Bearing Faults Diagnosis

Original Research Articles

Automatic Fault Classification of Rolling Element Bearing using Wavelet Packet Decomposition and Artificial Neural Network

On Line Fault Identification of Induction Motor using Fuzzy System

MCSA and SVM for gear wear monitoring in lifting cranes

Fault Detection of Broken Rotor Bars in Induction Motor using a Global Fault Index

Broken-Rotor-Bar Diagnosis for Induction Motors

DETECTION AND DIAGNOSIS OF STATOR INTER TURN SHORT CIRCUIT FAULT OF AN INDUCTION MACHINE

Keywords: Wavelet packet transform (WPT), Differential Protection, Inrush current, CT saturation.

Health Monitoring and Fault Diagnosis in Induction Motor- A Review

A NEW MOTOR SPEED MEASUREMENT ALGORITHM BASED ON ACCURATE SLOT HARMONIC SPECTRAL ANALYSIS

Doubly Fed Induction Generator Analysis Through Wavelet Technique

Detection of gear defects by resonance demodulation detected by wavelet transform and comparison with the kurtogram

THE APPLICATION WAVELET TRANSFORM ALGORITHM IN TESTING ADC EFFECTIVE NUMBER OF BITS

DETECTION AND CLASSIFICATION OF POWER QUALITY DISTURBANCE WAVEFORM USING MRA BASED MODIFIED WAVELET TRANSFROM AND NEURAL NETWORKS

[Ukey, 2(7): July, 2013] ISSN: Impact Factor: 1.852

A DUAL TREE COMPLEX WAVELET TRANSFORM CONSTRUCTION AND ITS APPLICATION TO IMAGE DENOISING

Comparison of induction motor bearing diagnostic test results through vibration and stator current measurement

Fault diagnosis of Spur gear using vibration analysis. Ebrahim Ebrahimi

AN ANN BASED FAULT DETECTION ON ALTERNATOR

1 INTRODUCTION 2 MODELLING AND EXPERIMENTAL TOOLS

Broken Rotor Bar Fault Diagnosis in VFD Driven Induction Motors by an Improved Vibration Monitoring Technique

Automobile Independent Fault Detection based on Acoustic Emission Using FFT

IDETC A COST-EFFECTIVE COMPUTERIZED DATA ACQUISITION AND MOTOR CURRENT SIGNATURE ANALYSIS DEMONSTRATOR FOR INDUSTRY AND ACADEMIA

Bearing Fault Detection in DFIG-Based Wind Turbines Using the First Intrinsic Mode Function

DETECTION AND CLASSIFICATION OF POWER QUALITY DISTURBANCES

Transcription:

Broken Rotor Bar Fault Detection using Wavlet sonalika mohanty Department of Electronics and Communication Engineering KISD, Bhubaneswar, Odisha, India Prof.(Dr.) Subrat Kumar Mohanty, Principal CEB Department of Electronics and Communication Engineering Bhubaneswar, Odisha, India Abstract - Motor current signature analysis has been successfully used for fault diagnosis in induction motors. However, this method does not always achieve good results when the speed or the load torque is not constant, because this cause variation on the motor slip and fast Fourier transform problems appear due to non-stationary signal. This paper experimentally describes the effects of rotor broken bar fault in the stator current of induction motor operating under non-constant load conditions. To achieve this, broken rotor bar fault is replicated in a laboratory and its effect on the motor current has been studied. To diagnose the broken rotor bar fault, a new approach based on wavelet transform is applied. The diagnosis procedure was performed by using the virtual instruments. The theoretical basis of proposed method is proved by laboratory tests. Keywords Fault diagnosis, broken rotor bar fault, Wavelet Transform, Multi-resolution analysis I. INTRODUCTION A wavelet was used to decompose the residual stator current after filtering the noise using a notch filter. Just as the Fourier transform decomposes a signal into a family of complex sinusoids, the wavelet transform decomposes a signal into a family of wavelets. Unlike sinusoids, which are symmetric, smooth, and regular, wavelets can be symmetric or asymmetric, sharp or smooth, regular or irregular. The family of wavelets contains the dilated and translated versions of a prototype function. Traditionally, the prototype function is Called a mother wavelet. The scale and shift of wavelets determine how the mother wavelet dilates and translates along the time or space axis. For different types of signals, different types of wavelets can be selected that best match the features of the signal we want to analyze.the wavelet indicator for detecting the broken rotor bars by calculating the absolute values of the summed coefficients in the third pattern which were normalized against the summation of the wavelet coefficient, the number of scales, and the number of samples used was presented A. Methedology- The Language of Technical Computing MATLAB is a high-level language and interactive environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. You can use MATLAB for a range of applications, including signal processing and communications, image and video processing, control systems, test and computational finance, and computational biology. More than a million engineers and scientists in industry and academia use MATLAB, the language of technical computing II. FAULT DETECTION USING WAVLET Vol. 4 Issue 1August 2014 72 ISSN: 2319 1058

A. MACHINE FAULT DIAGNOSIS USING WAVLET- There are two levels of fault diagnosis: 1. Traditional control 2. Knowledge based fault diagnosis Fault diagnosis techniques contain the feature extraction module (wavelet), feature cluster module and the fault decision module (1). Indicators of faults include the negative sequence current, impedance and the park s vector. Motor current signature analysis (MCSA) is used to diagnose the stator short circuit fault. Multi resolution analysis and good time localization are particularly useful characteristics of wavelets in the context of fault diagnosis. Signal processing techniques like the FFT are based on the assumptions of constant stator fundamental frequency, load, motor speed and the assumption that the load is sufficient. The use of wavelets for induction machine fault detection is documented in various journals. They have been shown to yield satisfactory results for detecting electrical and mechanical faults [3]. Wavelet decomposition results in useful data contained in details and approximate parts as shown in the simplified block diagram of Figure 1. The approximation signal can be further decomposed into a new set of approximation and details signals and continue until n decomposition levels are obtained. Figure.1 First level decomposition. The details signal contains high frequency information whereas the approximate part contains signal data with the low frequency components. Computing this decomposition to n levels results in those higher detail parts being removed, thereby reducing the overall frequency characteristics of the resulting data. This implies that lower levels of decomposition provide detail data that contains the highest frequency components. For the induction machine signature analysis, the higher frequency wavelet components represent system noise or harmonics due to the input power inverter. Therefore decomposition levels higher than one are of interest in the technique presented in this paper. Fault patterns are obtained from the information yielded by the n-level wavelet decomposition through a variety of strategies, including filter banks and classification algorithms [8]. In this study a statistical analysis of the wavelet details coefficients is used as the basis for fault detection. From the mean or standard deviation of the wavelet coefficients it could be inferred that the average magnitude of frequency components are present in the signal under analysis. Each level of the signal detail coefficients provides frequency resolution that allows unique signature characteristics to be deduced. That is if the n-level detail coefficients are analyzed then each level represents the spatial information for a small range of frequencies. This allows the analysis of the frequency differences and their time location in the signal under analysis. In this paper, the standard deviation of the wavelets coefficients is used to identify frequency anomalies in a given time range in the input data set. Vol. 4 Issue 1August 2014 73 ISSN: 2319 1058

B. Discrete wavelet transform fault detection- Wavelet techniques are new in the field of fault diagnosis. They are useful due to their ability to extract all the information in both time and frequency domain. They provide a sensitive means to diagnose the faults in comparison to other signal processing methods like the fourier transform, the drawbacks of which include the need to use a single window function in all frequency components and the acquisition of linear resolution in the whole frequency domain. This is an important reason for the interest in wavelets in time frequency analysis as can be seen in presented a review of the diagnosis of machines using the condition-based maintenance approach. Wavelet transformation is of many kinds but the most important among them: 1. Discrete wavelet transformation 2. Continuous wavelet transformation 3. Wavelet packet decomposition transformation The wavelet is divided into two main groups. One is the discrete wavelet transform represented in the following eq.: (1) Where h(m)is the mother wavelet x(n) is the input signal and the scaling and translation parameters a and b are functions of the integer parameter m.the second wavelet type is the continuous wavelet transform (cwt) which can be represented as follows: (2) Denotes the complex conjugate, where f (t) is the waveform signal and ψ (t) is a wavelet. Where m and n are the wavelet dilation and translation used to transform the original signal to a new one with smaller scales according to the high frequency components This relation is valid for the orthogonal basis of wavelet transform ( a =2 and b =1). Two properties of the wavelet are noteworthy: When a wavelet satisfies an admissibility condition, a signal with finite energy can be reconstructed without needing all values of its decomposition. The admissibility condition is represented by the following equation: (3) Where ψ (w) is the fourier transform of the wavelet function ψ (t) used to investigate the signals and then to reconstruct them without losing any information. According to the admissibility condition, the fourier transform goes to zero as is shown in the following equation Another important property of the wavelet is: Vol. 4 Issue 1 August 2014 74 ISSN: 2319 1058 (4)

(5) To remedy the squared relationship between the time bandwidth product of the wavelet transform and the input signal, certain regularity conditions are imposed so as to ensure the smoothness and concentration of the wavelet function in both time and frequency domains. The decomposition can be implemented using filtering and downsampling, and can be Iterated, with successive approximation as in.the total decomposition levels can be calculated according to the following relationship: +1 (6) where M=Total no of levels Figure 2 wavlet decomposition C. Fault in induction motor- There are different types of fault in induction motor such as broken rotor bar fault, eccentricity fault etc but in this paper broken rotor bar fault is studied. Electric drives are used in safety-critical applications or industrial processes where the immense costs of unplanned stops are unacceptable. Fault detection depends on the availability of information from the system. In this work, the fault detection is done using wavelet for analysis of stator current as can be shown in fig.11 for the healthy case, fig.12for broken rotor bar case and fig.13 for the stator short winding case respectively. D. Broken rotor bar Key reasons for a broken rotor bar are : 1. Direct on line starting which leads to excessive heating and mechanical problems. 2. Variable mechanical load. 3. Unsatisfactory rotor cage manufacturing. Vol. 4 Issue 1 August 2014 75 ISSN: 2319 1058

E. Simulation study- Figure. 3.a Figure 3 b Figure.4 a Figure. 4 b The simulation results under the condition that the motor Operates with rated load and no. 1 and 2 rotor bar breaks Successively are provided in fig. 1, indicating that there would once Broken rotor bar fault occurred, moreover, the amplitudes of These components increase gradually along with the fault Progression. Obviously, for an ideal motor, the fault indicators rather distinctive, as makes it easy to achieve the sensitive And reliable detection of broken rotor bar fault. Pay attention that the stator current spectrum refers to the Self-adaptive filtered spectrum, Vol. 4 Issue 1 August 2014 76 ISSN: 2319 1058

Figure 5.a Stator a-phase current spectrum Figure5.b Simulation results of broken rotor bar fault Fig.5 demonstrates clearly that the stator current spectrum Comprises quite a few peaks besides those associated with the For Instance, the motor air-gap eccentricity likewise leads to the Occurrence of superimposed components in the stator current III. EXPERIMENT AND RESULT A. PROPOSED CIRCUIT FOR SIMULATION- Figure. 6 simulation circuit B.RESULT Vol. 4 Issue 1 August 2014 77 ISSN: 2319 1058

Figure 7 a Output of a healthy induction motor Figure. 7 b Output of a faulty induction motor Vol. 4 Issue 1 August 2014 78 ISSN: 2319 1058

IV.CONCLUSION The wavelet is considered as powerful tools in the fault detection and diagnosis of induction motors. Many wavelet classes can be generated by different kinds of mother wavelets and can be constructed by filters banks. The improvement of fault detection and diagnosis can be exploiting the wavelet properties to get high detection and diagnostics effectiveness. Theories of wavelet need to be pushed forward to insure best choosing of mother wavelet. The wavelet index can distinguish correctly between the faults and healthy induction motor.matlab/simulink excellent package for both simulations and practice experiments in the diagnostic of induction machines with wavelet. REFERENCES [1] A. H. Bonnett and g. C. Soukup, rotor failures in squirrel cage induction motors, ieee transaction on industrial application,vol 22 pp 1165 1173 (1986). [2] G. B. Kliman, r. A. Koegl, j. Stein, r. D. Endicott, and m. W. Madden, noninvasive detection of broken rotor bars in operating induction motors, ieee transaction on energy conversion,vol 3,pp 873 879 (1988). [3] J. Milimonfared, h. M. Kelk, s. Nandi, a. D. Minassians, and h. A. Toliyat, a novel approach for broken-rotor-bar detection in cage induction motors, ieee transaction on industrial applications,vol 35(5),pp. 1000 1006 (1999). [4] S. Bachir, s. Tnani, g. Champenois, and j. C. Trigeassou, induction motor modeling of broken rotor bar and fault detection by parameter estimation, in proc. Ieee sdemped, gorizia, italy, 145 149 (2001) [5] J. R. Cameron, w. T. Thomson, and a. B. Dow, vibration and current monitoring for detecting air gap eccentricity in large induction motors, proc. Inst. Electr. Eng.,vol 133 (3),pp. 155 163, (1986). [6] R. R. Schoen, t. G. Habetler, f. Kamran, and r. G. Bartfield, motor bearing damage detection using stator current monitoring, ieee transaction on industrial application,vol 31 (6),pp- 1274 1279 (1995). [7] R. R. Obaid, t. G. Habetler, and j. R. Stack, stator current analysis for bearing damage detection in induction motors, in proc. 4th ieee sdemped, 182 187 (2003) [8] B. Raison, g. Rostaing, o. Butscher, and c. S. Maroni, investigations of algorithms for bearing fault detection in induction drives, in proc. 28th annu. Conf. Iecon,vol 2,pp. 1696 1701 (2002). [9] M. E. H. Benbouzid, a review of induction motors signature analysis as a medium for faults detection, ieee transaction on industrial. Electronics, vol47(5),pp 984 993, (2000). [10] W. T. Thomson and m. Fenger, case histories of current signature analysis to detect faults in induction motor drives, in proc. Ieee iemdc, vol 3, pp.1459 1465 (2003) Vol. 4 Issue 1 August 2014 79 ISSN: 2319 1058