Real-time adjustable gate current control IC solves dv/dt problems in electric drives

Similar documents
SiC-JFET in half-bridge configuration parasitic turn-on at

DC Link. Charge Controller/ DC-DC Converter. Gate Driver. Battery Cells. System Controller

Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers

F3L030E07-F-W2_EVAL Evaluation Board for Easy2B 3-Level Modules in NPC-Topology with 1ED020I12-F gate driver IC

Gate-Driver with Full Protection for SiC-MOSFET Modules

IGBT Driver for medium and high power IGBT Modules

Low-inductive inverter concept by 200 A / 1200 V half bridge in an EasyPACK 2B following strip-line design

PCB layout guidelines. From the IGBT team at IR September 2012

Optimizing Gate Driver to Smooth Gate Waveform

EiceDRIVER. 1EDS-SRC family. High voltage gate driver IC with reinforced isolation

VLA Hybrid Gate Driver Application Information. DC-DC Converter V D 15V. V iso = 2500V RMS

Application Note AN V1.0 May AN MA3L120E07_EVAL Evaluation Adapter Board for EconoPACK TM 4 3-Level Modules in NPC2-Topology

How to Design an R g Resistor for a Vishay Trench PT IGBT

Driving IGBTs with unipolar gate voltage

AN MA3L080E07_EVAL Evaluation Adapter Board for EconoPACK TM 4 3-Level Modules in NPC1-Topology

INVESTIGATION OF GATE DRIVERS FOR SNUBBERLESS OVERVOLTAGE SUPPRESSION OF POWER IGBTS

Impact of module parasitics on the performance of fastswitching

Why and How Isolated Gate Drivers

A SiC MOSFET for mainstream adoption

3 Hints for application

PIEZOELECTRIC TRANSFORMER FOR INTEGRATED MOSFET AND IGBT GATE DRIVER

Preliminary Data Sheet Single-Channel, High Power IGBT Gate Driver for Applications from 1.7kV to 6.5kV

Evaluation Board for CoolSiC Easy1B half-bridge modules

Turn-On Oscillation Damping for Hybrid IGBT Modules

Published in: Proceedings of the th European Conference on Power Electronics and Applications (EPE'15-ECCE Europe)

AN EDC/1EDI Compact family technical description

POWER DELIVERY SYSTEMS

Importance of measuring parasitic capacitance in isolated gate drive applications. W. Frank Infineon Technologies

Application Note AN-1120

Measurement of dynamic characteristics of 1200A/ 1700V IGBT-modules under worst case conditions

4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816. Features: SHDN COMP OVP CSP CSN

Driver Unit for Converter-Brake-Inverter Modules

Application Note 5314

A new 650V Super Junction Device with rugged body diode for hard and soft switching applications

Figure 1.1 Fully Isolated Gate Driver

VLA Hybrid IC IGBT Gate Driver + DC/DC Converter

1SC2060P Description & Application Manual

Description. Operating Temperature Range

AN-5077 Design Considerations for High Power Module (HPM)

Advanced protection for large current full SiC-modules

A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form

Smart Gate Driver Design for Silicon (Si) IGBTs and Silicon-Carbide (SiC) MOSFETs

V-Series Intelligent Power Modules

IGBT-Module integrated Current and Temperature Sense Features based on Sigma-Delta Converter

1SC0450V2Ax-45 and 1SC0450V2Ax-65 Target Datasheet

power semiconductor devices, device application, control

Investigation of Parasitic Turn-ON in Silicon IGBT and Silicon Carbide MOSFET Devices: A Technology Evaluation. Acknowledgements. Keywords.

A Half Bridge Inverter with Ultra-Fast IGBT Module Modeling and Experimentation

White Paper. Gate Driver Optocouplers in Induction Cooker. Load Pot. Control. AC Input. Introduction. What is Induction Cooking?

Grade of climate describes the permissible ambient test conditions (climate) according to DIN IEC 68-1

MC33153P/D. Representative Block Diagram

Besides the output current, what other aspects have to be considered when selecting a suitable gate driver for a certain application?

Gate drive card converts logic level turn on/off commands. Gate Drive Card for High Power Three Phase PWM Converters. Engineer R&D

Unleash SiC MOSFETs Extract the Best Performance

Gate Drive Optimisation

Preliminary Data Sheet

AN2123 Application Note

AN MA400E12/17 and MA401E12/17 Module Adapter Board for IHM IGBT Modules

AN1387 APPLICATION NOTE APPLICATION OF A NEW MONOLITHIC SMART IGBT IN DC MOTOR CONTROL FOR HOME APPLIANCES

Micrel, Inc Fortune Drive San Jose, CA USA tel + 1 (408) fax + 1 (408)

User s Manual. ACPL-339J Isolated Gate Driver Evaluation Board. Quick-Start. Testing Either Arm of The Half Bridge Inverter Driver (without IGBT)

ACTIVE GATE DRIVERS FOR MOSFETS WITH CIRCUIT FOR dv/dt CONTROL

Powering IGBT Gate Drives with DC-DC converters

AN OVER-CURRENT PROTECTION OF POWER MODULES USING IGBT

A SiC JFET Driver for a 5 kw, 150 khz Three-Phase Sinusoidal-Input, Sinusoidal-Output PWM Converter

Internal Dynamics of IGBT Under Fault Current Limiting Gate Control

New Power Stage Building Blocks for Small Motor Drives

SiC MOSFETs Based Split Output Half Bridge Inverter: Current Commutation Mechanism and Efficiency Analysis

Silicon Carbide MOSFETs Handle with Care

Triple Pulse Tester - Efficient Power Loss Characterization of Power Modules

Figure 1 RC Based Soft Start Circuit. Path of charge during startup shown in red.

Cree SiC Power White Paper: The Characterization of dv/dt Capabilities of Cree SiC Schottky diodes using an Avalanche Transistor Pulser

Switching Transition Control of Insulated-Gate Power Semiconductor Devices

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1

The Quest for High Power Density

PC Krause and Associates, Inc.

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

Description and Application Manual for PID932 Single Channel IGBT drivers

M57161L-01 Gate Driver

Controlling Power Up and Power Down of the Synchronous MOSFETs in a Half-Bridge Converter

EiceDRIVER 1EDC Compact

Choosing the Appropriate Component from Data Sheet Ratings and Characteristics

Hybrid ICs Drive High-Power IGBT Modules

Using NEC Optocouplers as Gate Drivers in IGBT and Power MOSFET Applications

Application Manual for QP12W05S-37 Hybrid Gate Driver

IRS21867S HIGH AND LOW SIDE DRIVER

Enhancing Power Delivery System Designs with CMOS-Based Isolated Gate Drivers

AN2002 APPLICATION NOTE

Application Note 0009

3 Circuit Theory. 3.2 Balanced Gain Stage (BGS) Input to the amplifier is balanced. The shield is isolated

2FSC0435+ Preliminary Datasheet 2FSC0435+ Absolute Maximum Ratings 2FSC0435+

Three-Phase IGBT BRIDGE, With Gate Driver and Optical Isolation

Modern Hardware Technology in Inverters and Servo Systems

This chapter describes precautions for actual operation of the IGBT module.

Advanced Gate Drive Options for Silicon- Carbide (SiC) MOSFETs using EiceDRIVER

Design and Characterization of a Three-Phase Multichip SiC JFET Module

2SC0108T Description & Application Manual

provide excellent noise immunity, short delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the APT80GA60LD40

Reduction of Stray Inductance in Power Electronic Modules Using Basic Switching Cells

FGH75T65SQDNL4. 75 A, 650 V V CEsat = 1.50 V E on = 1.25 mj

Transcription:

Real-time adjustable gate current control IC solves dv/dt problems in electric drives Wolfgang Frank, Infineon Technologies AG, Germany, Wolfgang.frank@infineon.com André Arens, Infineon Technologies AG, Germany, Andre.arens@infineon.com Stephan Hörold, Infineon Technologies AG, Austria, Stephan.hoerold@infineon.com Abstract The tuning of commutation speed of currents between freewheeling diodes and IGBT plays an important role in respect of the EMI behavior of power electronics ([1] [6]). High dv/dt means a large stress for the motor winding insulation and motor bearings ([7], [8]) as well as it causes conducted and radiated interferences with the supply in general. Many works for speed control of IGBT turn-on are known ([], [3], [4]) and solutions result in large and complex control units. This paper presents the benefits of a novel gate drive IC ([5]), which offers an online adjustment feature for collector emitter voltage transient dv CE /dt in respect of the switching waveforms. The paper also shows, that the IC allows targeting new design tradeoffs in the application. 1. Introduction The operation of modern inverter with pulse width modulation techniques brings a lot of negative side effects to motor drive applications. These are e.g. degradation of the winding insulation in both non-potted windings and especially in potted ones, inverter operation with shielded cables [9], PCB layout, motor bearing degradation. Fast switching devices promise lower and lower switching losses. On the other hand EMI problems and side effects increase, if one fully uses the offered switching performance. It is state of the art to solve the tradeoff between switching performance and EMI with the design of the gate resistor including an optional gate-emitter capacitor. This procedure results in a fixed compromise, which must cover low load operation and high load operation as well. However, performance and therefore also efficiency is lost by the fixed gate resistor. An adjustable gate resistor is needed to close that gap. A recently proposed concept for a gate current controlled turn-on of IGBT [5] is used in this paper, which is realized now as an integrated IC as a part of Infineon s EiceDRIVER portfolio. The paper investigates the dv CE /dt and di C /dt transients during current commutation from diode to IGBT. The effects are described and functions of the IC for controlling the slew rates of current and voltage of IGBT during turn-on are explained in detail. A number of innovative, additional functions for controlling efficiently modern power electronic systems such as three level inverters are described as well. Practical measurements show the advantages of an online adjustment of the slew rate control. Furthermore, specific IC features for overcurrent and desaturation detections for the use in 3-level-inverters are explained.. Pin configuration and clustering The turn-on gate current control IC provides two different voltage domains on the input side. The 5 V power supply domain (dark blue) supplies the main parts of the IC as well as the coreless transformer insulation barrier. This covers the terminals VCC1, GND1, SIGI and SIGO. ISBN 978-3-8007-3603-4 98 VDE VERLAG GMBH Berlin Offenbach

There is additionally the control domain comprising the terminals /FLT, RDY1, RDY, PADP, INP, INN, EN, PADN and SPEED (green shaded), which can be supplied with the voltage levels of 3.3 V, 5 V, and 15 V. This allows designing this device into moderate noise environments with the 3.3 V and 5 V levels, but also into harsh noise environments by using control signals of a 15 V level. This voltage domain is supplied by the terminals PADP and PADN. 5V 5V VCC VCC1 VCC /FLT RDY DESAT CS RD CDESAT R DESAT D DESAT C1 RDY1 PADP OCOFF RSENSE ON CD RS T Control Unit RF CF INP INN EN PADN SPEED SIGI PRB GATE OFF SOFF CZ ROFF RSOFF GND SIGO GND1 VZ VEE GND C3 R PRB R PRB1 VCC C Fig. 1: Pin configuration of the new EiceDRIVER IC with gate current control in a typical application The supply terminals on the output side are VCC, GND and VEE (yellow shaded). The output side allows a bipolar gate voltage supply for avoiding dv/dt triggered parasitic turn-on. The red shaded terminals RSENSE, ON, PRB, and GATE belong to the gate current turn-on control loop. The light blue shaded area comprising the terminals DESAT, CS, and OCOFF are dedicated protection terminals for short circuit detection, overcurrent detection by shunts or sense IGBT and three-level inverter support, respectively. The turn-off cluster (purple shaded) of terminals on the outside contains the two-level turn-off function (terminals CZ, VZ), the turn-off terminal OFF and the soft turn-off terminal SOFF. The latter is activated only in case of desaturation of current sense triggering, when initiated from the output side. The typical application circuit shows that the additional circuit for the gate current control loop needs only a limited small number of components. It is even the same complexity, when comparing to state-of-the-art gate drive circuits which use gate resistor control and external booster circuits for the gate current amplification. 3. Three level inverter support (NPC 1 topology) It is the major advantage of three level inverters in NPC 1 topology that IGBT with lower breakdown voltage compared to the total DC link voltage can be selected. IGBT with a breakdown voltage of 650 V can be selected for a DC link voltage of e.g. = 800 V. Such IGBT offer much better switching and conduction performance. However, critical conditions ISBN 978-3-8007-3603-4 99 VDE VERLAG GMBH Berlin Offenbach

PCIM Europe 014, 0 May 014, Nuremberg, Germany in terms of blocking voltage can occur as it is shown in Fig. in cases of overload conditions. Many gate driver IC offer protection functions, e.g. the desaturation detection, which results in an automated turn-off of this particular transistor. The positive DC link voltage is applied to the load, when transistors and T are turned on according to a) in Fig.. A critical situation can occur, when an overload is detected at transistor T and T is automatically turned off by the driver IC. This means, that the current will commutate to diodes D3 and D4. The phase voltage is the negative DC link rail now. The transistor T is therefore stressed by the full DC link voltage, since transistor is still turned on, which can break down this transistor according to b) in Fig.. D5 D1 T D I Load D5 D1 + T D D5 D1 T D I Load + + D6 T3 D3 D6 T3 D3 I Load D6 T3 D3 a) T4 D4 b) T4 D4 c) T4 D4 Fig. : Phase leg of a three level inverter in NPC1 topology in normal operation (a), condition of inner switches off (b) and arm short circuit safe condition (c) A safe state in this case is to control a zero voltage to the phase according to c) in Fig.. It is mandatory in this case that the driver IC detects the overload condition, but does not turn-off transistor T automatically. The described gate current control IC offers the option to suppress the automatic short circuit shut down mechanism by pulling up the terminal OCOFF to the output supply voltage VCC. Only a fault signal is transmitted to the control side, so that the application control can manage this situation properly and in time. Therefore, the two control IC for and T4 according to Fig. are turned-off by default, while the gate driver IC of T and T3 respectively wait for instruction. One can turn-off T and T3 by means of deactivating the enable function in that case. This results as well in a soft turn-off. 4. Gate current control IC during turn-on process The most innovative feature is the gate current control function. The new gate current control IC divides the turn-on process into three sections according to a) in Fig. 3: The first section (t0 to t1) is the charging from a negative voltage to a defined value in the range of v GE = 0. This section is called the pre-boost section and lasts for a fixed duration of t PRB = 135ns. The preboost current level I PRB during this phase is adjustable for each individual IGBT type. The second section (t1 to t3) is the gate control section. The instantaneous constant gate drive current I gg can be adjusted within 11 different values. The IGBT gate voltage passes the Miller voltage level during this time. The practical application of the device proposes usually a smaller turn-on gate current I gg compared to the preboost current I PRB. Nevertheless, it is possible also to achieve even larger turn-on currents I gg than the preboost current I PRB. This is shown in b) of Fig. 3. Finally, the gate is fully charged up to the desired gate voltage level in section 3 (t3 to t4). ISBN 978-3-8007-3603-4 100 VDE VERLAG GMBH Berlin Offenbach

The used gate drive IC is able to control the dv CE /dt transient of IGBT by selecting a suitable current level during phase. The selection of the gate resistor is therefore more tolerant with an adjustable gate current source compared to a pure resistive gate control, which only applies a constant gate voltage to the gate resistor. Please note that the turn-on delay time t d(on) is now very constant and predictable. This has effect on the design of the dead time, which can be smaller now. a) v ge i gg preboost 135ns turn-on current source VCC clamping 15V I PRB V Miller I gg V ge(th) I gg accuracy +/-10% t -8V <100ns b) Fig. 3: The three phases of a turn-on process with (a) theoretical waveforms for gate current (blue) and voltage (green) and (b) measured waveforms of gate current for speed levels 1-11 The IC controls the gate current by means of closed loop current source circuit, which consists of a p-channel MOSFET and a current sense resistor. The current source is extremely precise with a tolerance of ± 10% during the turn-on phase. This solution is cheaper than a similar setup using bipolar transistors. Additionally, the p-channel MOSFET provides a rail-to-rail capability, which is not possible with bipolar transistors. The EiceDRIVER IC can control in total up to 3 p-channel MOSFET BSD314SPE in parallel, which covers a range of current classes up to 900 A of 100 V modules. ISBN 978-3-8007-3603-4 101 VDE VERLAG GMBH Berlin Offenbach

5. Effect of gate current control IC on transient collector-emitter voltage at turn-on The adjustability of the controlled gate current allows the design engineer to change paradigms concerning the switching speed of the diode. The controlled gate current results in a much smoother transition voltage from transistor to the freewheeling diode. Another advantage is, that the turn-on propagation delay is more predictable compared to a pure resistive turn-on as discussed in section 4. Fig. 4 shows the range of dv CE /dt rate over various speed setting and over temperature. It can be seen, that the control range of the gate current control IC is sufficient to cover the same range as with a common fixed gate resistor control, while having the advantage to change the dv CE /dt rate online during operation. So the commutation speed is not limited to a single curve, but rather can now cover an area of possible dv CE /dt values. Fig. 4: Coverage of dv CE /dt range by gate current control IC for speed step 1,3, 5, and 10 at IGBT junction temperature of 5 C The fact of the new adjustability of dv CE /dt has a high importance for the lifetime of motor windings and motor bearings. Investigations already showed that the cost for filters or other countermeasures to limit the dv/dt are expensive ([10]) relative to the cost of the drive. A control of the dv CE /dt means that countermeasures for reducing the dv CE /dt (e.g. filters) can be reduced or even skipped, which is an important step towards system cost reduction. Also maintenance cycles for motors may be longer. Fig. 4 proves that it is now possible stay below the critical values of dv CE /dt in the application by setting the commutation speed according to the instantaneous electrical conditions of the application. 6. Application test The behavior of the real-time adjustable closed loop gate current control is shown in Fig. 5. The individual applied speed steps are indicated with x and the amplitude corresponds to the voltage at terminal SPEED. It can easily be seen, that the speed steps follow the sine ISBN 978-3-8007-3603-4 10 VDE VERLAG GMBH Berlin Offenbach

waveform of the motor current. Therefore the switching speed and thus the switching losses are following the motor current: A higher motor current is related to a relatively lower switching loss. However, some deviation is visible. The interval of higher speed steps is shorter compared to interval of low speed steps. This is caused by a delay in the transmission of the speed step into the output section the control IC. The delay is defined with a maximum of 10μs. The delay can be treated as kind of a dead time. It is therefore possible to correct it by a predictive setting of the voltage at terminal SPEED. Fig. 5: Application measurement (collector-emitter voltage 100V/div green, collector current 10A/div red) 7. Conclusion This paper discusses the advantages of a novel gate current control IC concept, which uses a closed loop gate current control for turn-on. The turn-on properties can be adjusted in realtime during operation of the IC. It is shown by a switching test example, that gate drive IC can control a wide range of collector-emitter transient voltage dv CE /dt. In the discussed example, values from 1kV/μs up to 3.5 kv/μs at small collector currents is achieved, which is superior over only 1 trade-off line when using a common gate resistor control. This result helps to reduce the size of motor and EMI filters or omits them at all and therefore reduces the system cost significantly. Commonly used gate resistor driven IGBT show also a strong variation of the turn-on propagation delay over the collector current. It is shown here that the turn-on process is now predictable in respect of turn-on propagation delay and independent on collector current. 8. Reference [1] E.R. Motto, J.F. Donlon: Speed Shifting Gate Drive for Intelligent Power Modules; Proceedings of the Advanced Power Electronic Conference 006, USA, 006 [] Y. Lobsiger, J.W. Kolar: Closed-Loop IGBT Gate Drive Featuring Highly Dynamic di/dt and dv/dt Control; Proceedings of ECCE 01 conference; Ort, Land, 01. [3] Y. Lobsiger, J.W. Kolar: Closed-Loop di/dt & dv/dt Control and Dead Time Minimization of IGBTs in Bridge Leg Configuration; Proceedings of the 14th IEEE Workshop on Control and Modeling for Power Electronics (COMPEL 013), Salt Lake City, USA, 013. [4] V. John, B.S. Suh, T.A. Lipo: High-Performance Active Gate Drive for High-Power IGBT s; IEEE transactions on industry applications, Vol. 35, No. 5, USA, 1999 [5] A. Arens, et al.: Get tuned A new generation of driver IC including safe isolation by coreless transformer technology; Proceedings of PCIM Europe 013; Nuremberg, Germany, 013. [6] F. Hille, W. Frank: A new high voltage diode technology with reduced switching losses and improved softness; Proceedings of PCIM Europe 007, Nuremberg, Germany, 007. ISBN 978-3-8007-3603-4 103 VDE VERLAG GMBH Berlin Offenbach

[7] A. v. Jouanne, P. N: Enjeti: Design considerations for an Inverter Output Filter to Mitigate the Effects of long Motor leads in ASD applications ; IEEE transactions on industry application, Vol. 33, No. 5; 1997 [8] A. v. Jouanne, H. Zhang, A. Wallace: An evaluation of mitigation techniques for bearing currents, EMI and over-voltages in ASD applications ; IEEE 1997 [9] J.O. Krah, et al.: Besonders energieeffizienter, motorintegrierter Umrichter mit SiC- MOSFETs ; Proceedings of SPS/drives/IPC conference, Nuremberg, Germany, 013 [10] Gambica.: Variable speed drives and motors ; Technical report No.1, 3 rd edition, GAMBICA Association Limited, London, Great Britain, 006 ISBN 978-3-8007-3603-4 104 VDE VERLAG GMBH Berlin Offenbach