Analog Circuit Test. Analog circuits Analog circuit test methods Specification-based testing Direct measurement DSP-based testing

Similar documents
Serial Input 18-Bit Monolithic Audio DIGITAL-TO-ANALOG CONVERTER

7545B. 12-Bit Buffered Multiplying Digital to Analog Converter FEATURES: DESCRIPTION: 7545B BLOCK DIAGRAM

Serial Input 18-Bit Monolithic Audio DIGITAL-TO-ANALOG CONVERTER

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

AD9772A - Functional Block Diagram

EVALUATION KIT AVAILABLE 10-Bit, Dual, Nonvolatile, Linear-Taper Digital Potentiometers TOP VIEW

Current Output/Serial Input, 16-Bit DAC AD5543-EP

Dual 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometers

CMOS 12-Bit Multiplying DIGITAL-TO-ANALOG CONVERTER Microprocessor Compatible

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

8408 Quad 8-Bit Multiplying CMOS D/A Converter with Memory

LC2 MOS Dual 12-Bit DACPORTs AD7237A/AD7247A

TLC7528C, TLC7528E, TLC7528I DUAL 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS

TLC7524C, TLC7524E, TLC7524I 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS

LC2 MOS Complete 12-Bit Multiplying DAC AD7845

Tutorial 2 Test Techniques for RFIC and Embedded Passives

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface

10-Bit µp-compatible D/A converter

Dual, 256-Tap, Nonvolatile, SPI-Interface, Linear-Taper Digital Potentiometers MAX5487/MAX5488/ MAX5489. Benefits and Features

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820

CMOS 8-Bit Buffered Multiplying DAC AD7524

10-Bit, Low-Power, Rail-to-Rail Voltage-Output Serial DAC in SOT23

SPT BIT, 100 MWPS TTL D/A CONVERTER

SCLK 4 CS 1. Maxim Integrated Products 1

+2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

4 x 10 bit Free Run A/D 4 x Hi Comparator 4 x Low Comparator IRQ on Compare MX839. C-BUS Interface & Control Logic

2.7 V to 5.5 V, 400 ksps 8-/10-Bit Sampling ADC AD7813

Low-Power, Low-Glitch, Octal 12-Bit Voltage- Output DACs with Serial Interface

Low-Power, 12-Bit, Rail to Rail Voltage-Output Serial DAC in SOT23

MAX5452EUB 10 µmax 50 U10C-4 MAX5451EUD 14 TSSOP 10 U14-1

Dual, 256-Tap, Nonvolatile, SPI-Interface, Linear-Taper Digital Potentiometers

+3V/+5V, Low-Power, 8-Bit Octal DACs with Rail-to-Rail Output Buffers

LC2 MOS Complete, 12-Bit Analog I/O System AD7868

TLC7524C, TLC7524E, TLC7524I 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTERS

Quad 12-Bit Digital-to-Analog Converter (Serial Interface)

CMOS 12-Bit Buffered Multiplying DAC AD7545A

256-Tap SOT-PoT, Low-Drift Digital Potentiometers in SOT23

FUNCTIONAL BLOCK DIAGRAM DIGITAL VIDEO ENGINE

DATA SHEET. TDA1543 Dual 16-bit DAC (economy version) (I 2 S input format) INTEGRATED CIRCUITS

INL PLOT REFIN DAC AMPLIFIER DAC REGISTER INPUT CONTROL LOGIC, REGISTERS AND LATCHES

Lecture 6: Digital/Analog Techniques

LC2 MOS Octal 8-Bit DAC AD7228A

Low-Power Pipelined ADC Design for Wireless LANs

8-Bit, 100 MSPS 3V A/D Converter AD9283S

LC2 MOS Complete, 14-Bit Analog I/O System AD7869

PART MAX5304EUA TOP VIEW OUT 8 CONTROL INPUT REGISTER. Maxim Integrated Products 1

6-Bit A/D converter (parallel outputs)

L10: Analog Building Blocks (OpAmps,, A/D, D/A)

FEATURES APPLICATIONS TYPICAL APPLICATION. LTC1451 LTC1452/LTC Bit Rail-to-Rail Micropower DACs in SO-8 DESCRIPTION

4-Channel, Simultaneous Sampling, High Speed, 12-Bit ADC AD7864

PART TOP VIEW V EE 1 V CC 1 CONTROL LOGIC

CMOS 12-Bit Serial Input Multiplying DIGITAL-TO-ANALOG CONVERTER

Octal, 16-Bit DAC with 5 ppm/ C On-Chip Reference in 14-Lead TSSOP AD5668-EP

AD MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS Programmable Gain Instrumentation Amplifier. Preliminary Technical Data FEATURES

Microprocessor-Compatible 12-Bit D/A Converter AD767*

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

Dual 16-Bit DIGITAL-TO-ANALOG CONVERTER

16-Channel, 1 MSPS, 12-Bit ADC with Sequencer in 28-Lead TSSOP AD7490-EP

Software Programmable Gain Amplifier AD526

Issues and Challenges of Analog Circuit Testing in Mixed-Signal SOC

Microprocessor-Compatible 12-Bit D/A Converter AD667*

TLC5620C, TLC5620I QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS

LC 2 MOS 8-Channel, 12-Bit Serial, Data Acquisition System AD7890

ADC Bit High-Speed µp-compatible A/D Converter with Track/Hold Function

MOS (PTY) LTD. E Single Channel PIR Signal Processor. Applications. General Description. Features. Digital Sensor Assembly with E931.

LM12L Bit + Sign Data Acquisition System with Self-Calibration

Serial Input 16-Bit Monolithic DIGITAL-TO-ANALOG CONVERTER

DS1267B Dual Digital Potentiometer

16-Bit DSP DACPORT AD766

LC 2 MOS 8-Channel, 12-Bit Serial Data Acquisition System AD7890

5 V, 12-Bit, Serial 220 ksps ADC in an 8-Lead Package AD7898 * REV. A

Low-Cost, Voltage-Output, 16-Bit DACs with Internal Reference in µmax

Chapter 2 Signal Conditioning, Propagation, and Conversion

Dual 8-Bit, 60 MSPS A/D Converter AD9059

DS1868B Dual Digital Potentiometer

2.7 V to 5.5 V, 350 ksps, 10-Bit 4-/8-Channel Sampling ADCs AD7811/AD7812

Low Power, mw, 2.3 V to 5.5 V, Programmable Waveform Generator AD9833-EP

Lab Exercise 6: Digital/Analog conversion

DS1804 NV Trimmer Potentiometer

+Denotes lead-free package. *EP = Exposed paddle. V CC GND AGND AV CC GND I 2 C INTERFACE. -35dB TO +25dB GAIN AUDIO SOURCE AUDIO AMPLIFIER DS4420

CD22202, CD V Low Power DTMF Receiver

R (a) Explain characteristics and limitations of op-amp comparators. (b) Explain operation of free running Multivibrator using op-amp.

9-Bit, 30 MSPS ADC AD9049 REV. 0. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM

Features. Key Specifications. n Total unadjusted error. n No missing codes over temperature. Applications

CD22202, CD DTMF Receivers/Generators. 5V Low Power DTMF Receiver. Features. Description. Ordering Information. Pinout. Functional Diagram

5 V, 12-Bit, Serial 3.8 s ADC in 8-Pin Package AD7895

10-Bit, 40 MSPS/60 MSPS A/D Converter AD9050 REV. B. Figure 1. Typical Connections FUNCTIONAL BLOCK DIAGRAM

INTEGRATED CIRCUITS. SA5775A Differential air core meter driver. Product specification 1997 Feb 24

OBSOLETE. 16-Bit/18-Bit, 16 F S PCM Audio DACs AD1851/AD1861

SPT BIT, 30 MSPS, TTL, A/D CONVERTER

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

L9: Analog Building Blocks (OpAmps,, A/D, D/A)

5 V, 14-Bit Serial, 5 s ADC in SO-8 Package AD7894

HI Bit, 40 MSPS, High Speed D/A Converter

8-Bit A/D Converter AD673 REV. A FUNCTIONAL BLOCK DIAGRAM

Octal Sample-and-Hold with Multiplexed Input SMP18

2.5 V to 5.5 V, Parallel Interface Octal Voltage Output 8-/10-/12-Bit DACs AD5346/AD5347/AD5348

Fault Testing of Analog Circuits Using Combination of Oscillation Based Built-In Self- Test and Quiescent Power Supply Current Testing Method

Maintenance/ Discontinued

The Fundamentals of Mixed Signal Testing

Transcription:

Analog Circuit Test Analog circuits Analog circuit test methods Specification-based testing Direct measurement DSP-based testing Fault model based testing IEEE 1149.4 analog test bus standard Summary References 1

Analog Circuits Operational amplifier (analog) Programmable gain amplifier (mixed-signal) Filters, active and passive (analog) Comparator (mixed-signal) Voltage regulator (analog or mixed-signal) Analog mixer (analog) Analog switches (analog) Analog to digital converter (mixed-signal) Digital to analog converter (mixed-signal) Phase locked loop (PLL) (mixed-signal) 2

Test Parameters DC AC Continuity Leakage current Reference voltage Impedance Gain Power supply sensitivity, common mode rejection Gain frequency and phase response Distortion harmonic, intermodulation, nonlinearity, crosstalk Noise SNR, noise figure 3

Analog Test (Traditional) ~ Filter DC RMS DC ETC. Stimulus Analog device under test (DUT) Response PEAK ETC. Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 4

DSP-Based Mixed-Signal Test Synthesizer RAM D/A Send memory Analog Digital Mixed-signal device under test (DUT) Analog Digital Digitizer A/D Receive memory RAM Synchronization Vectors Digital signal processor (DSP) Vectors M. Mahoney, DSP-Based Testing of Analog and Mixed-Signal Circuits, Los Alamitos, California: IEEE Computer Society Press, 1987, pp. 1-14. Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 5

Waveform Synthesizer 1987 IEEE Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 6

Waveform Digitizer 1987 IEEE Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 7

Example: Circuit Specification Key Performance Specifications: TLC7524C 8-bit Multiplying Digital-to-Analog Converter Resolution Linearity error Power dissipation at V DD = 5 V Settling time Propagation delay time 8 Bits ½ LSB Max 5 mw Max 1 ns Max 8 ns Max M. Burns and G. W. Roberts, An Introduction to Mixed-Signal IC Test and Measurement, New York: Oxford University Press, 21, pp. 23-44. Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 8

Voltage Mode Operation R R R V O Analog Output Voltage 2R 2R 2R 2R 2R 1 1 1 1 R V I R FB Fixed Input Voltage OUT1 OUT2 CS WR DB7 (MSB) Data Latches DB6 DB5 DB (LSB) Digital data Input GND V O = V I (D/256) VDD = 5 V OUT1 = 2.5 V OUT2 = GND Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 9

Operational/Timing Spec. Parameter Test conditions For VDD = 5 V Linearity error Gain error Settling time to ½ LSB Prop. Delay, digital input to 9% final output current CS WR DB-DB7 Measured using the internal feedback resistor. Normal full scale range (FSR) = Vref 1 LSB OUT1 load = 1 Ω, Cext = 13 pf, etc. t su (CS) 4 ns t w (WR) 4 ns t su (D) 25 ns ±.5 LSB ±2.5 LSB 1 ns 8 ns t h (CS) ns t h (D) 1 ns Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 1

Operating Range Spec. Supply voltage, V DD Digital input voltage range Reference voltage, V ref Peak digital input current -.3 V to 16.5 V -.3 V to V DD +.3 V ±25 V 1μA Operating temperature -25ºC to 85ºC Storage temperature -65ºC to 15ºC Case temperature for 1 s 26ºC Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 11

Test Plan: Hardware Setup +Full-scale code D7-D DACOUT V o 2.5 V + - V I R LOAD 1 kω VM + V out - Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 12

Test Program Pseudocode dac_full_scale_voltage() { set VI1 = 2.5 V; /* Set the DAC voltage reference to 2.5 V */ start digital pattern = dac_full_scale ; /* Set DAC output to +full scale (2.5 V) */ connect meter: DAC_OUT /* Connect voltmeter to DAC output */ fsout = read_meter(), /* Read voltage level at DAC_OUT pin */ test fsout; /* Compare the DAC full scale output to data sheet limit */ } Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 13

Analog Fault Models Op Amp Low-pass filter amplifier High-pass filter A 1 First stage gain R 2 / R 1 A 2 High-pass filter gain R 3 and C 1 f C1 High-pass filter cutoff frequency C 1 A 3 Low-pass AC voltage gain R 4, R 5 and C 2 A 4 Low-pass DC voltage gain R 4 and R 5 f C2 Low-pass filter cutoff frequency C 2 Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 14

Bipartite Graph of Circuit Minimum set of parameters to be observed Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 15

Method of ATPG Using Sensitivities Compute analog circuit sensitivities Construct analog circuit bipartite graph From graph, find which output parameters (performances) to measure to guarantee maximal coverage of parametric faults Determine which output parameters are most sensitive to faults Evaluate test quality, add test points to complete the analog fault coverage N. B. Hamida and B. Kaminska, Analog Circuit Testing Based on Sensitivity Computation and New Circuit Modeling, Proc. ITC, 1993. Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 16

Sensitivity Differential (small element variation): T j x i T j ΔT j / T j S = T = j x i Δx i / x i Δ x i x i Incremental (large element variation): T j ρ = x i x i T j ΔT j Δx i T j performance parameter x i network element Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 17

Incremental Sensitivity Matrix of Circuit -.91 1.58 -.91.38 -.89 -.96 -.97.48 -.97 -.88 -.48 -.91 A 1 A 2 fc 1 A 3 A 4 fc 2 R 1 R 2 C 1 R 3 R 4 R 5 C 2 Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 18

Tolerance Box: Single- Parameter Variation A 1 A 2 A 4 ΔR 1 5% 15.98% R 1 ΔR 2 5% 14.1% R 2 ΔR 3 5% 2.27% R 3 ΔC 1 5% 11.6% C 1 ΔR 4 5% 15.% R 4 5% ΔR 5 15.% R 5 C 2 Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 19 f C1 f C2 A 3 ΔR 3 5% 14.81% R 3 ΔC 1 5% 15.2% C 1 ΔR 5 5% 14.65% R 5 ΔC 2 5% 13.96% C 2 ΔR 4 5% 15.% R 4 ΔR 5 5% 35.% R 5 ΔC 2 5% 35.%

Weighted Bipartite Graph Five tests provide most sensitive measurement of all components Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 2

IEEE 1149.4 Standard Analog Test Bus (ATB) Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 21

Test Bus Interface Circuit (TBIC) Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 22

Analog Boundary Module (ABM) Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 23

TBIC Switch Controls Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 24

Digital/Analog Interfaces At any time, only 1 analog pin can be stimulated and only 1 analog pin can be read Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 25

Summary DSP-based tester has: Waveform synthesizer Waveform digitizer High frequency clock with dividers for synchronization Analog test methods Specification-based functional testing Model-based analog testing Analog test bus allows static analog tests of mixedsignal devices Boundary scan is a prerequisite Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 26

References: Analog & RF Test A. Afshar, Principles of Semiconductor Network Testing, Boston: Butterworth- Heinemann, 1995. M. Burns and G. Roberts, Introduction to Mixed-Signal IC Test and Measurement, New York: Oxford University Press, 2. M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, Boston: Springer, 2. Chapters 1, 11 and 17. D. Gizopoulos, editor, Advances in Electronic Testing Challenges and Methodologies, Springer, 26. Chapters 9 and 1. J. L. Huertas, editor, Test and Design-for-Testability in Mixed-Signal Integrated Circuits, Boston: Springer, 24. P. Kabisatpathy, A Barua, and S. Sinha, Fault Diagnosis of Analog Integrated Circuits, Springer, 25. R. W. Liu, editor, Testing and Diagnosis of Analog Circuits and Systems, New York: Van Nostrand Reinhold, 1991. M. Mahoney, DSP-Based Testing of Analog and Mixed-Signal Circuits, Los Alamitos, California: IEEE Computer Society Press, 1987. A. Osseiran, Analog and Mixed-Signal Boundary Scan, Boston: Springer, 1999. T. Ozawa, editor, Analog Methods for Computer-Aided Circuit Analysis and Diagnosis, New York: Marcel Dekker, 1988. K. B. Schaub and J. Kelly, Production Testing of RF and System-on-a-Chip Devices for Wireless Communications, Boston: Artech House, 24. B. Vinnakota, editor, Analog and Mixed-Signal Test, Upper Saddle River, New Jersey: Prentice-Hall PTR, 1998. Copyright 25, Agrawal & Bushnell VLSI Test: Lecture 16alt 27