A NOVEL THREE PHASE 31-LEVEL CASCADED MULTILEVEL INVERTER FED INDUCTION MOTOR DRIVE

Similar documents
Reduction of Power Electronic Devices with a New Basic Unit for a Cascaded Multilevel Inverter fed Induction Motor

An Advanced Multilevel Inverter with Reduced Switches using Series Connection of Sub Multilevel Inverters

ISSN Vol.07,Issue.11, August-2015, Pages:

Three Phase Parallel Multilevel Inverter Fed Induction Motor Using POD Modulation Scheme

THE demand for high-voltage high-power inverters is

A Novel Cascaded Multilevel Inverter Using A Single DC Source

International Journal Of Engineering And Computer Science ISSN: Volume 2 Issue 12 December, 2013 Page No Abstract

CASCADED H-BRIDGE MULTILEVEL INVERTER FOR INDUCTION MOTOR DRIVES

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

Enhanced Performance of Multilevel Inverter Fed Induction Motor Drive

A Fifteen Level Cascade H-Bridge Multilevel Inverter Fed Induction Motor Drive with Open End Stator Winding

A New Multilevel Inverter Topology of Reduced Components

Hybrid PWM switching scheme for a three level neutral point clamped inverter

SINGLE PHASE THIRTY ONE LEVEL INVERTER USING EIGHT SWITCHES TOWARDS THD REDUCTION

COMPARISON STUDY OF THREE PHASE CASCADED H-BRIDGE MULTI LEVEL INVERTER BY USING DTC INDUCTION MOTOR DRIVES

Generating 17 Voltage Levels Using a Three Level Flying Capacitor Inverter and Cascaded Hbridge

Simulation and Experimental Results of 7-Level Inverter System

Literature Survey: Multilevel Voltage Source Inverter With Optimized Convention Of Bidirectional Switches

A Single-Phase Carrier Phase-shifted PWM Multilevel Inverter for 9-level with Reduced Switching Devices

Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques

THREE PHASE SEVENTEEN LEVEL SINGLE SWITCH CASCADED MULTILEVEL INVERTER FED INDUCTION MOTOR

A Higher Voltage Multilevel Inverter with Reduced Switches for Industrial Drive

PERFORMANCE EVALUATION OF MULTILEVEL INVERTER BASED ON TOTAL HARMONIC DISTORTION (THD)

REDUCTION OF COMMON-MODE VOLTAGE IN OPEN END WINDING INDUCTION MOTOR DRIVE USING CARRIER PHASE-SHIFT STRATEGY

SIMULATION, DESIGN AND CONTROL OF A MODIFIED H-BRIDGE SINGLE PHASE SEVEN LEVEL INVERTER 1 Atulkumar Verma, 2 Prof. Mrs.

Hardware Implementation of SPWM Based Diode Clamped Multilevel Invertr

A Novel Three Phase Asymmetric Multi Level Inverter Fed To Induction Motor Drive

International Journal of Advance Engineering and Research Development

Low Order Harmonic Reduction of Three Phase Multilevel Inverter

Bhanutej Jawabu Naveez Assistant Professor, Vignana Bharathi Institute of Technology, Aushapur, Ghatkesar, Hyderabad.

ECEN 613. Rectifier & Inverter Circuits

SEVEN LEVEL HYBRID ACTIVE NEUTRAL POINT CLAMPED FLYING CAPACITOR INVERTER

DC Link Capacitor Voltage Balance and Neutral Point Stabilization in Diode Clamped Multi Level Inverter

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 04, 2016 ISSN (online):

A New Transistor Clamped 5-Level H-Bridge Multilevel Inverter with voltage Boosting Capacity

CASCADED SWITCHED-DIODE TOPOLOGY USING TWENTY FIVE LEVEL SINGLE PHASE INVERTER WITH MINIMUM NUMBER OF POWER ELECTRONIC COMPONENTS

DESIGN OF 49 LEVEL CASCADED MULTILEVEL INVERTERS WITH REDUCED NUMBER OF COMPONENTS

A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES

A New Multilevel Inverter Topology with Reduced Number of Power Switches

A Five-Level Single-Phase Grid-Connected Converter for Renewable Distributed Systems

Comparison between Conventional and Modified Cascaded H-Bridge Multilevel Inverter-Fed Drive

Performance Analysis of Switched Capacitor Three Phase Symmetrical Inverter Topology with Induction Drive

Hybrid Five-Level Inverter using Switched Capacitor Unit

MMC based D-STATCOM for Different Loading Conditions

Matlab/Simulink Modeling of Novel Hybrid H-Bridge Multilevel Inverter for PV Application

Multilevel Inverter for Single Phase System with Reduced Number of Switches

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol. 5, Issue 1

ADVANCED PWM SCHEMES FOR 3-PHASE CASCADED H-BRIDGE 5- LEVEL INVERTERS

Series Parallel Switched Multilevel DC Link Inverter Fed Induction Motor

A NEW TOPOLOGY OF CASCADED MULTILEVEL INVERTER WITH SINGLE DC SOURCE

Modified Multilevel Inverter Topology for Driving a Single Phase Induction Motor

SPECIFIC HARMONIC ELIMINATION SCHEME FOR NINELEVEL CASCADED H- BRIDGE INVERTER FED THREE PHASE INDUCTION MOTOR DRIVE

A Novel Five-level Inverter topology Applied to Four Pole Induction Motor Drive with Single DC Link

A Series-Connected Multilevel Inverter Topology for Squirrel-Cage Induction Motor Drive

COMPARATIVE STUDY OF DIFFERENT TOPOLOGIES OF FIVE LEVEL INVERTER FOR HARMONICS REDUCTION

THD Analysis for 3-Phase 5-Level Diode Clamped Multilevel Inverter Using Different PWM Techniques

A NOVEL SWITCHING PATTERN OF CASCADED MULTILEVEL INVERTERS FED BLDC DRIVE USING DIFFERENT MODULATION SCHEMES

A Comparative Study of SPWM on A 5-Level H-NPC Inverter

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

Performance Evaluation of Multi Carrier Based PWM Techniques for Single Phase Five Level H-Bridge Type FCMLI

Analysis of IM Fed by Multi-Carrier SPWM and Low Switching Frequency Mixed CMLI

International Journal of Modern Engineering and Research Technology

Crossover Switches Cell (CSC): A New Multilevel Inverter Topology with Maximum Voltage Levels and Minimum DC Sources

MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER

Analysis of New 7- Level an Asymmetrical Multilevel Inverter Topology with Reduced Switching Devices

Study of Unsymmetrical Cascade H-bridge Multilevel Inverter Design for Induction Motor

SENSOR LESS VOLTAGE CONTROL OF CHB MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR WITH ONE DC SOURCE PER EACH PHASE

Keywords Cascaded Multilevel Inverter, Insulated Gate Bipolar Transistor, Pulse Width Modulation, Total Harmonic Distortion.

Performance Improvement of Multiphase Multilevel Inverter Using Hybrid Carrier Based Space Vector Modulation

Switching of Three Phase Cascade Multilevel Inverter Fed Induction Motor Drive

Simulation & Implementation Of Three Phase Induction Motor On Single Phase By Using PWM Techniques

Analysis And Comparison Of Flying Capacitor And Modular Multilevel Converters Using SPWM

Modeling of New Multilevel Inverter Topology with reduced Number of Power Electronic Components

A NOVEL APPROACH TO ENHANCE THE POWER QUALITY USING CMLI BASED CUSTOM POWER DEVICES

Modified Transistor Clamped H-bridge-based Cascaded Multilevel inverter with high reliability.

A New Self-Balancing Cascaded Multilevel Inverter for Level Doubling Application

A Five Level Inverter for Grid Connected PV System Employing Fuzzy Controller

Design and Evaluation of PUC (Packed U Cell) Topology at Different Levels & Loads in Terms of THD

Harmonic Reduction in Induction Motor: Multilevel Inverter

MLI HYBRID STATCOM WITH WIDE COMPENSATION RANGE AND LOW DC LINK VOLTAGE

New Multi Level Inverter with LSPWM Technique G. Sai Baba 1 G. Durga Prasad 2. P. Ram Prasad 3

Modeling and Analysis of Novel Multilevel Inverter Topology with Minimum Number of Switching Components

Voltage Unbalance Elimination in Multilevel Inverter using Coupled Inductor and Feedback Control

Modelling and Simulation of New PV-Battery Based Hybrid Energy System for Z source Inverter using SVPWM fed Industrial Applications

Analysis of Asymmetrical Cascaded 7 Level and 9 Level Multilevel Inverter Design for Asynchronous Motor

A Modified Apod Pulse Width Modulation Technique of Multilevel Cascaded Inverter Design

THD Minimization of a Cascaded Nine Level Inverter Using Sinusoidal PWM and Space Vector Modulation

Comparison of 3-Phase Cascaded & Multi Level DC Link Inverter with PWM Control Methods

Reduction Of Harmonics & Torque Ripples Of Bldc Motor By Cascaded H-Bridge Multi Level Inveter Using Current & Speed Control Techniques

Nine-Level Cascaded H-Bridge Multilevel Inverter Divya Subramanian, Rebiya Rasheed

ANALYSIS AND DESIGN OF HYBRID ACTIVE MULTI-LEVEL INVERTER TOPOLOGY FED INDUCTION MOTOR DRIVE

IMPLEMENTATION OF MULTILEVEL INVERTER WITH MINIMUM NUMBER OF SWITCHES FOR DIFFERENT PWM TECHNIQUES

APPLICATION OF SVPWM TECHNIQUE TO THREE LEVEL VOLTAGE SOURCE INVERTER

A New Single-Phase Multilevel Inverter with Reduced Number of Switches for Solar Applications

II. WORKING PRINCIPLE The block diagram depicting the working principle of the proposed topology is as given below in Fig.2.

Simulation of Cascade H-Bridge Multilevel Inverter With Equal DC Voltage Source

A Hybrid Cascaded Multilevel Inverter for Interfacing with Renewable Energy Resources

An Efficient Cascade H-Bridge Multilevel Inverter for Power Applications

Multilevel Inverter with Coupled Inductors with Sine PWM Techniques

CARRIER BASED PWM TECHNIQUE FOR HARMONIC REDUCTION IN CASCADED MULTILEVEL INVERTERS

Transcription:

A NOVEL HREE PHASE 31-LEVEL CASCADED MULILEVEL INVERER FED INDUCION MOOR DRIVE ChennaRao Matta Bolla Madhusudana Reddy Dr.Y.V.Siva Reddy M ech Student,SVCE, Asst. Professor,EEE Dept,SVCE, Professor,EEE Dept.,GPREC Chittoor,A.P Chittoor,A.P Kurnool,A.P ABSRAC-A new topology of cascaded multilevel converter is proposed. he proposed topology is based on a cascaded connection of single-phase sub multilevel converter units and fullbridge converters. Compared to the conventional multilevel converter, the number of dc voltage sources, switches, installation area, and converter cost is significantly reduced as the number of voltage steps increases. hen, the structure of the proposed topology is optimized in order to utilize a minimum number of switches and dc voltage sources, and produce a high number of output voltage steps. he prior H-bridge based multilevel inverter can increase the number of output voltage levels by adding switch components and DC input voltage sources.if it employs twelve switches and four DC sources, the number of output voltage levels becomes thirty-one.in this project first single phase 31-level cascaded multilevel inverter is proposed with series connection of submultilevel inverters and there after proposed topology is extended to a novel three phase 31-level cascaded multilevel inverter fed induction motor drive. In this topology electromagnetic torque, speed, three phase currents of induction motor are observed. As the number of levels increases the harmonics are decreased. his topology offers very less HD which is equal to HD=1.25. he operation and performance of the proposed a singlephase 31-level multilevel inverter and three phase 31- level with induction motor drive is verified by MALAB/ SIMULINK. Index erms multilevel inverter, optimal structure, sub-multilevel inverter, PWM technique, H- Bridge Inverter. I.INRODUCION Over many years, Induction motor drives have been popularly used for variable speed control applications in industries. his is because the induction motor is simple in construction and requires less maintenance. In recent times, multilevel inverters (MLI) are gaining popularity and widely used for induction motor drive applications [1-3]. It is especially used for medium to high voltage and high current drive applications. here are many advantages of multilevel inverters as compared to conventional inverters. Main advantages are low total harmonics distortion (HD), low switching losses, good power quality and reduced electromagnetic interference (EMI). Main feature of multilevel inverter is that it reduces voltage stress on each component [4-8]. he topologies of multilevel inverters are classified into three types. hey are flying capacitor, diode clamped and H-bridge cascaded multilevel inverters. Cascaded H-bridge (CHB) multilevel inverter is one of the most popular inverter topology used in high-power medium voltage (MV) drives. It is composed of a multiple units of single-phase H- bridge power cells. In practice, the number of power cells in a CHB inverter is mainly determined by its operating voltage and manufacturing cost. Cascaded H-bridge multilevel inverter requires the least number of components for the same voltage level as compared to all three types of inverter [9-11]. he growth of multilevel inverter caused development of various modulation schemes. he most common initial application of multilevel converters has been in traction, both in locomotives and track-side static converters. More recent applications have been for power system converters for VAR compensation and stability enhancement, active filtering, highvoltage motor drive, high-voltage dc transmission and most recently for medium voltage induction motor variable speed drives. Many multilevel converter applications focus on industrial medium-voltage motor drives, utility interface for renewable energy systems, Flexible AC ransmission System (FACS) and traction drive systems. In recent years, multilevel inverters have received more attention in industrial applications, such as motor drives, static VAR compensators and renewable energy systems. Compared to the traditional two-level voltage source inverters, the stepwise output voltage is the major advantage of multilevel inverters. he CHB multilevel inverters use seriesconnected H-bridge cells with an isolated dc voltage sources connected to each cell. he CHB multilevel inverters can be divided into two groups 1854

from the viewpoint of values of the dc voltage sources: the symmetric and the asymmetric topology. In the symmetric topology, the values of all of the dc voltage sources are equal. his characteristic gives the topology good modularity. However, the number of the switching devices rapidly increases by increasing the number of output voltage level. his paper proposes a new multilevel inverter topology using series-connected sub-multilevel inverters. he proposed multilevel inverter uses reduced number of switches. Initially, the proposed sub-multilevel inverter is described and then the series connection of them to form a multilevel inverter is discussed. he optimal structures of the proposed multilevel inverter regarding several factors (e.g., number of switches, number of dc voltage sources, standing voltage on the switches, etc.) are also obtained. he power loss of the proposed topology is calculated. Afterward, the proposed multilevel inverter is compared with other multilevel inverter topologies considering the number of switches. A design example is then given which is used for simulation and experimental studies. II. PROPOSED OPOLOGY A.PROPOSED SUB-MULILEVEL INVERER Fig. 1 shows the proposed sub-multilevel inverter. As depicted in Fig. 1, the topology consists of n dc voltage sources. In general, the dc voltage sources can have different values. However, in order to have equal voltage steps, they are considered to be the same and equal to Vdc. Each sub-multilevel inverter consists of n+2 switches. Some of the switches are unidirectional and the others are bidirectional. he unidirectional switches consist of an insulated gate bipolar transistor (IGB) with an anti-parallel diode. Fig.1. Proposed sub-multilevel inverter. he same conditions are valid for the other switches. herefore, the switches have to withstand both positive and negative voltages. In addition, the switches have to conduct backward current that is as a result of inductive characteristic of the load. It can be concluded that the switches must be bidirectional. here are several circuit configurations for bidirectional switches. In this study, the common emitter topology is used as it needs one gate driver for a switch. Considering the types of the switches, 2nIGBs are required in the proposed sub-multilevel inverter. It is worth mentioning that the number of the anti-parallel diodes is equal to the number of IGBs. he proposed sub-multilevel inverter can only generate zero and positive voltage levels. he zero output voltage is obtained when the switches S1 and S1 are turned ON simultaneously. he other voltage levels are generated by proper switching between the switches. able I shows the states of the switches for each output voltage value. In this table, 1 means that the corresponding switch is turned ON and indicates the OFF state. ABLE I: OUPU VOLAGES FOR SAES OF SWICHES B.PROPOSED 31-LEVEL MULILEVEL INVERER he 31-level inverter shown in Fig.2 can be proposed. his topology consists of ten unidirectional power switches and four dc voltage sources. According to Fig. 2, for the asymmetric topology, the value of the dc voltage sources is different from a submultilevel inverter to another. In other words, if the dc sources of the first submultilevel inverter is Vdc,1, the dc sources of the second submultilevel inverter is Vdc,2. o get maximum number of level for the output voltage, there must be no redundancy. his is achieved when the value of the dc voltage sources in submultilevel inverters have the following relation. It is important to note that the 31-level topology can be provided through the 1855

structure presented in Fig.1, where the only difference will be in the polarity of the applied dc voltage sources. For the asymmetric topology, the total standing voltage of the switches V stand,total is sum of standing voltages on the switches of the sub multilevel inverters and also the standing voltage on the switches of the H-bridge part (4V,max ). herefore, it can be written as follows: m V stand,total = V stand,i + 4V O,max (9) i=1 the total standing voltage of the switches can be written as follows: Fig.2. Proposed 31-level multilevel inverter. By developing the proposed 31-level inverter. his topology, V dc,2 = n + 1. V dc,1 (1) V dc,3 = n + 1. V dc,1 + nv dc,2 (2) V dc,3 = n + 1 V dc,1 + n n + 1 V dc,1 (3) V dc,3 = n + 1 n + 1. V dc,1 (4) herefore, in general, the following relation should be valid for the dc sources of the sub multilevel inverters: V dc,i = (n + 1) i 1. V dc,1, i = 1,2,3,.. m (5) WhereV dc,i is the value of the dc sources in theith submultilevel inverter. he maximum value of the output voltage (sum of all dc voltage sources) for the proposed asymmetric topology can be obtained as follows: V,max = n m i=1 V dc,i Using (5) and (6), the maximum value of the output voltage can be written as (6) V,max = n + 1 m 1 V dc,1 (7) With the aforementioned arrangement of the dc voltage sources, the number of voltage levels will be equal to N level = 2(n + 1) m 1 (8) V stand,total = n + 1)m 1 n V stand,1 + 4 n + 1 m 1. V dc,1 (1) Using (8) and (1), the total standing voltage in terms of Number of output voltage level and can be expressed as follows: V stand,total = N level 1 2. V stand,1 n + 4V dc,1 (11) III. POWER CONVERSION EFFICIENCY AND OAL HARMONICDISORION (HD %) In order to determine the efficiency of the proposed inverter, it is necessary to determine the value of conduction and switching power losses generated by the semiconductor components. Basically, the main losses in semiconductor components such as IGBs and diodes are categorized into two groups: conduction loss (P con ) and switching loss (P sw ) as follows: P SW _IGB = 1 P SW _diode = 1 E on t i(t)dt + 1 E rr t i(t)dt. E off t I(t)d(t) (12) (13) Where E on (t) is a turn-on loss and E off (t) is a turn-off loss. Switching losses E on (t) and E off (t) are experienced during the ON and OFF states, respectively. While E rr (t) is the reverse recovery loss of the diode, the majority of switching loss, which is experienced when the diode is turned OFF (OFF state) 1856

P con _IGB = 1 P con _Diode = 1 V on _IGB i(t)dt V on _diode i(t)dt (14) (15) Conduction power losses of IGB and diode are approximated based on their forward voltage drops V on IGB, V on diode, and the instantaneous current i(t) flowing through IGB or diode. he total losses P t are expressed as follows: P t = P con + P sw (16) Once the total semiconductors losses P t in the introduced inverter are defined, the relative inverter efficiency is determined based on the following expression: P out n%= 1 (17) P t +P out Fig.3. Comparison of required number of switches among existing inverters and the proposed topology Moreover, the proposed inverter has been tested under different modulation indices (Ma =.9, 1, and 1.15). HD% of the output voltage can be calculated by V 2 k=2 k HD%= 1% (18) V 1 Where V 1 and V k are the fundamental component and harmonic order, respectively. NPC, FC, and CHB multilevel inverters have been tested under the same operating conditions. Fig.4. NPC, FC, CHB, and proposed inverter: line-toline voltage HD%versus Ma. he goal of this test is to compare the proposed inverter with the existing inverters in term of HD%. It can be seen that the HD% of all inverter is slightly different. he measured values of HD% for the proposed inverter are within a range of 8.4 13.25%. As a result, the proposed inverter essentially adds the attractive aspects of the traditional two-level inverter such as less power components, simple working principle, and minimum conduction power loss to the main advantages of the multilevel inverter such as low HD% and high output voltage quality. IV. PERFORMANCE OF HE INDUCION MOOR he sinusoidally-distributed flux density wave produced by the stator magnetizing currents sweeps past the rotor conductors, it generates a voltage in them. he result is a sinusoidallydistributed set of currents in the short-circuited rotor bars. Because of the low resistance of these shorted bars, only a small relative angular velocity, r, between the angular velocity, s, of the flux wave and the mechanical angular velocity of the two-pole rotor is required to produce the necessary rotor current. he relative angular velocity, r, is called the slip velocity. he interaction of the sinusoidallydistributed air gap flux density and induced rotor currents produces a torque on the rotor. he typical induction motor speed-torque characteristic is shown in Figure. Fig.5. Speed-torque characteristics of induction motor 1857

An induction motor (IM) is a type of asynchronous AC motor where power is supplied to the rotating device by means of electromagnetic induction. An electric motor convert s electrical power to mechanical power in its rotor. here are several ways to supply power to the rotor. In a DC motor this power is supplied to the armature directly from a DC source, while in an induction motor this power is induced in the rotating device. An induction motor is sometimes called a rotating transformer because the stator (stationary part) is essentially the primary side of the transformer and the rotor (rotating part) is the secondary side. Induction motors are widely used, especially poly phase induction motors, which are frequently used in industrial drives. When induction motors are given supply, they draw the current as Ia= As initially Eb= Motor draws a very high current initially; due to which voltage dip will forms, which show the effect on the power system network. In order to avoid such problems a effective controlled APF is placed without effecting the power quality or the motor performance characteristics. V. MALAB CIRCUI & SIMULAION RESULS Fig.7. Simulation results of voltage& current for one phase 31 level multilevel inverter Fig.8. Gate pulses for multilevel inverter switches for one phase his section deals with the simulation validation of the proposed multilevel inverter topology. he validity of the proposed multilevel inverter is demonstrated with simulation results. Simulation was done by using MALAB/ Simulink software. Fig.9. Simulation circuit for three phase 31 level multilevel inverter Fig.6. Simulation circuit for one phase 31 level multilevel inverter Fig.1. Simulation results of voltage for three phase 31 level multilevel inverter 1858

[2] J. H. Kim, S. K. Sul, and P. N. Enjeti, A carrier-based PWM method with optimal switching sequence for a multilevel four-leg voltage-source inverter, IEEE rans. Ind. Appl., vol. 44, no. 4, pp. 1239 1248, Jul./Aug. 28. Fig.11. Simulation results of current for three phase 31 level multilevel inverter [3] O. Lopez, J. Alvarez, J. Doval-Gandoy, F. D. Freijedo, A. Nogueiras, A. Lago, and C. M. Penalver, Comparison of the FPGA implementation of two multilevel space vector PWM algorithms, IEEE rans. Ind. Electron., vol. 55, no. 4, pp. 1537 1547, Apr. 28. [4] A. A. Boora, A. Nami, F. Zare, A. Ghosh, and F. Blaabjerg, Voltagesharing converter to supply single-phase asymmetrical four-level diode clamped inverter with high power factor loads, IEEE rans. Power Electron., vol. 25, no. 1, pp. 257 252, Oct. 21. [5] J. Rodriguez, S. Bernet, P. Steimer, and I. Lizama, A survey on neutral point clamped inverters, IEEE rans. Ind. Electron., vol. 57, no. 7, pp. 2219 223, Jul. 21. Fig.12. Simulation results of multilevel inverter fed induction motor drive for three phase currents, speed, and electromagnetic torque CONCLUSION he proposed topology employs twelve switches and four DC sources, the number of output voltage levels becomes thirty-one.in this project first single phase 31-level novel cascaded multilevel inverter is proposed with series connection of sub multilevel inverters and there after proposed topology is extended to a novel three phase 31-level cascaded multilevel inverter fed induction motor drive. In this topology electromagnetic torque, speed, three phase currents of induction motor are observed. As the number of levels increases the harmonics are reduces.. his topology offers very less HD (ic) HD=1.25. he operation and performance of the proposed a single-phase 31-level multilevel inverter and three phase 31-level with induction motor drive is verified by MALAB/ SIMULINK. REFERENCES [6] A. Nabae, I. akahashi, and H. Akagi, A new neutral-point-clamped PWM inverter, IEEE rans. Ind. Appl., vol. IA-17, no. 5, pp. 518 523, Sep./Oct. 1981. [7] M. Manjrekar and. A. Lipo, A hybrid multilevel inverter topology for drive application, inproc.appl. Power Electron. Conf., 1998, vol. 2, pp. 523 529. [8] A. Rufer, M. Veenstra, and A. Gopakumar, Asymmetric multilevel converter for high resolution voltage phasor generation, inproc. Eur. Conf. Power Electron. Appl., Lausanne, Switzerland, 1999, pp. 1 1. [9] J. I. Leon, S. Kouro, S. Vazquez, R. Portillo, L. G. Franquelo, J. M. Carrasco, and J. Rodriguez, Multidimensional modulation technique for cascaded multilevel converters, IEEE rans. Ind. Electron., vol. 58, no. 2, pp. 412 42, Feb. 211. [1] A. Lesnicar and R. Marquardt, An innovative modular multilevel converter topology suitable for a wide power range, presented at the IEEE Powerech. Conf., vol. 3, Bologna, Italy, 23. [1] J. Rodriguez, J. S. Lai, and F. Z. Peng, Multilevel inverters: A survey of topologies, controls, and applications, IEEE rans. Ind. Electron., vol. 49, no. 4, pp. 724 738, Aug. 22. 1859