For rotationally symmetric optical

Similar documents
Sequential Ray Tracing. Lecture 2

ECEG105/ECEU646 Optics for Engineers Course Notes Part 4: Apertures, Aberrations Prof. Charles A. DiMarzio Northeastern University Fall 2008

Tutorial Zemax 8: Correction II


Performance Factors. Technical Assistance. Fundamental Optics

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Use of Mangin and aspheric mirrors to increase the FOV in Schmidt- Cassegrain Telescopes

OPTICAL IMAGING AND ABERRATIONS

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

GEOMETRICAL OPTICS AND OPTICAL DESIGN

Big League Cryogenics and Vacuum The LHC at CERN

1.1 Singlet. Solution. a) Starting setup: The two radii and the image distance is chosen as variable.

CHAPTER 1 Optical Aberrations

Chapter 3. Introduction to Zemax. 3.1 Introduction. 3.2 Zemax

Optical Design with Zemax

Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens

Exam Preparation Guide Geometrical optics (TN3313)

Image Formation. Light from distant things. Geometrical optics. Pinhole camera. Chapter 36

Aberrations of a lens

Introduction to Optical Modeling. Friedrich-Schiller-University Jena Institute of Applied Physics. Lecturer: Prof. U.D. Zeitner

Optical Systems: Pinhole Camera Pinhole camera: simple hole in a box: Called Camera Obscura Aristotle discussed, Al-Hazen analyzed in Book of Optics

Reflectors vs. Refractors

Ch 24. Geometric Optics

Lens Design I Seminar 5

Geometric optics & aberrations

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

Exam questions OPTI 517. Only a calculator and a single sheet of paper, 8 X11, with formulas will be allowed during the exam.

Optical Design with Zemax for PhD

Actually, you only need to design one monocular of the binocular.

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

A Schiefspiegler toolkit

Area of the Secondary Mirror Obscuration Ratio = Area of the EP Ignoring the Obscuration

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Advanced Lens Design

INFRARED IMAGING-PASSIVE THERMAL COMPENSATION VIA A SIMPLE PHASE MASK

Beam expansion standard concepts re-interpreted

System/Prescription Data

Introduction. Geometrical Optics. Milton Katz State University of New York. VfeWorld Scientific New Jersey London Sine Singapore Hong Kong

OPAC 202 Optical Design and Inst.

INDEX OF REFRACTION index of refraction n = c/v material index of refraction n

Lens Design I Seminar 1

Compact Dual Field-of-View Telescope for Small Satellite Payloads

Department of Physics & Astronomy Undergraduate Labs. Thin Lenses

Some lens design methods. Dave Shafer David Shafer Optical Design Fairfield, CT #

Computer exercise 2 geometrical optics and the telescope

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Tutorial Zemax 9: Physical optical modelling I

3.0 Alignment Equipment and Diagnostic Tools:

Exercises Advanced Optical Design Part 5 Solutions

Optical Design with Zemax for PhD - Basics

ABSTRACT. Keywords: Panomorph lens, panoramic, lens design, infrared, LWIR, situation awareness, image rendering 1. INTRODUCTION

Why is There a Black Dot when Defocus = 1λ?

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name:

Magnification, stops, mirrors More geometric optics

Reading: Lenses and Mirrors; Applications Key concepts: Focal points and lengths; real images; virtual images; magnification; angular magnification.

Solar Optical Design. It s an imaging problem. Mike Sullivan November 2008

The Basic Scheme of the Afocal System and Composition Variants of the Objectives Based on It

Section A Conceptual and application type questions. 1 Which is more observable diffraction of light or sound? Justify. (1)

Applied Optics. , Physics Department (Room #36-401) , ,

Waves & Oscillations

Chapters 1 & 2. Definitions and applications Conceptual basis of photogrammetric processing

This experiment is under development and thus we appreciate any and all comments as we design an interesting and achievable set of goals.

System Architecting: Defining Optical and Mechanical Tolerances from an Error Budget

SPIE. Lens Design Fundamentals PRESS. Second Edition RUDOLF KINGSLAKE R. BARRY JOHNSON

OPTICS DIVISION B. School/#: Names:

StarBright XLT Optical Coatings

Chapter 2 - Geometric Optics

Warren J. Smith Chief Scientist, Consultant Rockwell Collins Optronics Carlsbad, California

Optical Engineering 421/521 Sample Questions for Midterm 1

Parity and Plane Mirrors. Invert Image flip about a horizontal line. Revert Image flip about a vertical line.

Laboratory experiment aberrations

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope

CHAPTER 33 ABERRATION CURVES IN LENS DESIGN

Designing Optical Systems

WIEN Software for Design of Columns Containing Wien Filters and Multipole Lenses

Properties of Structured Light

OPTICAL SYSTEMS OBJECTIVES

5.0 NEXT-GENERATION INSTRUMENT CONCEPTS

More problems for Chapter 12 of Introduction to Wave Phenomena (Hirose- Lonngren) θ =.

Optics Practice. Version #: 0. Name: Date: 07/01/2010

Optical System Design

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 3: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Classical Optical Solutions

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Evaluation of Performance of the Toronto Ultra-Cold Atoms Laboratory s Current Axial Imaging System

Conformal optical system design with a single fixed conic corrector

Lens Design I. Lecture 10: Optimization II Herbert Gross. Summer term

Double-curvature surfaces in mirror system design

Opti 415/515. Introduction to Optical Systems. Copyright 2009, William P. Kuhn

Week IV: FIRST EXPERIMENTS WITH THE ADVANCED OPTICS SET

The optical analysis of the proposed Schmidt camera design.

Lens Design II. Lecture 2: Structural modifications Herbert Gross. Winter term

Section 8. Objectives

Cardinal Points of an Optical System--and Other Basic Facts

UltraGraph Optics Design

Design of the Wide-view Collimator Based on ZEMAX

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%.

Transcription:

: Maintaining Uniform Temperature Fluctuations John Tejada, Janos Technology, Inc. An optical system is athermalized if its critical performance parameters (such as MTF, BFL, EFL, etc.,) do not change appreciably over the operating temperature range. For rotationally symmetric optical systems, either the lens or the detector moves along the optical axis to maintain optical performance. If the compensating axial motion is accomplished without the use of motors or other active devices, then the optical system is considered passively athermalized. This article will discuss the consequences of uniform temperature fluctuations solely, thereby ignoring the impact of temperature gradients within the optical system. The coefficient of thermal expansion (CTE) and the thermal coefficient of refraction (TCR) are material properties of lenses and housings that respond to temperature changes within an optical system. The following parameters change as a result of uniform temperature variations: radii of curvature, refractive index of the lens material, refractive index of the lens medium (usually air), mechanical dimensions of lenses, and the physical dimensions of the lens support structure. The parameter variations with respect to temperature are detailed in Table 1. Passive athermalization is beneficial in optical systems that are isolated from direct human contact or have limited access to power. Systems that are deployed in space, for example, cannot afford to use the limited battery or solar power to energize motors it would take to maintain focus. Additionally, motors have limited lifetimes, add weight to launch payloads, and cannot be easily serviced once deployed in space. Therefore, it is undesirable to use them unless absolutely necessary. Hazardous environments can be encountered when performing tasks such as nuclear power plant inspection and border patrol surveillance where temperatures reach extremes that are unsafe for constant human exposure. If the optical system can be passively athermalized, then the available power can be used for transmitting video information or increasing operational time instead of activating motors to maintain focus. To achieve passive athermalization, different temperature-compensating techniques can be customized for all types of optical systems. Optical systems that can be athermalized can consist of reflecting components (mirrors), refracting components (lenses), or a combination of both. Examples of how passive athermalization is achieved for reflective and refractive optical systems will be discussed using examples in the subsequent sections. Catoptrical systems Catoptrical systems exclusively use mirrors to form an image. Two simple examples are the Cassegrain and the Gregorian mirror systems. The Cassegrain optical system is used here as an example. The equation that governs this 2-mirror system is given below. ϕ p + ϕ s ϕ p ϕ s L = ϕc where ϕ p = power of the primary mirror ϕ s = power of the secondary mirror L = separation between the primary and secondary mirrors TABLE 1. LENS PARAMETER VARIATIONS WITH TEMPERATURE Parameter Variation Formulation Radius of curvature R + R R + dr/dt Refractive index of lens material n L + n L n L + dn L /dt Lens material thickness t + t t + dn/dt Refractive index of air n air + n air n air + dn air /dt Lens separations L + L L + dl/dt H-341

secondary all- housing f/2 all all- Cassegrain EFL = 100 mm FFOV = 0.5 Figure 1. All- Cassegrain telescope. ϕ C = total power of the Cassegrain mirror system. A telescope forms an image by using a primary parabolic mirror which focuses energy onto a secondary hyperbolic mirror. A typical Cassegrain example is shown in Figure 1. The size of the obscuration is determined primarily by the aperture of the secondary. The change in the effective focal length (EFL) of the resultant mirror system is scaled by the linear coefficient of thermal expansion. Yet the Cassegrain is still considered to be passively athermal because the image plane remains in focus at varying temperatures. The ray fan plots in Figure 2 illustrate that the optical system remains focused. The mirror parameters that changed are the radii of curvature, separation of the mirrors, and the refractive index of the air. Assuming the index variation of air with temperature is small for these TABLE 2. CATADIOPTRIC MATERIAL DATA Expansion Thermal Coefficient Material Coefficient of Refraction primary image applications, the discussion will be limited to the other parameters. In this example, the expansion coefficient of the primary and the secondary are identical to the housing material. Therefore the optical system remains in focus throughout = 546.00 nm = 480.0 nm = 435.0 nm Aluminum 236 E-7/ C NSF4 96.500 E-7/ C -0.10 E-6 1.27 E-6 2.63 E-6 NPSK53 95.607 E-7/ C -3.80 E-6-3.50 E-6-3.19 E-6 the temperature range of 10 C to +50 C. For instance, as the temperature increases, the power of the primary and secondary mirrors gets weaker. The image remains in focus TABLE 3. REFRACTING AFOCAL MATERIAL Expansion Thermal Coefficient Material Coefficient of Refraction because the housing material expands proportionally with the change of power in the mirrors. This is the simplest manner to passively athermalize an optical system for any temperature variation. If this example used different materials for the primary, secondary and housing, the athermalization problem would become more complex; but the basic principles would remain the same. The primary power would change at a different rate than the secondary power, and the housing material would have to be chosen such that the image remained in focus. Reflecting systems that are passively athermalized in this manner are more likely to experience other aberrations in addition to defocus when used at extreme temperatures. In some applications, the nominal off-axis performance of a catoptric system is insufficient, in which case, the catadioptric system may be employed. Catadioptrical systems Catadioptric lenses are hybrid optical systems that use both reflective and refractive elements in the optical design to achieve the desired performance. These systems offer the advantage of improved off-axis optical performance by reducing field aberrations. For the sake of discussion, the Cassegrain design shown in section 1 will be modified by inserting a doublet near the image plane, and then re-optimizing the surfaces for peak performance. The resultant design is shown in Figure 3. The power distribution of the optical elements in the catadioptric system is similar to a Cooke triplet with the primary mirror as the positive = = = Invar 5 E-7/ C Silicon 39.0 E-7/ C 160.3 E-6 169.3 E-6 177.9 E-6 Germanium 61.0 E-7/ C 447.5 E-6 467.8 E-6 488.2 E-6 H-342 THE 2006 PHOTONICS HANDBOOK

tangential sagittal tangential sagittal tangential sagittal 1.0 (0 ) 1.0 1.0 (0 ) 1.0 1.0 (0 ) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 29-Jul-05 29-Jul-05 29-Jul-05 Figure 2. Ray fans for. element, the secondary mirror as the negative element, and the rear doublet as the positive corrector. The rear doublet consists of a negative flint lens (NSF4) and a positive crown (NPSK53) lens. The marginal ray height on the rear doublet is small due to the proximity to the image plane. Consequently the doublet has a lesser impact on focus over temperature than the mirrors, but cannot be ignored. secondary f/2 catadioptric system EFL = 100 mm FFOV = 0.5 all- housing Figure 3. Catadoptric optical system. As in the previous example, the primary and secondary mirrors are made of the same material as the housing. However, the additional complication for the catadioptric system is the impact of the refracting doublet over temperature. The TCR (dn/dt) and the CTE of each lens material pose an additional complication to the passive athermalization issue. Table 2 shows the temperature coefficient doublet primary negative lens (NSF4) positive lens (NPSK53) image of refraction (dn/dt) and the coefficient of thermal expansion for each element. The change in the EFL of the resultant mirror system and doublet system is modified by both the CTE and TCR (dn/dt). Yet the Cassegrain is still considered to be passively athermalized because the image plane remains in focus at higher and lower temperatures. The ray fan plots in Figure 4 illustrate that the optical system remains focused. The plots are at room temperature and 50 C. The plot at 10 C is nearly identical to the 50 C plot. The coefficient of thermal expansion impacts the radii of the doublet lenses in a similar fashion that was illustrated by the catoptric example (i.e., the radii become weaker as the temperature increases). However, the CTE of each doublet material is less than half of the expansion coefficient used for the housing. Therefore, the TCR of each lens must be carefully chosen in order to compensate for the different thermal expansion coefficients if the optical system is to remain in focus. In this example, the TCR for the negative lens is positive, causing H-343

tangential sagittal tangential sagittal tangential sagittal (0 ) (0 ) (0 ) 1.0 1.0 1.0 1.0 1.0 1.0 08-Aug-05 08-Aug-05 08-Sept.-05 the lens to grow more negative as the temperature increases. Likewise, the positive lens has a negative TCR, which makes the lens less positive as the temperature increases. The overall effect is to cause the power of the rear doublet to become weaker as the temperature increases and thereby compensate for the effects of the expanding housing. Refractive afocals The Galilean telescope is an afocal arrangement of positive and negative lenses which can be used to expand beams or change fields-of-view. The last example for examination is a Galilean telescope consisting of two lenses used in the mid-wave infrared portion of the spectrum. The equation that describes this optical system is given below. Note that this equation is very similar to Equation 1. + ϕ L2 - ϕ L2 D = ϕ AFO = 0 where Figure 4. Ray fans for a catadioptric system. H-344 THE 2006 PHOTONICS HANDBOOK positive silicon objective Invar housing mid-wave Galilean telescope MAG = 2.35 FFOV) = 0.5 Figure 5. Galilean refracting telescope. negative germanium eyepiece = power of lens 1 (the front element) ϕ L2 = power of lens 2 (the back element) D = distance between the principle planes of the elements ϕafo = power of the afocal system, which by definition is zero. Optical systems of this type are considered passively athermalized if energy exiting the last lens remains collimated over the operating temperature range. In some more demanding applications, a further constraint restricting the magnification change over the temperature range may be specified. The magnification of these systems is given by M= ϕ L2 Figure 5 is an example of a Galilean telescope operating from 3.0 to 5.0 µm. The change in collimation of the exiting beam of the refracting afocal system is modified by both the CTE and TCR for the optical materials and the housing. The thermal coefficients for these materials are shown in Table 3. For this example, the paraxial change in collimation is about 18 µrad (well within the diffraction limit). The change in collimation as traced by the ray fans is within the 1 4 wave Raleigh criteria as shown below. As in the Catadioptric example, the ray fans and 50 C are shown in Figure 6. The housing material selected for this example is INVAR (a nickeliron alloy). This material has a very low expansion coefficient compared with or other metals.

tangential sagittal tangential sagittal tangential sagittal (0 ) (0 ) (0 ) 30-Aug-05 30-Aug-05 30-Sept.-05 Figure 6. Beam expander ray fans. The positive objective lens is spherical and is made of silicon. It has a small coefficient of expansion and a moderately large positive thermal coefficient of refraction. This indicates that the lens would get more positive as the temperature increases. Similarly, the negative germanium lens of the eyepiece also has a small expansion coefficient and a large positive thermal coefficient of refraction. This indicates that the eyepiece lens becomes more negative as the temperature increases. Therefore, when these lenses are used in an afocal configuration and mounted in INVAR, their dimensional and material changes offset each other such that the exiting beam remains collimated. Additionally, the change in magnification is only about 0.3 percent. The examples in this article illustrate that passive athermalization can be achieved in reflective systems, hybrid systems and refractive systems. Additionally, passive athermalization can be achieved by choosing the housing material to be identical to the optical material, choosing the optical component properties to compensate for the housing material, and choosing the housing material to compensate for the optical properties of the components. H-345