GaN MMIC PAs for MMW Applicaitons

Similar documents
OMMIC Innovating with III-V s OMMIC OMMIC

100nm GaN on Si: A Pioneering Technology to Enable High RF Power in Millimeter Wave Bands NEW ENGLAND IMAPS SYMPOSIUM MAY 5, 2015

Gallium nitride (GaN)

5 6 GHz 10 Watt Power Amplifier

NPA100-D GHz GaN 20W Power Amplifier. Product Description: Key Features:

8 11 GHz 1 Watt Power Amplifier

5 6.4 GHz 2 Watt Power Amplifier

11-15 GHz 0.5 Watt Power Amplifier

MECGaNC30. 4 to 6 GHz GaN HEMT Power Amplifier. Main Features. Product Description. Applications

NPA105-D. Preliminary GHz GaN 40W Power Amplifier. Product Description: Key Features:

GHz Low Noise Amplifier

Advance Datasheet Revision: May 2013

VWA ACAA. Features. Description. Applications. Ordering information. Pin out and dimensions (4,5 X 4,1 X 0.10 mm) Functional Block Diagram

NPA110-D. Preliminary GHz GaN 38W Power Amplifier. Product Description: Key Features:

Advance Datasheet Revision: October Applications

MAAP Power Amplifier, 15 W GHz Rev. V1. Features. Functional Schematic. Description. Pin Configuration 2. Ordering Information

PH9 Reliability. Application Note # 51 - Rev. A. MWTC MARKETING March 1997

9-10 GHz LOW NOISE AMPLIFIER

III-Nitride microwave switches Grigory Simin

VD1N, VD2N, VD3N are available externally but are internally interconnected

Advance Datasheet Revision: April 2015

Microwave Office Application Note

Microwave & RF 22 nd of March 2018 D. FLORIOT

9-10 GHz GaAs MMIC Core Chip

Microwave / Millimeter Wave Products

Ka-Band 2W Power Amplifier

9-10 GHz GaAs MMIC Core Chip

Kathy Wood 3/23/2007. ESD Sensitivity of TriQuint Texas Processes and Circuit Components

GaAs MMIC Power Amplifier

Microwave Office Application Note

Advance Datasheet Revision: January 2015

GHz 10 Watt Power Amplifier

Preliminary Datasheet Revision: July 2014

GaAs MMIC Power Amplifier for VSAT & ITU Applications

PRELIMINARY DATASHEET

mhemt based MMICs, Modules, and Systems for mmwave Applications Axel Hülsmann Axel Tessmann Jutta Kühn Oliver Ambacher

Chapter 1. Introduction

ATF Enhancement Mode [1] Pseudomorphic HEMT in SOT 89 Package

GaN power electronics

CHA2098b RoHS COMPLIANT

Product Data Sheet August 5, 2008

Ph.D. Defense. Broadband Power Amplifier

Preliminary Datasheet Revision: January 2016

27-31 GHz 1W Power Amplifier TGA4509-EPU

Stuart Glynn Power Amplifier Design Engineer

CHA5294 RoHS COMPLIANT

TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Measured Performance. Primary Applications Space Military Broadband Wireless

MECXQMM-60W. 8.3 to 10.3 GHz GaN HEMT Power Amplifier

GaAs MMIC Power Amplifier

SGA7489Z DC to 3000MHz SILICON GERMANIUM HBT CASCADABLE GAIN BLOCK

CHA3093c RoHS COMPLIANT

TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Measured Performance. Primary Applications Space Military Broadband Wireless

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet

MMA RECEIVERS: HFET AMPLIFIERS

Self-Aligned-Gate GaN-HEMTs with Heavily-Doped n + -GaN Ohmic Contacts to 2DEG

CHA3511 RoHS COMPLIANT

A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems

PRELIMINARY DATASHEET

27-31 GHz 2W Balanced Power Amplifier TGA4513

8Fx. Data Sheet ATF Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package. Description. Features.

Composants HEMT InAlGaN/GaN pour applications en bandes Ka et Q.

Product Datasheet Revision: January 2015

PRELIMINARY DATASHEET

17-26GHz Medium Power Amplifier. GaAs Monolithic Microwave IC

PCS Base Station High output power, P1dB = 38 dbm. GPS Applications High gain > 20 db. WLAN Repeaters Efficiency > 30%

GaAs MMIC Power Amplifier

GaAs MMIC Power Amplifier

Data Sheet ATF-511P8. High Linearity Enhancement Mode [1] Pseudomorphic HEMT in 2x2 mm 2 LPCC [3] Package. 1Px. Features.

Data Sheet. AMMC GHz Amplifier. Description. Features. Applications

Linear High Power Amplifiers

57-65GHz CMOS Power Amplifier Using Transformer-Coupling and Artificial Dielectric for Compact Design

Data Sheet. MGA GHz 3 V, 14 dbm Amplifier. Description. Features. Applications. Simplified Schematic

Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios

ULTRA LOW NOISE PSEUDOMORPHIC HJ FET

PRELIMINARY = 25 C) Parameter GHz 14.0 GHz 14.5 GHz Units Small Signal Gain db P SAT. = 26 dbm W P 3dB

10W Ultra-Broadband Power Amplifier

InAlN/GaN HEMTs Technologies for Microwave, Fast switching and Mixed Signal Applications

High Power Wideband AlGaN/GaN HEMT Feedback. Amplifier Module with Drain and Feedback Loop. Inductances

1.0 6 GHz Ultra Low Noise Amplifier

it to 18 GHz, 2-W Amplifier

MAAL DIESMB. Low Noise Amplifier DC - 28 GHz. Features. Functional Schematic 1. Description. Pin Configuration 2. Ordering Information. Rev.

PRELIMINARY DATASHEET

MGA GHz 3 V, 17 dbm Amplifier. Data Sheet. Features. Description. Applications. Surface Mount Package. Simplified Schematic

85W Power Transistor. GaN HEMT on SiC

Customized probe card for on-wafer testing of AlGaN/GaN power transistors

PARAMETER/TEST CONDITIONS MINIMUM TYPICAL MAXIMUM UNIT

High-Efficiency L-Band 200-W GaN HEMT for Space Applications

80-105GHz Balanced Low Noise Amplifier. GaAs Monolithic Microwave IC. Gain & NF (db)

GaAs MMIC Power Amplifier

MECGaNLNACX. C- to X-Band GaN HEMT Low Noise Amplifier. Main Features. Product Description. Typical Applications. Measured Data

CHA2159 RoHS COMPLIANT

8-18 GHz Wideband Low Noise Amplifier

SBB MHz to 6000MHz InGaP HBT ACTIVE BIAS GAIN BLOCK. Features. Product Description. Applications

Features. Specifications. Applications

AMMC GHz Output x2 Active Frequency Multiplier

GaAs MMIC Power Amplifier

XP1080-QU-EV1. Power Amplifier GHz. Functional Schematic. Features. Description. Pin Configuration 1. Ordering Information. Rev.

Preliminary DATA SHEET VWA Product-Line

NOT FOR NEW DESIGNS SGA5386Z. Absolute Maximum Ratings MHz. Parameter Rating Unit. Typical Performance at Key Operating Frequencies

MMA GHz 4W MMIC Power Amplifier Data Sheet

Transcription:

GaN MMIC PAs for MMW Applicaitons Miroslav Micovic HRL Laboratories LLC, 311 Malibu Canyon Road, Malibu, CA 9265, U. S. A. mmicovic@hrl.com

Motivation for High Frequency Power sources 6 GHz 11 GHz Frequency Spectrum High Data Rate Wireless Links (1 Gbits/s) Commercial Bands (E-band radio) 71 GHz 76 GHz, 81 GHz 86 GHz, 92 GHz 95 GHz Inter-Satellite 59.3 GHz 64 GHz Active Millimeter-Wave Imaging 94 GHz SAR, Phase Array Radar (Space based W-band radar for earth studies.) RF Sources for THz Multiplier Diodes Fundamental Power for THz Space Array Spectroscopy Power Required Watts Available Sources < 2 mw GaN MMIC 3 W at 95 GHz

Microwave and Millimeter-wave Solid State Sources 1 Pulsed mode Estimated CW GaN limit 1 Pout [W] 1 Estimated CW LDMOS limit Estimated CW GaAs limit HRL GaN 28 1 Symbols: LDMOS catalog items GaAs catalog items GaN reported data HRL GaN 26 HRL GaN 27.1.1 1 1 1 Frequency [GHz] Output power per single die.

HRL W-band GaN Roadmap Output Power (mw) 3,5 3, 2,5 2, 1,5 1, 5 26 26 HRL HRL IEDM IEDM paper paper HRL HRL IR&D IR&D 27 27 Q3 Q3 28 28 Plan Plan..2.4.6.8 1. 1.2 1.4 1.6 1.8 Gate Width (mm) Extrapolate >3 >3 W! W! Q4 Q4 28 28 Plan Plan Best Best GaAs GaAs phemt phemt and and InP InP HEMT HEMT Disruptive W-band W GaN Power MMICs 8X higher power density than mmw GaAs phemt

Cost trade-off estimate for 3 Watt W-band SSPA GaAs phemt SSPA GaN SSPA 8-way waveguide combining Number of WR-1 power modules Number of MMIC s per module 8-way splitter and 8 way combiner required 8 3 (Attenuator, Phase Shifter, Power Amplifier) Power combining not required 1 1 (Power Amplifier only) Hand-tuning to obtain phase and amplitude match for combining Combiner arms tuned manually No tuning 3 Watt 95 95 GHz GaN SSPA is is Cost Effective

W-band GaN MMIC Device Passivation Source Ohmic n + GaN AlGaN Schottky barrier GaN T-gate device AlGaN buffer SiC substrate Gate Lg =.12 µm Drain Ohmic n + GaN N+ layer facilitates fabrication of ohmic contacts. Double Heterojunction Structure Low ohmic contact resistance <.2 Ω/mm. Comparable to GaAs phemt s and InP HEMT s. Smooth ohmic metal edges. Recessed gate Bi-layer e-beam gate litho Lg =.12 µm for Ka-band SiN passivation and capacitor dielectric 2 µm Source-Drain separation TaN 5 Ω/Square resistor Epi resistors

Short Channel Effects - Buffer Isolation Electrostatic Potential [ev] 2 1-1 -2-3 Ec Ef Ev Conventional HEMT Al.26 Ga.74 N SHFET GaN -4 2 4 6 8 1 Position [Angstroms] 1 2 1 18 1 16 1 14 1 12 1 1 Electron Concentration [cm -3 ] Electrostatic Potential [ev] 2 1-1 -2-3 Ec Ef Al.3 Ga.7 N Ev DHFET GaN Al.4 Ga.96 N -4 2 4 6 8 1 Position [Angstroms] Techniques used to improve backside confinement and buffer isolation Doping Fe doped buffer layer; Y.-F. Wu et al., El. Dev. Lett., Vol. 25, pp 117-119 C doped buffer layer; S. Rajan et al., El. Dev. Lett., Vol. 25, pp 247-249 Polarization Engineering GaN DHFET structure; M. Micovic et al., IEDM 24 Digest, pp 87-81 InGaN back barrier; T. Palacios et al., El. Dev. Lett., Vol. 27, pp 13-15 1 2 1 18 1 16 1 14 1 12 1 1 Electron Concentration [cm -3 ]

Short Channel Effects - Buffer Isolation 1 Transfer curves of GaN DHFET (blue) and SHFET (red); Both wafers have field plate gate structure; Vds=1V Transfer curves of Lg =.12 µm GaN HEMTs Conventional (Red), DHFET (Blue) 1 Ids [ma/mm] 1 1 1.1 >1x Leakage Reduction Vds=1V Ids DHFET Idss SHFET.1.1-5 -4-3 -2-1 1 2 Vg [V] DHFET Structure: -Improved Back-Channel Confinement, -Reduced sub-threshold drain leakage current.

Uniformity Better than 1% over 3 Wafer Epi Thickness.9 % AlGaN %.68 % Sheet resistance.46 % Uniformity = Std. Dev. / Mean No edge exclusion

Individual Source Vias 3x3 vertical wall vias in 5 µm substrate Enables microstrip MMICs Low source inductance < 1 ph Critical for high power W-band power amp performance

DC Device Characteristics L g =.1 µm, W g = 4 x 37.5 µm GaN HFET Id [ma] 14 Vgs = to -4 V Vgs = 12 Step = -.5 V -.5 V 1-1. V 8-1.5 V 6-2. V 4-2.5 V 2-3. V 2 4 6 8 1 12 14 Vds [V] Id ss = 9 ma/mm Ids [ma/mm] 1 9 8 7 6 5 4 3 2 1 Ids gm -4.5-4 -3.5-3 -2.5-2 -1.5-1 -.5 Vgs [V] g m of 36 ms/ mm at V ds = 12 V 5 45 4 35 3 25 2 15 1 5 gm [ms/mm]

Small Signal RF Performance 35 3 25 MSG H21 f T = 9 GHz f max = 2 GHz Gain [db] 2 15 1 5 1 1 1 Frequency [GHz] L g =.1 µm, W g = 4 x 37.5 µm GaN HFET V ds = 1 V, I ds = 45 ma.

5 mw 7 GHz GaN MMIC PA 7 GHz MMIC Chip Layout Size 3.4 mm x 1.3 mm Operating Voltage = 15 V Measured Gain > 15 db Small Signal Gain, Return Loss [db] 2 1-1 12 GHz Bandwidth, Gain > 15 db, Gain Ripple <.5 db Measured frequency response of 7 GHz GaN PA 7.4 GHz 15.46 db 71.2 GHz 15.42 db 76.13 GHz 16.29 db 82.3 GHz 16.16 db -2 6 7 8 9 Frequency (GHz) Measured small signal gain of 7 GHz 5 mw GaN MMIC PA. Performance meets design goal.

Output power of 7 GHz MMIC measured at a frequency of 76 GHz Pout (dbm), Gain (db), PAE (%) 3 25 2 15 1 5 Pout (dbm) Gain (db) PAE (%) 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 Pin (dbm) P sat = 5 mw PAE = 17% P 1dB = 24 dbm Vds = 15 V

Comparison of 7 GHZ MMIC Performance with the best commercial phemt Parameter Gain 7 GHz GaN MMIC PA >14 db Commercial GaAs phemt > 5 db P 1dB 24 dbm 2 dbm Psat 27 dbm 22 dbm PAE Input return loss Output return loss 16.5 % < -8 db < - 8 db < -4 db < -2 db The The most powerful MMIC reported to to date at at 7 7 GHz

5 mw 8 GHz GaN MMIC PA 2 15 GHz Bandwidth, Gain > 11 db Measured frequency response of 8 GHz GaN PA 8 GHz MMIC Chip Layout Size 3.4 mm x 1.3 mm Operating Voltage = 15 V Measured Gain > 11 db Small Signal Gain, Return Loss [db] 1-1 76.37 GHz 14.97 db 82.721 GHz 14.5 db 86.62 GHz 12.7 db -2 6 7 8 9 1 Frequency (GHz) Measured small signal gain of 8 GHz 5 mw GaN MMIC PA. MMIC Designed for for E-band E Radio Band

Output power of 8 GHz MMIC measured at a frequency of 83 GHz Pout, Gain, PAE [dbm, db, %] 3 25 2 15 1 5 Pout Gain PAE 27 dbm 17 % 12 db P sat = 5 mw PAE = 17% P 1dB = 24 dbm Vds = 15 V -1-5 5 1 15 2 Power modules using 26 GaN SR parts used as a power source. Pin [dbm] Highest Output Power and and Efficiency reported for for a solid state source at at this this frequency.

Comparison of 8 GHZ MMIC Performance with the best commercial phemt Parameter Gain 8 GHz GaN MMIC PA >11 db Commercial GaAs phemt > 5 db P 1dB 24 dbm 2 dbm Psat 27 dbm 22 dbm PAE Input return loss Output return loss 17 % < -7 db < - 7dB < -4 db < -2 db The The most powerful MMIC reported to to date at at 8 8 GHz

5 mw 9 GHz GaN MMIC PA Flat Response over 92 GHz- 95 GHz frequency band. 9 GHz Measured Bandwidth, frequency Return response Loss of 95 GHz < -1 GaN dbpa 2 9 GHz MMIC Chip Layout Size 2.4 mm x 1.3 mm Operating Voltage = 15 V Measured Gain > 15 db Small Signal Gain, Return Loss [db] 1-1 -2 88.865 GHz 14.52 db 9.884 GHz 14.88 db 97.451 GHz 14.22 db 8 9 1 11 Frequency (GHz) Measured small signal gain of 9 GHz 5 mw GaN MMIC PA. Performance Meets Design Goals

Output Power of 9 GHz GaN MMIC measured at a frequency of 94.75 GHz Pout, Gain, PAE [dbm, db, %] 25 2 15 1 5 P o u t [d B m ] G a in [d B ] PAE [% ] P.5dB = 23 dbm Linear Gain = 14.4 db 23 db m 13.8 db 9 % -2 2 4 6 8 1 Pin [dbm ] Output power limited by available input drive, circuit less than.5 db compressed. HRL is building a power source using GaN MMIC to test the power.

Comparison of 9 GHZ MMIC Performance with best commercial GaAs phemt Parameter Gain HRL 9 GHz GaN MMIC PA >14 db GaAs phemt > 1 db Gain Ripple <.5 db < 1 db P 1dB >23 dbm 2 dbm Psat To be measured 23 dbm PAE Input return loss Output return loss To be measured < -1 db < - 1dB < -8 db < -8 db

25 mw 1 GHz GaN MMIC PA 2 Measured frequency response of 1 GHz GaN PA 1 GHz MMIC Chip Layout Size 2.4 mm x 1.3 mm Operating Voltage = 15 V Measured Gain > 15 db Small Signal Gain, Return Loss [db] 1-1 -2 95.912 GHz 15.19 db 1.3 GHz 15.72 db 12.13 GHz 15.23 db 8 9 1 11 Frequency (GHz) Measured performance of the first 1 GHz GaN MMIC chip. Fastest GaN MMIC Circuit Near Term Potential for for 15 15 GHz 22 22 GHz

Summary GaN MMIC technology will dominate high frequency > 5 GHz solid state RF power technology. Key challenges for MMW GaN: Ohmic Contacts Short gate lengths Device Structure GaN MMICs exceeding power of best GaAs and InP MMICs at 95 GHz demonstrated. GaN MMICs with 5 x power of the best InP MMICs are on the road map for 29. MMW GaN MMIC technology enables new systems, applications and services.