Description. Table 1. Device summary. Order codes Package Packaging

Similar documents
LD A ultra low-dropout voltage regulator. Applications. Description. Features

LM217M, LM317M. Medium current 1.2 to 37 V adjustable voltage regulator. Description. Features

LD A, very low drop voltage regulators. Description. Features

LD A, very low drop voltage regulators. Features. Description. Table 1. Device summary

LD A low drop positive voltage regulator: adjustable and fixed. Features. Description

Description. Table 1. Device summary SOT-223 DPAK TO-220

LDF. 1 A very low drop voltage regulator. Description. Features. Applications

Low noise and low drop voltage regulator with shutdown function. Description

MJB44H11T4-A. Automotive-grade low voltage NPN power transistor. Features. Applications. Description

TSOT23-5L. Description. systems. Regulator ground current increases Input voltage from 2.5 V to 6 V

LD39030SJ285R. 300 ma low quiescent current soft-start, low noise voltage regulator. Applications. Description. Features

LM323. Three-terminal 3 A adjustable voltage regulators. Description. Features

Description. Table 1. Device summary

LM2931. Very low drop voltage regulators with inhibit function. Description. Features

1 Diagram Pin configuration Typical application Maximum ratings Electrical characteristics... 7

Description. Part numbers Order codes Packages Output voltages

LD39150xx Ultra low drop BiCMOS voltage regulator Features Description Typical application

1.5 A adjustable and fixed low drop positive voltage regulator. Description

STLQ ma, 3 μa supply current low drop linear regulator. Features. Applications. Description

KF25B, KF33B KF50B, KF80B

Obsolete Product(s) - Obsolete Product(s)

Description. Table 1. Device summary. Order codes

FERD15S50. Field effect rectifier. Features. Description

Low noise low drop voltage regulator with shutdown function. Part numbers

Low noise low drop voltage regulator with shutdown function. Part numbers

Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)

LD1085CXX. 3 A low-drop, adjustable positive voltage regulator. Features. Description

TDA7384A. 4 x 46 W quad bridge car radio amplifier. Features. Description

Dual P-channel 100 V, Ω typ., 3.3 A STripFET VI DeepGATE Power MOSFET in a PowerFLAT 5x6 double island. Features

Description. Order code Package Packing

LM723CN. High precision voltage regulator. Features. Description

STTH110-Y. Automotive high voltage ultrafast rectifier. Description. Features

LD1117Axx. Low drop fixed and adjustable positive voltage regulators. Features. Description

MMBTA42. Small signal NPN transistor. Features. Applications. Description

Obsolete Product(s) - Obsolete Product(s)

DSL03. Secondary protection for VDSL2 lines. Description. Features. Complies with the following standards

STR2550. High voltage fast-switching PNP power transistor. Features. Applications. Description. Excellent h FE linearity up to 50 ma

LD1085xx. 3 A low drop positive voltage regulator adjustable and fixed. Features. Description

Features. Description. Table 1. Device summary. Order code Packaging Branding LET9180 M246 LET9180. May 2013 DocID Rev 1 1/10

LD3985xx. Ultra low drop-low noise BiCMOS voltage regulators low ESR capacitors compatible. Features. Description

STGB20N40LZ, STGD20N40LZ

Part numbers Order codes Packages Temperature range. LM137 LM137K TO-3-55 C to 150 C LM337 LM337K TO-3 0 C to 125 C LM337 LM337SP TO C to 125 C

35 W bridge car radio amplifier with low voltage operation. Description. Table 1. Device summary. Order code Package Packing

STR1550. High voltage fast-switching NPN power transistor. Features. Applications. Description. Excellent h FE linearity up to 50 ma

TS881. Rail-to-rail 0.9 V nanopower comparator. Description. Features. Applications

LDS3985xx. Ultra low drop-low noise BiCMOS 300 ma voltage regulator for use with very low ESR output capacitor. Features.


LM323. Three-terminal 3 A adjustable voltage regulators. Features. Description

TDA x 45 W quad bridge car radio amplifier. Features. Description. Protections:

STTH60AC06C. Turbo 2 ultrafast high voltage rectifier. Features. Description

Obsolete Product(s) - Obsolete Product(s)

MEMS audio surface-mount bottom-port silicon microphone with analog output. Description. Table 1. Device summary

LM248, LM348. Four UA741 quad bipolar operational amplifiers. Description. Features

BAT30F4 Datasheet production data Features Description 0201 package Figure 1. Pin configuration and marking Table 1. Device summary Symbol Value

Features. Description. Table 1. Device summary. Order code Temperature range Package Packaging Marking

LDFM. 500 ma very low drop voltage regulator. Applications. Description. Features

ST619LBDR. DC-DC converter regulated 5 V charge pump. Features. Description

CBTVS2A12-1F3. Circuit breaker with transient voltage suppressor. Features. Description. Complies with the following standards:

2STR2160. Low voltage fast-switching PNP power transistor. Features. Applications. Description

LK115XX30 LK115XX33 - LK115XX50

Order codes. TO-220 D²PAK (tape and reel) TO-220FP TO-3 LM117K LM217T LM217D2T-TR LM217K LM317T LM317D2T-TR LM317P LM317K

SD4931. HF/VHF/UHF RF power N-channel MOSFET. Features. Description

STAC3932B. HF/VHF/UHF RF power N-channel MOSFET. Features. Description

STPSC20H065C. 650 V power Schottky silicon carbide diode. Description. Features

Features. Description. Table 1. Device summary. Agency specification

STN2580. High voltage fast switching NPN power transistor. Features. Applications. Description. High voltage capability Fast switching speed

L4940xx5 L4940V5 L4940D2T5-TR 5 V L4940xx85 L4940V85 L4940P85 L4940D2T85-TR 8.5 V L4940xx10 L4940D2T10-TR 10 V L4940xx12 L4940D2T12-TR 12 V

ST662AB ST662AC. DC-DC converter from 5 V to 12 V, 0.03 A for Flash memory programming supply. Features. Description

Features. H FE at 10 V ma > 150. Description. Table 1. Device summary. Agency specification

EMIF04-1K030F3. 4-line IPAD, EMI filter including ESD protection. Features. Application. Description. Complies with the following standards:

STAC4932B. HF/VHF/UHF RF power N-channel MOSFET. Features. Description

Features. Description. Table 1. Device summary. Quality Level. Engineering Model

LM4041. Precision micropower shunt voltage reference. Description. Features. Applications

Description. Notes: (1) Qualification and characterization according to AEC Q100 and Q003 or equivalent,

Description. Table 1. Device summary. Order code Temp. range Package Packing Marking

BALF D3. 50 ohm nominal input / conjugate match balun for STLC2690, with integrated harmonic filter. Description. Features.

STTH6003. High frequency secondary rectifier. Description. Features

STN9260. High voltage fast-switching PNP power transistor. Features. Applications. Description. High voltage capability Fast switching speed

ESDAVLC6-1V2. Single line low capacitance Transil for ESD protection. Description. Features. Applications. Complies with following standards:

STPS2H100. Power Schottky rectifier. Features. Description

L6932H1.2. High performance 2A ULDO linear regulator. Features. Description. Applications L6932H1.2

Automotive-grade N-channel 24 V, 0.95 mω typ., 180 A STripFET III Power MOSFET in a H 2 PAK-6 package. Features. Description. Table 1.

L78S00 series. 2A Positive voltage regulators. Feature summary. Description. Schematic diagram

BALF-NRG-01D3. 50 Ω / conjugate match to BlueNRG balun transformer and integrated filtering. Description. Features. Applications.

SMA661AS. Fully integrated GPS LNA IC. Features. Applications. Description

TDA W CAR RADIO AUDIO AMPLIFIER

TO-220 D²PAK TO-220FP

Description. Table 1. Device summary table. Order code Temperature range Package Packing Marking SO-14. (automotive grade) (1)

EVAL-RHF310V1. EVAL-RHF310V1 evaluation board. Features. Description

TDA W hi-fi audio amplifier. Features. Description

AN2333 Application note

Z Standard 0.8 A Triacs. Description. Features

L6234. Three phase motor driver. Features. Description

Description. Table 1. Device summary. Order code Temp. range Package Packaging Marking

LExxAB LExxC. Very low dropout voltage regulators with inhibit function. Features. Description

ESDA5-1BF4. Low clamping single line bidirectional ESD protection. Features. Applications. Description. Complies with the following standards

T1635H, T1650H. High temperature 16 A Snubberless Triacs. Applications. Description. Features

STB120N10F4, STP120N10F4

LCP03. Transient voltage suppressor for dual voltage SLIC. Features. Applications. Description

2STN2540. Low voltage fast-switching PNP power bipolar transistor. Features. Applications. Description

Transcription:

3 A very low-dropout voltage regulator Features PPAK Input voltage range: V I = 1.4 V to 5.5 V V BIAS = 3 V to 6 V Stable with ceramic capacitors ±1.5% initial tolerance Maximum dropout voltage (V I - V O ) 400 mv over the operating temperature range Adjustable output voltage starting from 0.8 V Very fast transient response (up to 10 MHz bandwidth) Excellent line and load regulation specifications Logic-controlled shutdown option Thermal shutdown and current limit protection Junction temperature range: - 25 C to 125 C Applications Datasheet - production data Graphics processors PC add-in cards Microprocessor core voltage supply Low voltage digital ICs High efficiency linear power supplies SMPS post regulators Description Table 1. Device summary The LD49300 is a high-bandwidth, low-dropout, 3.0 A voltage regulator, ideal for powering core voltages of low power microprocessors. The LD49300 implements a dual supply configuration, which guarantees a very low output impedance and a fast transient response. The LD49300 requires a bias input supply and a main input supply, allowing ultra-low input voltages on the main supply rail. The input supply operates from 1.4 V to 5.5 V and bias supply requires between 3 V and 6 V to work properly. The LD49300 offers fixed output voltages from 0.8 V to 1.8 V and adjustable output voltages from 0.8 V. The LD49300 requires a minimum output capacitance for stability, and works optimally with small ceramic capacitors. Order codes Package Packaging LD49300PT08R (1) PPAK (tape and reel) 2500 pieces per reel 1. Adjustable version. LD49300PT10R PPAK (tape and reel) 2500 pieces per reel LD49300PT12R PPAK (tape and reel) 2500 pieces per reel May 2014 DocID12861 Rev 4 1/23 This is information on a product in full production. www.st.com

Contents LD49300 Contents 1 Typical application circuits................................... 3 2 Alternative application circuits................................ 4 3 Pin configuration............................................ 5 4 Diagram................................................... 6 5 Maximum ratings............................................ 7 6 Electrical characteristics..................................... 8 7 Typical characteristics....................................... 9 8 Application hints........................................... 13 8.1 Input supply voltage (VIN).................................... 13 8.2 Bias supply voltage (VBIAS).................................. 13 8.3 External capacitors.......................................... 13 8.4 Output capacitor............................................ 13 8.5 Minimum load current........................................ 13 8.6 Power sequencing recommendations........................... 14 8.7 Power dissipation/heatsinking................................. 14 8.8 PPAK package heatsinking................................... 15 8.9 Adjustable regulator design................................... 15 8.10 Enable................................................... 16 9 Package mechanical data.................................... 17 10 Packaging mechanical data.................................. 20 11 Revision history........................................... 22 2/23 DocID12861 Rev 4

Typical application circuits 1 Typical application circuits Figure 1. Adjustable version Figure 2. Fixed version with enable DocID12861 Rev 4 3/23 23

Alternative application circuits LD49300 2 Alternative application circuits Figure 3. Single supply voltage solution Figure 4. LD49300 and DC-DC pre-regulator to reduce power dissipation 4/23 DocID12861 Rev 4

Pin configuration 3 Pin configuration Figure 5. Pin connection (top view) Table 2. Pin description Pin Symbol Note 1 EN Enable (input): logic high = enable, logic low = shutdown ADJ Adjustable regulator feedback input connected to resistor voltage divider 2 V IN Input voltage regulator 3 GND Ground (tab is connected to ground) 4 V OUT Regulator output 5 V BIAS Input bias voltage powers the circuitry on the regulator except the output power device DocID12861 Rev 4 5/23 23

Diagram LD49300 4 Diagram Figure 6. Block diagram 6/23 DocID12861 Rev 4

Maximum ratings 5 Maximum ratings Table 3. Absolute maximum ratings Symbol Parameter Value Unit V IN Supply voltage -0.3 to 7 V V OUT Output voltage -0.3 to V IN + 0.3-0.3 to V BIAS + 0.3 V V BIAS Bias supply voltage -0.3 to 7 V V EN Enable input voltage -0.3 to 7 V P D Power dissipation Internally limited T STG Storage temperature range -50 to 150 C Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to ground. Table 4. Operating ratings Symbol Parameter Value Unit V IN Supply voltage 1.4 to 5.5 V V OUT Output voltage 0.8 to 4.5 V V BIAS Bias supply voltage 3 to 6 V V EN Enable input voltage 0 to V BIAS V T J Junction temperature range - 25 to 125 C DocID12861 Rev 4 7/23 23

Electrical characteristics LD49300 6 Electrical characteristics T J = - 25 C to 125 C; V BIAS = V O + 2.1 V (1) ; V I = V O + 1 V; V EN = V BIAS (2) ; I O = 10 ma; C I =1 µf; C O = 10 µf; C BIAS = 1 µf; unless otherwise specified. Typical values are referred to T J = 25 C. Table 5. Electrical characteristics Symbol Parameter Test conditions Min. Typ. Max. Unit V O Output voltage accuracy T J = 25 C, fixed voltage option -1.5 1.5 T J = -25 C to 125 C -3 3 V LINE Line regulation V I = V O + 1 V to 5.5 V -0.1 0.1 %/V V LOAD Load regulation I L = 0 ma to 3 A, V BIAS 3 V 1 % V DROP Dropout voltage (V I - V O ) I L = 1.5 A 200 I L = 3 A 400 V DROP Dropout voltage (V BIAS - V O ) I L = 3 A (1) 1.5 2.1 V I GND Ground pin current I L = 0 ma 4 6 I L = 3 A 4 6 I GND_SHD Ground pin current in shutdown V EN 0.4 V (2) 5 µa I L = 0 ma 3 5 I VBIAS Current through V BIAS ma I L = 3 A 3 5 I L Current limit V O = 0 V 4.5 A Enable input (2) V EN Enable input threshold (fixed voltage only) Regulator enable 1.4 Regulator shutdown 0.4 I EN Enable pin input current 0.1 1 µa Reference % mv ma V V REF SVR Reference voltage Supply voltage rejection T J = 25 C 0.788 0.8 0.812 T J = -25 C to 125 C 0.776 0.8 0.824 V I = 2.5 V ± 0.5 V, V O = 1 V F = 120 Hz, V BIAS = 3.3 V V 68 db 1. For V O 1 V, V BIAS dropout specification is not applied due to 3 V minimum V BIAS input. 2. Fixed output voltage version only. 8/23 DocID12861 Rev 4

Typical characteristics 7 Typical characteristics Figure 7. Reference voltage vs. temperature Figure 8. Output voltage vs. temperature Figure 9. Load regulation vs. temperature Figure 10. Line regulation vs. temperature Figure 11. Output voltage vs. input voltage Figure 12. Dropout voltage (V IN -V OUT ) vs. temperature (I OUT = 1.5 A) DocID12861 Rev 4 9/23 23

Typical characteristics LD49300 Figure 13. Dropout voltage (V IN -V OUT ) vs. temperature (I OUT = 3 A) Figure 14. V BIAS pin current vs. temperature Figure 15. Noise vs. frequency Figure 16. Quiescent current vs. temperature Figure 17. Supply voltage rejection vs. output current Figure 18. Stable region vs. C OUT and high ESR 10/23 DocID12861 Rev 4

Typical characteristics Figure 19. Stable region vs. C OUT and low ESR Figure 20. V BIAS and V IN start-up transient response (V IN and V BIAS startup at the same time) V IN =V BIAS =V EN =3.1V, V OUT =1V, C OUT =1µF Figure 21. V IN start-up transient response (V BIAS startup before than V IN ) T rise = 300 μs Figure 22. V IN start-up transient response (V BIAS startup before than V IN ) T rise = 30 μs V IN =2.5V, V BIAS =V EN =3.1V, V OUT =1V, C OUT =1µF V IN =2.5V, V BIAS =V EN =3.1V, V OUT =1V, C OUT =1µF DocID12861 Rev 4 11/23 23

Typical characteristics LD49300 Figure 23. V IN start-up transient response (V BIAS startup before than V IN and V EN = V IN ) Figure 24. Load transient response V IN =V EN =2.5V, V BIAS =3.1V, V OUT =1V, C OUT =1µF V IN =2.5V, V BIAS =5V, V OUT =1.8V, I OUT =10mA to 3A, C OUT = 10 µf 12/23 DocID12861 Rev 4

Application hints 8 Application hints The LD49300 is a low-dropout linear regulator, designed for high-current applications requiring a fast transient response. The LD49150 has separate input and bias voltage ports, in order to reduce dropout voltage. Thanks to the LD49300, a minimum quantity of external components is required. 8.1 Input supply voltage (V IN ) V IN provides the LD49300 with power input current. The minimum input voltage can be as low as 1.4 V, allowing conversion from very low voltage supplies to achieve low output voltage levels and low power dissipation. 8.2 Bias supply voltage (V BIAS ) The LD49300 control circuitry is supplied by V BIAS pin, which requires a very low bias current (3 ma typ.) even at the maximum output current level (3 A). A bypass capacitor on V BIAS pin improves the LD49300 performance during line and load transient. The small ceramic capacitor from V BIAS to ground reduces high frequency noise that could be injected into the control circuitry. In typical applications, one ceramic chip capacitor of 1 µf may be used. V BIAS input voltage has to be 2.1 V above the output voltage, with a minimum V BIAS input voltage of 3 V. 8.3 External capacitors To assure regulator stability, input and output capacitors are required as shown in the typical application circuit. 8.4 Output capacitor The LD49300 requires a minimum output capacitance to maintain stability. At least 1 µf ceramic chip capacitor is required. However, specific capacitor selection assures the transient response. 1 µf ceramic chip capacitor satisfies most applications but 10 µf capacitor guarantees a better transient performance. In applications where V IN level is close to the maximum operating voltage (V IN > 4 V), a 10 µf minimum output capacitor avoids the overvoltage stress on the input/output power pins during short-circuit conditions due to parasitic inductive effect. The output capacitor has to be as closer as possible to the LD49300 output pin. ESR output capacitor (equivalent series resistance) has to be within the stable region as shown in Section 7: Typical characteristics. Both ceramic and tantalum capacitors are suitable. 8.5 Minimum load current The LD49300 does not require a minimum load to maintain the output voltage regulation. DocID12861 Rev 4 13/23 23

Application hints LD49300 8.6 Power sequencing recommendations To assure the correct biasing and settling of the regulator internal circuitry during the startup phase, as well as to avoid overvoltage spikes on the output, the correct power sequencing has to be provided. As general rule, V IN and V EN signal timings should be chosen properly, so that they are applied to the device after V BIAS voltage has already been settled on its minimum operative value (see Section 8.2: Bias supply voltage (VBIAS)). This can be achieved, for instance, by avoiding too slow V BIAS rising edges (T r > 10 ms). Provided that the above condition is satisfied, when fast V IN transient input (T r < 100 µs) is present, a smooth startup, with limited overvoltage on the output, can be achieved simultaneously by V IN and V BIAS voltage (refer to Figure 20, Figure 21 and Figure 22). In the fixed voltage version, overvoltage spikes can be reduced during very fast startup (T r << 100 µs) by pulling V EN pin up to V IN voltage (see Figure 23). 8.7 Power dissipation/heatsinking In relation to the maximum power dissipation and maximum ambient temperature of the application, a heatsink may be required. Junction temperature has to be within the specified range under operating conditions. The total power dissipation of the device is given by: Equation 1 P D = V IN x I IN + V BIAS x I BIAS - V OUT x I OUT where: V IN = input supply voltage V BIAS = bias supply voltage V OUT = output voltage I OUT = load current The required θ SA thermal resistance for the heatsink is given by the following formula: Equation 2 θ SA = (T J - T A /P D ) - (θ JC + θ CS ) T Rmax, the maximum allowed temperature rise depends on T Amax, the maximum ambient temperature of the application, and T Jmax, the maximum allowable junction temperature: Equation 3 T Rmax = T Jmax - T Amax The maximum allowable value for junction-to-ambient thermal resistance, θ JA, can be calculated as follows: Equation 4 θ JAmax = T Rmax / P D For PPAK package only. 14/23 DocID12861 Rev 4

Application hints The thermal resistance depends on the amount of copper area or heatsink, and on the air flow. If θ JA maximum allowable value is 100 C/W for PPAK package, no heatsink is needed since the package can dissipate enough heat to satisfy these requirements. If the value for allowable θ JA falls below these limits, a heatsink is required as described below. 8.8 PPAK package heatsinking PPAK package uses the copper plane on the PCB as a heatsink. The tab of this package is soldered to the copper plane for heatsinking. The PCB ground plane can be used as a heatsink. This area can be the inner GND layer of a multi-layer PCB, or, in a dual-layer PCB, it can be the unbroken GND area on the bottom layer thermally connected to the tab through-via holes. Figure 25 shows θ JA curve for PPAK package for different copper area sizes, using a typical PCB: thickness 1/16 G10 FR4. Figure 25. θ JA vs. copper area for PPAK package 8.9 Adjustable regulator design The LD49300 adjustable version allows the output voltage to be fixed anywhere between 0.8 V and 4.5 V using two resistors as shown in the typical application circuit. For example, to fix R1 resistor value between V OUT and ADJ pin, the resistor value between ADJ and GND (R2) is calculated as follows: Equation 5 R2 = R1 [0.8 / (V OUT - 0.8)] where V OUT is the desired output voltage. R1 values should be lower than 10 kω to obtain a better load transient performance. Higher values up to 100 kω are suitable. DocID12861 Rev 4 15/23 23

Application hints LD49300 8.10 Enable The LD49300 fixed output voltage version features an active high enable input (EN) that allows the on-off control of the regulator. EN input threshold is guaranteed between 0.4 V and 1.4 V. The regulator is in shutdown mode when V EN < 0.4 V and it is in operating mode (V OUT activated) when V EN > 1.4 V. If it is not in use, EN pin has to be tied directly to V IN to keep the regulator continuously activated. EN pin has not to be left with high impedance. 16/23 DocID12861 Rev 4

Package mechanical data 9 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DocID12861 Rev 4 17/23 23

Package mechanical data LD49300 Figure 26. PPAK drawing 0078180_F 18/23 DocID12861 Rev 4

Package mechanical data Table 6. PPAK mechanical data Dim. mm Min. Typ. Max. A 2.2 2.4 A1 0.9 1.1 A2 0.03 0.23 B 0.4 0.6 B2 5.2 5.4 C 0.45 0.6 C2 0.48 0.6 D 6 6.2 D1 5.1 E 6.4 6.6 E1 4.7 e 1.27 G 4.9 5.25 G1 2.38 2.7 H 9.35 10.1 L2 0.8 1 L4 0.6 1 L5 1 L6 2.8 R 0.20 V2 0 8 DocID12861 Rev 4 19/23 23

Packaging mechanical data LD49300 10 Packaging mechanical data Figure 27. PPAK tape 10 pitches cumulative tolerance on tape +/- 0.2 mm T Top cover tape P0 D P2 E B1 K0 B0 F W For machine ref. only including draft and radii concentric around B0 A0 P1 D1 User direction of feed R User direction of feed Bending radius AM08852v1 20/23 DocID12861 Rev 4

Packaging mechanical data REEL DIMENSIONS Figure 28. PPAK reel 40mm min. T Access hole At slot location D B C A N Full radius Tape slot in core for tape start 25 mm min. width G measured at hub AM08851v2 Table 7. PPAK tape and reel mechanical data Tape Reel Dim. mm mm Dim. Min. Max. Min. Max. A0 6.8 7 A 330 B0 10.4 10.6 B 1.5 B1 12.1 C 12.8 13.2 D 1.5 1.6 D 20.2 D1 1.5 G 16.4 18.4 E 1.65 1.85 N 50 F 7.4 7.6 T 22.4 K0 2.55 2.75 P0 3.9 4.1 Base qty. 2500 P1 7.9 8.1 Bulk qty. 2500 P2 1.9 2.1 R 40 T 0.25 0.35 W 15.7 16.3 DocID12861 Rev 4 21/23 23

Revision history LD49300 11 Revision history Table 8. Document revision history Date Revision Changes 20-Nov-2006 1 Initial release. 01-Dec-2006 2 Add note in cover page. 29-Jun-2010 3 Modified Section 8.6: Power sequencing recommendations on page 14. 26-May-2014 4 Changed the part numbers LD49300xx08, LD49300xx10 and LD49300xx12 to LD49300. Changed the title. Updated the description in cover page and Section 9: Package mechanical data. Added Section 10: Packaging mechanical data. Minor text changes. 22/23 DocID12861 Rev 4

Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ( ST ) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com DocID12861 Rev 4 23/23 23