Server Power System for Highest Efficiency and Density: Practical Approach Step by Step

Similar documents
Post-PFC DC-DC Converter Design Considerations to Meet Wide Load Current Efficiency Goals

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern

Interleaved PFC technology bring up low ripple and high efficiency

DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION. 500KHz, 18V, 2A Synchronous Step-Down Converter

LM5034 High Voltage Dual Interleaved Current Mode Controller with Active Clamp

A new way to PFC and an even better way to LLC Bosheng Sun

idesyn id8802 2A, 23V, Synchronous Step-Down DC/DC

Features. RAMP Feed Forward Ramp/ Volt Sec Clamp Reference & Isolation. Voltage-Mode Half-Bridge Converter CIrcuit

Simulation Comparison of Resonant Reset Forward Converter with Auxiliary Winding Reset Forward Converter

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin

Frequency, where we are today, and where we need to go

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session

MIC2196. Features. General Description. Applications. Typical Application. 400kHz SO-8 Boost Control IC

WD3122EC. Descriptions. Features. Applications. Order information. High Efficiency, 28 LEDS White LED Driver. Product specification

EUP3452A. 2A,30V,300KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER

VCC. UVLO internal bias & Vref. Vref OK. PWM Comparator. + + Ramp from Oscillator GND

TFT-LCD DC/DC Converter with Integrated Backlight LED Driver

WD3119 WD3119. High Efficiency, 40V Step-Up White LED Driver. Descriptions. Features. Applications. Order information 3119 FCYW 3119 YYWW

MP2122 6V, 2A, Low Quiescent Current Dual, SYNC Buck Regulator

A Novel Concept in Integrating PFC and DC/DC Converters *

A7221A DC-DC CONVERTER/BUCK (STEP-DOWN) 600KHz, 16V, 2A SYNCHRONOUS STEP-DOWN CONVERTER

ACT8310/ A, PWM Step-Down DC/DCs in TDFN GENERAL DESCRIPTION FEATURES APPLICATIONS SYSTEM BLOCK DIAGRAM ACT8311. Rev 4, 08-Feb-2017

Phase Shift Resonant Controller

PS7516. Description. Features. Applications. Pin Assignments. Functional Pin Description

Digitally controlled voltage mode schemes provide equivalent performance to current mode control

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

DT V 1A Output 400KHz Boost DC-DC Converter FEATURES GENERAL DESCRIPTION APPLICATIONS ORDER INFORMATION

Design and implementation of a LLC-ZCS Converter for Hybrid/Electric Vehicles

How to Design Multi-kW Converters for Electric Vehicles

Design of Clamp Forward Converter Used in Computing Devices

Current Mode PWM Controller

The Quest for High Power Density

GaN in Practical Applications

Features. Slope Comp Reference & Isolation

LLC Resonant Half Bridge Converter

High-Efficiency Forward Transformer Reset Scheme Utilizes Integrated DC-DC Switcher IC Function

EUP A,40V,200KHz Step-Down Converter

HIGH SPEED, 100V, SELF OSCILLATING 50% DUTY CYCLE, HALF-BRIDGE DRIVER

For buy, please contact: FEATURES C3 R3 MT MT7990 VDD DRAIN

Z V S P h a s e S h i f t F u l l B r i d g e

DT V 400KHz Boost DC-DC Controller FEATURES GENERAL DESCRIPTION APPLICATIONS ORDER INFORMATION

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger

IN THE high power isolated dc/dc applications, full bridge

Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs

MP A,1MHz, Synchronous, Step-up Converter with Output Disconnect

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES

EUP A,30V,1.2MHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

1.5MHz, 3A Synchronous Step-Down Regulator

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications

MPM V-5.5V, 4A, Power Module, Synchronous Step-Down Converter with Integrated Inductor

1.5MHz, 1A Synchronous Step-Down Regulator

CR6842. Green-Power PWM Controller with Freq. Jittering. Features. Applications. General Description. Leading-edge blanking on Sense input

EUP A,30V,500KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

Improvements of LLC Resonant Converter

CEP8101A Rev 1.0, Apr, 2014

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

Controlling Power Up and Power Down of the Synchronous MOSFETs in a Half-Bridge Converter

LM5021 AC-DC Current Mode PWM Controller

CEP8113A Rev 2.0, Apr, 2014

MP1495 High Efficiency 3A, 16V, 500kHz Synchronous Step Down Converter

MIC2296. General Description. Features. Applications. High Power Density 1.2A Boost Regulator

MP6902 Fast Turn-off Intelligent Controller

ACT111A. 4.8V to 30V Input, 1.5A LED Driver with Dimming Control GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT

RT V DC-DC Boost Converter. Features. General Description. Applications. Ordering Information. Marking Information

UNISONIC TECHNOLOGIES CO., LTD UPSR104 Preliminary CMOS IC

Welcome. High Efficiency SMPS with Digital Loop Control

Current Mode PWM Controller

MP2143 3A, 5.5V, 1.2MHz, 40μA I Q, COT Synchronous Step Down Switcher

Conventional Single-Switch Forward Converter Design

1MHz, 3A Synchronous Step-Down Switching Voltage Regulator

Green-Mode PWM Controller with Integrated Protections

UNISONIC TECHNOLOGIES CO., LTD UCSR3651S Preliminary CMOS IC

High Speed PWM Controller

MT3540 Rev.V1.2. Package/Order Information. Pin Description. Absolute Maximum Ratings PIN NAME FUNCTION

Design and analysis of ZVZCS converter with active clamping

10A Current Mode Non-Synchronous PWM Boost Converter

340KHz, 36V/2.5A Step-down Converter With Soft-Start

WD1015 WD1015. Descriptions. Features. Order information. Applications. Http//: 1.5MHz, 1.2A, Step-down DC-DC Converter

Liteon Semiconductor Corporation LSP MHZ, 600mA Synchronous Step-Up Converter

MP2313 High Efficiency 1A, 24V, 2MHz Synchronous Step Down Converter

PWM Step-Up DC/DC Converter for Panel Backlight. Features. Fig. 1

High Speed PWM Controller

MP6004 Primary-Side Regulated Flyback/Buck 80V DCDC Converter

MP4652 HIGH PERFORMANCE OFF-LINE TV LED DRIVER

LD7552. Green-Mode PWM Controller. Features. General Description. Applications. Typical Application 2/21/2005

Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO

MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply

Multi-Output, Individual On/Off Control Power-Supply Controller

LM V Current Mode PWM Controller

Current-Mode PWM Multiple Output Flyback Converter

LD7523 6/16/2009. Smart Green-Mode PWM Controller with Multiple Protections. General Description. Features. Applications. Typical Application REV: 00

MP2497-A 3A, 50V, 100kHz Step-Down Converter with Programmable Output OVP Threshold

Low-Noise 4.5A Step-Up Current Mode PWM Converter

MP2314S 2A, 24V, 500kHz, High-Efficiency, Synchronous, Step-Down Converter

A7121A. AiT Semiconductor Inc. APPLICATION ORDERING INFORMATION TYPICAL APPLICATION

MP A, 24V, 1.4MHz Step-Down White LED Driver

새로운무손실다이오드클램프회로를채택한두개의트랜스포머를갖는영전압스위칭풀브릿지컨버터

1.5MHz, 1.5A Step-Down Converter

Transcription:

2012 IBM Power Technology Symposium Server Power System for Highest Efficiency and Density: Practical Approach Step by Step Rais Miftakhutdinov and John Stevens Texas Instruments, High Performance Isolated Power, r-miftakhutdinov1@ti.com; john.stevens@ti.com 1

Outline Stringent Requirements for Server Power Supply Efficiency in 2012+ Platinum Power Supply Step by Step Design Example Power Losses Budget: Where the losses come from? How to achieve ZVS and Minimize Switching Losses on Primary Side? Timing is Critical to Minimize Switching Losses on Secondary Side Light Load Efficiency Handling Summary 2

80 PLUS and Climate Savers Computing Climate Savers Computing initiative has expanded efficiency requirement down to 10% load. To meet this requirement light load power management technique must be implemented. 10% load N/A 75% 80% 82% 20% load 81% 85% 88% 90% 50% load 85% 89% 92% 94% 100% load 81% 85% 88% 91% PF 0.9 @ 50% load 0.9 @ 50% load 0.9 @ 50% load http://www.plugloadsolutions.com/80pluspowersupplies.aspx 0.95 @ 50% load 3 http://www.climatesaverscomputing.org/

Roadmap for Front-End Power Supply in 2015 Facility 208V AC AC/DC (PFC) DC/DC 12V, -48V, 54V DC Server, rectifier Standby 5V Stb Efficiency: up to 97% for 48V output (97.5% leading edge) up to 95% for 12V output (95.5% leading edge) Power Factor: 0.95 at half-load and full load Power Density: >40 W/cub.inch Cost per Watt: <10 cents/w Design Cycle from Spec to Volume Production: < 8 Months 4 PSMA Power Technology Road Maps 2009 and 2011: http://www.psma.com/

5 Platinum Server Power Supply Design: Step by Step 1. Step 1: Power Stage Components Selection a) Review efficiency requirements and break down to PFC, DC-DC and Standby PS b) Select topology: Phase Shifted, LLC or Two-Switch Forward for DC-DC c) For the next steps own or available from vendors software design tool is very helpful d) Based on efficiency goal estimate losses. Set ratio conduction to switching losses e) Select optimal primary/secondary FETS and magnetics to satisfy conduction losses 2. Step 2: Taking Care of Switching Losses at 10% to 100% load a) Review Coss of selected primary FETs and establish ZVS conditions for Ls and Lm b) Select optimal frequency based on drive, AC magnetic and body diode recovery losses c) Find optimal delay time between primary FETs switching over load range d) Find optimal timing between primary and secondary FETs switching 3. Step 3: Controller Selection and Light Load Power Management a) Select controller having optimal drive timing based on load and light load management block: Examples from TI UCC28950 (analog), UCD3K and C2000 families (digital) b) Set optimal conditions for operation mode changes at 0 to 20% load to minimize Ploss 4. Step 4: Additional Tuning and Modification if necessary based on Simulations and Prototype Test Results

80+ Platinum AC-DC Power Supply Efficiency Breakdown Platinum 80+ requirements for post-pfc DC-DC converter are very challenging. Below is efficiency breakdown between PFC and DC/DC parts of Front- End AC/DC power supply with Vin=390V and Vout=54V, Iout = 26A. The table allows set design goals for DC-DC converter shown in the next slide. Efficiency at % for 48-V telecom rectifier power supply Pout 10% 20% 50% 100% AC-DC 93.5 96 96.5 95.4 PFC 98.4 98.8 98.3 98.1 DC-DC 95.0 97.2 98.2 97.2 Note: Efficiency of PFC converter includes efficiency of Standby power supply 6

Phase-Shifted Full-Bridge Power Stage for DC-DC Depending on specific requirements most popular power stage topologies for server power supply are: PSFB PWM LLC Resonant Two-Switch Forward Because PSFB PWM remains most popular topology for this application, the design example is given for PSFB 7

Input Requirements Data and Efficiency Goals In this example MathCAD based design program is used 8

Set Break Down between Conduction and Switching Losses Efficiency Goals at 10, 20, 50 and 100% load Maximum efficiency point is where the losses proportional to I^2 are equal to the losses independent from load (i.e. switching losses) Maximum Ploss to meet efficiency goals Conduction Losses = =Switching Losses Based on the above rule, the switching losses limit is set as half of overall losses at 50% load (shown as dashed red horizontal line). Another words at 50% load it is assumed that conduction losses are equal to switching losses. 9

Select Power Stage Components to meet Pcond Limit Conduction losses over load are calculated and the summary plot is shown. The losses include: primary FETs, synchronous FETs, power transformer windings, output inductor, shim inductor, OR-ing FETs, shunt resistor, PCB traces losses with the temperature coefficient taken into account. The difference between power losses limit and conduction losses is where the switching losses must fit. Only about 6W switching losses allowed in this example. 10

11 Primary FETs: Switching Losses and ZVS conditions To analyze switching losses at different operating conditions and set ZVS (zero voltage switching) conditions, the mathematical description of Coss and related Energy is very helpful. The left side plots are taken from DS of IPW65R080CFD MOSFET. The right side plots are based on equations. The analytical plots closely match experimental ones taken from DS. Calculations show that without ZVS the Coss switching losses would be 12.8W at switching frequency 140kHz. To guarantee ZVS, leakage and magnetizing inductance of power transformer must be selected properly.

ZVS for node B: The End of Duty Cycle To achieve ZVS at node B, which switches at the end of PWM duty cycle, is relatively easy because the energy is provided by the output inductor current reflected into primary side. In this case only proper delay before turning on the FET needs to be maintained. The optimal delay increases when the load decreases as it is shown in the plot. 12

ZVS for node A: The Start of Duty Cycle To achieve ZVS at node A, which switches at the start of PWM duty cycle, the energy of leakage and magnetizing inductance of power transformer is used. In some cases the assistance from so called Shim inductor in series with the primary winding is used. The diodes clamping one end of shim inductor to input rails minimize the ringing at synchronous rectifier FETs. 13

ZVS Boundaries and Conditions ZVS region Plot shows the current through primary FETs Q1, Q11 at the beginning of duty cycle (blue). Red lines with circles show the boundaries of ZVS based on energy available at shim inductor and magnetizing inductance. 14 To guarantee ZVS over all load current range, the blue No ZVS region line should stay in ZVS region. This is achieved by increasing shim inductor and decreasing magnetizing inductance if necessary. The optimal delay between FETs switching at node A also depends on load condition. The controller should sense the load current and set optimal delay accordingly.

Turn OFF Losses ZVS eliminates turn ON losses but turn OFF losses still exist in PSFB. To minimize turn OFF losses it is recommended: Minimize impedance in drive path Select FETs with low gate resistance <1 Ω Capacitance in parallel with the FETs could be added for ZCS. This might result in losing ZVS though. In this example Rgint = 0.75Ω and Rdr = 0.2Ω. As the result the turn OFF losses are relatively small: 0.75W only at maximum load current 15

Optimal Synchronous MOSFET Switching Consideration After Q11 is off, the Q4 should be off as well, and after Q1 is off, the Q3 should be off. If to turn off Q3 and Q4 too early, the body diode with poor recovery will conduct too long time thus increasing reverse recovery switching losses. If to turn off Q3 and Q4 too late, then the secondary winding will be shorted causing overshoot followed by voltage spike across the sync FETs Q11 g (Q1 g) Q2 g (Q22 g) Q3 g (Q4 g) T AFSET1 (T BESET1 ) T AFSET2 (T BESET2 ) Proper timing for Q3 and Q4 turn off depend on load current. At high load current Q3 and Q4 can be turned off later because it takes longer time to load current switch from one FET to another. 16

Synchronous Rectifier and other Switching Losses To minimize switching losses in synchronous rectifier FETs it is critical: Minimize body diode conduction by using adaptive delay as it was shown in previous slide Shim inductor on primary side with clamped diodes minimizes voltage overshoot across synchronous rectifier FETs Remaining ringing can be eliminated by R-C-D snubber In this example, Rsn = 20K between Csn and Vout dissipates 1.4W. With proper timing and relatively slow di/dti through the body diode provided by shim and leakage inductance, the recovery losses are about 2.6W. Other losses include: 0.95W - gate drive losses of primary FETs 0.36W gate drive losses of synchronous rectifier FETs 0.7W transformer core losses 17 This results in overall switching losses 6.75W

Summary of Power Losses Overall power losses including conduction and switching losses over load current range from 10% to 100% are shown in the summary plot. The design meets Platinum power supply requirements at key load current points. Additional power saving at light load and no load is provided by changing operation modes using light load power management block. 18 Additional power saving by light load power management

Power Saving Control Algorithm vs Load Current Nominal Mode Q4 g Q3 g Nominal Operation at Io from 20 to 100% Transition Mode at Vcs1 Threshold, 50% duty cycle pulses Q4 g Q3 g Q4 g Q3 g Transition Mode at Vcs2 < Vcs < Vcs1 Transition Mode at Io from 10 to 20% by gradually reducing synchronous FETs conduction time Q4 g Q3 g Discontinuous Current Diode Rectification Mode with Q3 g, Q4 g disabled at Vcs < Vcs2 Diode rectification with DCM at Io <10% Transformer winding Magnetizing current Burst Mode at light load with Tmin maintaning ZvS (different time scale versus upper waveforms) Burst Mode at no-load or very light load 19

Controller Options: Analog UCC28950 with Green Features 20% Accurate Adaptive ZVS Dead Band Over Wide Operating Range Adaptive Timing MOSFET Rectifier Outputs Programmable SR ON/OFF Control Programmable Burst Mode at Very Light or No Load Programmable Slope Compensation Peak Current or Voltage Mode Control 20-mA, 1.5% Accurate VREF Regulator Closed Loop Soft Start with Enable 8% Accurate Switching Frequency Setting Bi-directional Synchronization 3% Accurate Cycle-by-Cycle Current Limit V DD Under Voltage Lockout Thermal Shutdown 150 µa Start Up Current Standard TSSOP-24 Package Wide Temperature Range: -40 to 125 C V DD 12 VREF COMP EA- EA+ RT RSUM CS 1 2 13 4 4 4 4 V DD 7.3V rise 6.7V fall UVLO Comp. Lower + Input is Dominant Oscillator Ramp Summing ON/OFF RAMP CS Thermal Shutdown 5V LDO CLK 2.8V 0.8V Synchronization Block 4 SYNC V DD PWM COMP Is 2 V Cycle-by- Cycle Ilim 4 CS GND EN Light Load Efficiency Block DCM V DD Reference Generator Logic Block TMIN CS CS Programmable Delay AB CS Programmable Delay CD Programmable Delay EF Soft Start & Enable with 0.55 V Thershold SS/EN 10 ADEL 10 8 8 10 8 8 8 10 8 8 OUTA DELAB OUTB OUTC DELCD OUTD ADELEF OUTE DELEF OUTF 20

21 Digital Controller UCD3K PSFB + Sync-Rec Configuration

Digital Controller C2000 PSFB + Sync-Rec Configuration Q14-Q15 Q7 Q13 Q11 Q2 Q1 Q8 ADC Comp Secondary Side Controller P W M Piccolo-A 22

Summary Step by Step design procedure for Platinum Server Power Supply is provided Power Losses Budget and break down of conduction and switching losses have been discussed Recommendation how to achieve ZVS and minimize switching losses are provided Digital and Analog Controllers supporting high efficiency operation over whole load current range are listed 23

24 Thanks and Any Questions?

References REFERENCES 1. Fasullo, G.; Kania, M. & Pitts, A. (2008). The Green revolution in DC power systems, Proceedings of 30th International Telecommunications Energy Conference, INTELEC 2008, pp. 1-7, ISBN: 978-1-4244-2056-8, San Diego, CA, USA, September 2008, IEEE 2. Mammano, R. (2006). Improving power supply efficiency - The global perspective, Texas Instruments Power Supply Design Seminar, Topic 1, SEM-1700, 2006 3. Rais Miftakhutdinov, Power Saving Control Strategies and Their Implementation in DC/DC Converter for Data and Telecommunications Power Supply, Proc. of IEEE Applied Power Electronics Conf., 2010, pp. 1897-1903. 4. Rais Miftakhutdinov, Zhenyu Yu, New Controller Addresses Energy Saving in Server Power System, Power Systems Design North America, January/February Issue, 2010, pp. 51-52. 5. Rais Miftakhutdinov, Power Saving Solutions in DC/DC Converter for Data and Telecommunications Power System, Proc. of PEDS-2009, Taipei, November 2009. 6. Rais Miftakhutdinov, Energy Saving Drives New Approaches to Telecommunications Power System, Chapter in the book Telecommunications, Intech, 2010 7. ENERGY STAR program requirements for computer servers, version 1.0: http://www.energystar.gov/index.cfm?c=ent_servers.enterprise_servers 8. 80 PLUS Power Supplies Requirements: http://www.plugloadsolutions.com/80pluspowersupplies.aspx 9. Climate Savers Computing Initiative: http://www.climatesaverscomputing.org/ 10. Texas Instruments, Datasheet: TMS320F28023 PiccoloTM microcontroller, http://focus.ti.com/docs/prod/folders/print/tms320f28023.html 11. Texas Instruments, Datasheet: UCD3020 Digital Power Controller, http://focus.ti.com/docs/prod/folders/print/ucd3020.html 12. Texas Instruments, Datasheet: Green Phase-Shifted Full-Bridge controller with synchronous rectification, UCC28950, http://focus.ti.com/docs/prod/folders/print/ucc28070.html 25