AREA NAVIGATION SYSTEMS

Similar documents
PBN fleet equipage according to FPL content. Michel ROELANDT

PBN Operational Approval Course

Introduction to PBN and RNP

PBN Airspace & Procedures

ICAO PBN GO TEAM PBN Implementation Workshop ENAC / ATM

IMPLEMENTATION OF GNSS BASED SERVICES

GNSS: CNS Dependencies

> ATM Seminar 2015 > Dauterrmann/Geister 376 >

Aviation Benefits of GNSS Augmentation

Modern ARINC 743B DO-229D and DO-253C GLSSU Solutions For Retrofit

PERFORM A DME ARC. This document illustrates how to perform a DME arc with a HSI-equipped Beechcraft 90. Descent steps

NAVIGATION INSTRUMENTS - BASICS

GA and NextGen How technologies like WAAS and ADS-B will change your flying! Presented By Claire Kultgen

Radio Navigation Aids Flight Test Seminar

Japan-US Aviation Environmental Workshop Fukutake Hall University of Tokyo 29 November 2017

ICAO policy on GNSS, GNSS SARPs and global GNSS developments. Jim Nagle Chief, Communication, Navigation and Surveillance Section ICAO

Overview of GNSS Navigation Sources, Augmentation Systems, and Applications

Satellite-Based Augmentation System (SBAS) Integrity Services

SBAS solution GCC, Yemen and Iraq System baseline and performance

Navaid Substitution. Tuesday, March 24 th 3:40 p.m. 4:00 p.m.) PRESENTED BY: Jim Johnson, Honeywell Aerospace

TITLE PAGE CAGE CODE CONTRACT NO. IR&D OTHER. PREPARED ON PC/Word for Windows 7.0 FILED UNDER

Avilon TM. vor ils gps waas. nextgen

Exam questions: AE3-295-II

CHIPS Technology Roadmap February 2012 VERSION 1.0

Learning Objectives 062 Radio Navigation

OPERATOR S TRAINING MANUAL. for. UNS 1Ew, 1Espw, 1Fw, & 1Lw FLIGHT MANAGEMENT SYSTEM (FMS) SCN-1000 SERIES and

NAVIGATION (2) RADIO NAVIGATION

Cockpit Visualization of Curved Approaches based on GBAS

Airspace User Forum 2012

ELEVENTH AIR NAVIGATION CONFERENCE. Montreal, 22 September to 3 October 2003 TOOLS AND FUNCTIONS FOR GNSS RAIM/FDE AVAILABILITY DETERMINATION

Navigation Systems - Enroute. Nolan, Chap 2

CHANGE 1 CHAPTER FOUR - TACAN AND VOR NAVIGATION...

ICAO Global Provisions and Regional Developments related to GNSS

GBAS FOR ATCO. June 2017

VOR/DME APPROACH WITH A320

P/N 135A FAA Approved: 7/26/2005 Section 9 Initial Release Page 1 of 10

FOUND FBA-2C1/2C2 BUSH HAWK EQUIPPED WITH SINGLE GARMIN GNS-430 # 1 VHF-AM COMM / VOR-ILS / GPS RECEIVER

AIRCRAFT AVIONIC SYSTEMS

Database Coding and Publication

Performance framework for Regional Air Navigation Planning and Implementation

This page is intentionally blank. GARMIN G1000 SYNTHETIC VISION AND PATHWAYS OPTION Rev 1 Page 2 of 27

CONCEPT OF OPERATIONS (CONOPS) FOR DUAL-FREQUENCY MULTI-CONSTELLATION (DFMC) GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS)

Navigation Programs Strategy

The Training Database is supplied as part of the RNS, and is loaded at the same time as the main program.

Chapter 10 Navigation

REPORT OF COMMITTEE B TO THE CONFERENCE ON AGENDA ITEM 6

Alternate Position, Navigation & Time APNT for Civil Aviation

The Use of Raw GPS for Vertical Navigation

Global positioning system (GPS) equipment including those using GPS augmentations.

GPS with RAIM or EGNOS? The difference for (mountainous) helicopter operations. Marc Troller Skyguide / CNS expert group

ENSTROM 480B OPERATOR S MANUAL AND FAA APPROVED ROTORCRAFT FLIGHT MANUAL SUPPLEMENT GARMIN GTN 650 NAVIGATION SYSTEM

Cockpit GPS Quick Start Guide

Special Committee SC-159 Navigation Equipment Using the Global Navigation Satellite System (GNSS) (Version 13)

APPENDIX C VISUAL AND NAVIGATIONAL AIDS

Special Committee SC-159 Navigation Equipment Using the Global Navigation Satellite System (GNSS) (Version 11)

FOLLOW-UP ON ACTIVITIES OF PROJECT AIR NAVIGATION SYSTEMS IN SUPPORT OF PBN. (Presented by the Secretariat) SUMMARY

Nigerian Communications Satellite Ltd. (NIGCOMSAT)

The Wide Area Augmentation System

International Civil Aviation Organization. ICAO New Flight Plan Format Study Group (INFPL STG) Fifth Meeting (Cairo, Egypt, September 2012)

The topic we are going to see in this unit, the global positioning system, is not directly related with the computer networks we use everyday, but it

Lecture-1 CHAPTER 2 INTRODUCTION TO GPS

VOR = VHF Omni-directional Radio Range. Cockpit instrument. Navigation charts Different types. What comes to mind?

MGL Avionics. Odyssey/Voyager G2 and iefis

SPECIAL EFFECTS OF THE REGIONAL SATELLITE AUGMENTATION SYSTEM (RSAS)

Ground Based Augmentation Systems (GBAS) Introduction

The prior specification for navaid data was XP NAV810, which was compatible with X-Plane Changes in the spec for XP NAV1100 were:

RJNK / KOMATSU AD CHART KOMATSU AD. AIP Japan KOMATSU RJNK-AD TWY C1 THRU C5. Installed on. Example for MANDATORY

ENSTROM 480/480B OPERATOR S MANUAL AND FAA APPROVED ROTORCRAFT FLIGHT MANUAL SUPPLEMENT GARMIN GNS 430W/530W NAVIGATION SYSTEM

International Civil Aviation Organization. Sixth Meeting of CNS/MET Sub-Group of APANPIRG. Bangkok, Thailand July 2002

PBN TRAINING FOR OPERATIONAL ATS PERSONNEL

Guidance. for the provision of NAV/COM/SUR information in the New ICAO 2012 Flight Plan

European GNSS Contingency/Reversion Handbook for PBN Operations

Experiences in. Flight Inspecting GBAS

RAIM Availability prediction

GNSS-based Flight Inspection Systems

WARNING This operating manual has been writen to be used only with Microsoft Flight Simulator. FriendlyPanels

How to Intercept a Radial Outbound

Fokker 50 - Automatic Flight Control System

Latest Evolution of RAIM Prediction Systems

Avionics Navigation Systems, Second Edition Myron Kayton and Walter R. Fried John Wiley & Sons, Inc (Navtech order #1014)

Apollo GPS Database Addendum

Flight Demonstration of the Separation Analysis Methodology for Continuous Descent Arrival

not authorized for IFR use. authorized for IFR use under VMC. authorized for IFR use under IMC until the runway is in sight.

ARAIM: Utilization of Modernized GNSS for Aircraft-Based Navigation Integrity

HORIZONTAL ARAIM AVAILABILITY FOR CIVIL AVIATION OPERATIONS. ARAIM Outreach event

AE4-393: Avionics Exam Solutions

CONSIDERATIONS FOR GNSS MEASUREMENTS

The Alaska Air Carriers Association. Supports and Advocates for the Commercial Aviation Community

Status Report of Switzerland

RJOM / MATSUYAMA AD CHART MATSUYAMA AP N M. AIP Japan MATSUYAMA RJOM-AD WIND DIRECTION INDICATOR LGT RWY 32 OVERRUN LGT APCH LGT BEACONS. 461.

Annex 10 Aeronautical Communications

EE Chapter 14 Communication and Navigation Systems

GPS/WAAS Program Update

Mode 4A Unsafe terrain clearance with landing gear not down and flaps not in landing position

SAFETYSENSE LEAFLET 25 USE OF GPS

SATELLITE BASED AUGMENTATION SYSTEM (SBAS) FOR AUSTRALIA

d~//ld UNCLASSIFIED DOCUMENT MILITARY STANDARD ORDER (MSO) DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

Challenges and Methods for Integrity Assurance in Future GNSS

GBAS Roadmap. Summary. GNSSP.4.IP.yy.2. Global Navigation Satellite System (GNSS) Panel Meeting 4. Montreal, 23 rd April 2 nd May, 2003

White Paper. GPS Backup For Position, Navigation and Timing. Transition Strategy for Navigation and Surveillance

Transcription:

AREA NAVIGATION SYSTEMS 1. Introduction RNAV is defined as a method of navigation which permits aircraft operation on any desired flight path within the coverage of station-referenced navigation aids or within the limits of the capability of selfcontained aids, or a combination of these. This removes the restriction imposed on conventional routes and procedures where the aircraft must overfly referenced navigation aids, thereby permitting operational flexibility and efficiency. NAVAID Figure: Red path is area navigation, black path is conventional navigation. The position of the aircraft is known using various sensors that can compute its position. RNAV can then be summed up as the ability of an aircraft to navigate, computing change of tracks from one point to another, using only coordinates. The RNAV system may also be connected with other systems, such as auto-throttle and autopilot/flight director, allowing more automated flight operation and performance management. Despite the differences in architecture and equipment, the basic types of functions contained in the RNAV equipment are common. Area Navigation systems Version 1.1 12 April 2017 Page 1

2. RNAV System architecture RNAV systems are designed to provide a given level of accuracy, with repeatable and predictable path definition, appropriate to the application. The RNAV system typically integrates information from sensors, such as air data, inertial reference, radio navigation and satellite navigation, together with inputs from internal databases and data entered by the crew to perform the following functions: Navigation Flight plan management Guidance and control Display and system control The navigation function computes data that can include aircraft position, velocity, track angle, vertical flight path angle, drift angle, magnetic variation, barometric-corrected altitude, and wind direction and magnitude. The flight planning function creates and assembles the lateral and vertical flight plan used by the guidance function: More advanced RNAV systems include a capability for performance management where aerodynamic and propulsion models are used to compute vertical flight profiles matched to the aircraft and able to satisfy the constraints imposed by air traffic control. A performance management function can be complex, utilizing fuel flow, total fuel, flap position, engine data and limits, altitude, airspeed, Mach, temperature, vertical speed, progress along the flight plan and pilot inputs. An RNAV system provides lateral guidance, and in many cases, vertical guidance as well. The lateral guidance function compares the aircraft s position generated by the navigation function with the desired lateral flight path and then generates steering commands used to fly the aircraft along the desired path. The vertical guidance function, where included, is used to control the aircraft along the vertical profile within constraints imposed by the flight plan Display and system controls provide the means for system initialization, flight planning, path deviations, progress monitoring, active guidance control and presentation of navigation data for flight crew situational awareness. Area Navigation systems Version 1.1 12 April 2017 Page 2

The RNAV system is expected to access a navigation database, if available. The navigation database contains pre-stored information on navaid locations, waypoints, ATS routes and terminal procedures, and related information RNAV systems range from single-sensor-based systems to systems with multiple types of navigation sensors: Simple navigation can be based upon a single type of navigation sensor such as GNSS: Basic RNAV system RNAV mapping system Advanced navigation can be based upon a variety of navigation sensors such as GNSS; Inertial system (IRS) and VOR/DME, but the management of navigation is only based on GNSS: Simple multi-sensor avionic system Complex multi-sensor systems can use a variety of navigation sensors including GNSS, DME, VOR and IRS to compute the position and velocity of the aircraft: Complex multi-sensor avionic system Area Navigation systems Version 1.1 12 April 2017 Page 3

All permitted sensors GNSS DME/DME VOR/DME IRU LORAN 3. Sensors 3.1. Presentation There are actually 5 types of sensors: Satellite-based: Global Navigation Satellite System (GNSS) Ground-based: VOR / DME Ground-based: DME / DME Ground-based: LORAN (obsolete and not used on IVAO) Self-Contained Systems: Initial Reference Units (INS & IRS) As the aircraft progresses along its flight path, if the RNAV system is using ground navaids, it uses its current estimate of the aircraft's position and its internal database to automatically tune the ground stations in order to obtain the most accurate radio position. When a pilot is flying with RNAV-capable aircraft, he must indicate in his flight plan the aircraft s specification through what is called Performance Based Navigation PBN. This information shall be then available in field 18 Remarks of the flight plan. See below the table indicating all existing PBN designators: Oceanic En-Route Terminal Final RNAV 10 A1 RNP 4 L1 RNAV 5 B1 B2 B3 B4 B5 B6 RNAV 2 C1 C2 C3 C4 RNAV 1 D1 D2 D3 D4 RNAV 1 D1 D2 D3 D4 RNP 1 O1 O2 O3 O4 RNP APCH S1 RNP APCH with APV (Baro VNAV) RNP (AR) APCH with RF RNP (AR) APCH without RF S2 T1 T2 For example, a typical airliner pilot using complex FMC should include in his flight plan: PBN/B1C1D1O1S2 For example, a typical IFR general aviation pilot equipped with a simple GPS should include in his flight plan: PBN/B2D2O2S1 Area Navigation systems Version 1.1 12 April 2017 Page 4

3.2. Global Navigation Satellite System (GNSS) GNSS includes two different kinds of satellites meant for two different purposes: Positioning system: it allows positioning an object everywhere on earth in relation to its coordinates and its altitude. Augmentation system: it allows making sure the positioning system s integrity is reliable, thus there is no gap in positioning signal. Examples of a few GNSS positioning systems: GPS (USA) GLONASS (Russia) Galileo (Europe) Compass (China) IRNSS (India) QZSS (Japan) 3.2.1. Positioning System 4 satellites are necessary to compute a 3-dimension position: Longitude, Latitude, Height and integrating dimension: Time. The position is computed from the distances to the satellites. Aircraft can use up to 6 satellite signals: 4 signals is basic positioning 5 signals will allow detecting a faulty signal: RAIM function 6 signals will allow determining which satellite is faulty: FDE function 3.2.2. Accuracy and Integrity GNSS must meet essential criteria to ensure flight safety: Accuracy: amount of errors between computed and true position Integrity: ability to alert the user when accuracy decreases Continuity: amount of time the system will operate without interruption Availability: amount of time the system is actually able to function Receiver Autonomous Integrity Monitoring (RAIM) enables to achieve integrity when using GNSS. It enables detecting a discrepancy in satellite signal, which leads to a decrease in position accuracy. Since the monitoring is continuous, the pilot can be immediately alerted when inaccuracy hit a critical threshold, generally the required specification. For ABAS-based approach (LNAV and LNAV/VNAV), RAIM must be operative to ensure Required Navigation Performance (RNP). Some systems have RAIM built-in predictions, enabling to know whether RAIM function will be available or not in a specific location at a specific time. Area Navigation systems Version 1.1 12 April 2017 Page 5

The Fault Detection and Exclusion (FDE) function allows the user deselecting a faulty satellite to ensure continuity and availability of GNSS. 3.2.3. Augmentation Systems For approach operation, a positioning system is basic, and computation needs strict accuracy monitoring. That s why all approach operations are RNP specifications and not RNAV specifications. In order to achieve this degree of precision, GNSS signals are correlated with augmentation systems. There are three types of augmentation systems: Satellite-Based Augmentation System (SBAS) Ground-Based Augmentation System (GBAS) Autonomous/Aircraft-Based Augmentation System (ABAS) Each of these systems is meant for a different use, and in particular, different kinds of RNAV approach, which we have already dealt with in this document. As said, augmentation will magnify and enhance satellite signals and position computation to monitor its accuracy and thence the integrity of the system. Examples of a few SBAS augmentation systems used for LPV & LNAV/VNAV approaches: WAAS (USA) EGNOS (Europe) MSAS (Japan) Example of GBAS augmentation system used for GLS approaches: LAAS (USA) Examples of ABAS augmentation systems used for LNAV & LNAV/VNAV approaches: Redundant position cross feeding comparison (GNSS & DME / DME for instance) RAIM / FDE 3.3. VOR / DME Aircraft coordinates are computed from: VOR/DME coordinates aircraft actual radial from the station aircraft actual distance to this DME It requires the coordinates of the selected VOR/DME. VOR/DME Radial Distance Area Navigation systems Version 1.1 12 April 2017 Page 6

3.3.1. DME / DME Aircraft coordinates are computed from: Both DMEs coordinates Aircraft actual distance to these DMEs The closer two stations are to one line, the greater the error becomes, hence, selected DMEs are always angular apart between 30 and 150 degrees. It requires DME coordinates (VOR part of the stations may be inoperative). Distance 2 DME1 Distance 1 3.3.2. Long Range Navigation (LORAN) DME2 LORAN is a radio transmission system developed during World War II. The goal was to enhance long range navigation such as Atlantic crossing for ships and airplanes. Basically, it is a super VOR which can be tracked up to 1,500 miles. LORAN is completely deprecated and obsolete. LORAN is not implemented in our flight simulation software and it is considered as non-applicable for the IVAO network. 3.3.3. INS & IRS Inertial Navigation/Reference Systems are precursors of today s Flight Management Systems. After manual insert of the initial position, and a timed warm-up and computation (up to 20 minutes), the system was self-contained and autonomous to perform various calculations: wind aloft, track to coordinates, present position, ground speed, etc Coupled to a Flight Management Computer, it was able to store up to 9 waypoints defined by coordinates. Remaining in the cockpit of most airliners, it serves as backup in case of GNSS failure. Some add-ons like the Delta Carousel Management Unit can be available in our simulators. Area Navigation systems Version 1.1 12 April 2017 Page 7

4. Database CDUs as well as GNSs are relying on a database called AIRAC cycle to operate. This database is. Each cycle is defined by the year on two digits followed by the number of the cycle in the year. At the time of the writing, cycle 1609 is effective (9 th cycle of 2016). An AIRAC cycle is valid only for 28 days. After 28 days, a new AIRAC cycle is published AIRAC cycle contains pretty much the same elements of a country Aeronautical Information Publication (AIP): Airways Waypoints Airports Runways SID STAR Approaches Navaids All RNAV procedures have coding tables, in order to ensure the coding of the procedure into the database. Example: Jersey EGJJ RNAV (GNSS) RUNWAY 08 via LAPLI IAF Area Navigation systems Version 1.1 12 April 2017 Page 8

5. Procedure coding In relation to RNAV, database study is particularly important as it follows strict conventions. There are two main coding particularities: waypoint naming and leg types. 5.1. Waypoint naming Waypoints are named different ways: VOR/NDB or an airport: named using their identifier (i.e. LND VOR, EGLL airport) Waypoint when they are non-physical waypoint: defined by their coordinates and named using 5 or 6 letters (i.e. MERIT, ROMAM ) RNAV waypoint located in an RNAV approach route: waypoints are named such as the two last letters of the ICAO identifier of the airport plus 3 figures XXnnn (n=figure, X=letter) (i.e. RS604) Constructed waypoint for FMC: named using a defined radial and a distance DnnnX (n=figure, X=letter). The number nnn represents the radial in degrees and the X the order of the letter inside the alphabet is the distance located at n NM. (i.e. D206J = Radial 206 10NM) Example: SLO2A arrival Dakar GOOY 2 waypoints for example: - Radial 045 ; 12NM Coded as D045L - Radial 136 ; 10NM Coded as D136J Depending on the FMC manufacturer, DME arcs are coded by adding a fictious waypoint each 10 or 15 degrees with the same coding (Boeing) or just by a radius-to-fix leg. Example: Around Toulouse LFBO Airport, RNAV waypoints are named BO508, BO509, BO510 Area Navigation systems Version 1.1 12 April 2017 Page 9

For approach procedures, waypoints generally follow these conventions, where xx is the runway identifier: CIxx/CSxx as a waypoint where the final course should be established, generally the IF FDxx/FIxx/FNxx/FSxx as where the final descent should be initiated, generally the FAF/FAP Maxx/MDxx as the missed approach point of a procedure RWxx as the runway threshold (often used for descent altitude-distance check). Any step down fix will have a proper waypoint Example: Left: Tallinn EETN VOR (Overlay) RUNWAY 08 Right: Cape Town FACT VOR Z RUNWAY 01 5.2. Leg types A leg is the segment joining two points. Depending on the intended flightpath, it is defined by a path type and a terminator. It results in 14 different leg types. Path Terminator Constant DME arc A A Altitude Course to C C Distance Direct Track D D DME Distance Course from a fix to F F Fix Holding pattern H I Next leg Initial I M Manual termination Constant radius R R Radial termination Track between T Heading to V Area Navigation systems Version 1.1 12 April 2017 Page 10

Identifier CA CF DF FA FM HA HF HM IF TF RF VA VI VM Leg types Description Course to an Altitude Course to a Fix Direct to a Fix Fix to an Altitude Fix to a Manual Termination Racetrack Course Reversal (Altitude Termination) Racetrack (Single Circuit Fix Termination) Racetrack (Manual Termination) Initial Fix Track to a Fix Constant Radius Arc Heading to an Altitude Heading to an Intercept Heading to a Manual Termination Example: Area Navigation systems Version 1.1 12 April 2017 Page 11

5.3. Conventional Turns Due to the nature of procedures based on conventional means, some coding will lead to discontinuities in particular when using less elaborate systems. Under no circumstances should a pilot rely on FMC/GPS rather than on published charts. If you notice a discontinuity or a difference with published flightpath, aircraft should be manned as to fly the right flightpath. Special attention should be paied when flying procedures including: - Racetracks - Track to intercept a fix radial - Timed base turns - Procedure 45/180 and 80/260 turns Study case: Bastia LFKB NDB RUNWAY 34 Description of the procedure: Given the MSA, the pilot should enter the racetrack at BP. Then he should perform a procedure 45/180 turn before getting back onto the final axis course. As shown on the ND, the Airbus MCDU is not able to transcript the approach and the pilot should make most of it manually. Note that a waypoint is created to materialize the end of the procedure turn. 6. Conclusion RNAV is a brilliant navigation method to optimize traffic flow using the power of GNSS even though it implies tons of new rules, standards and recommendations to implement for every actors of the aviation industry. However the future is already marching on, as the evolution of RNAV is already being developed and enhanced: the Required Navigation Performance (RNP) Area Navigation systems Version 1.1 12 April 2017 Page 12