Agilent 86030A 50 GHz Lightwave Component Analyzer Product Overview

Similar documents
Agilent 8703B Lightwave Component Analyzer Technical Specifications. 50 MHz to GHz modulation bandwidth

Agilent 83440B/C/D High-Speed Lightwave Converters

Agilent 81662A DFB Laser Agilent 81663A DFB Laser Agilent Fabry-Perot Lasers

Agilent N4373B Lightwave Component Analyzer Testing advanced 40Gb/s components with highest relative and absolute accuracy

Advanced Test Equipment Rentals ATEC (2832)

Phase Noise Measurement Personality for the Agilent ESA-E Series Spectrum Analyzers

Agilent 71400C Lightwave Signal Analyzer Product Overview. Calibrated measurements of high-speed modulation, RIN, and laser linewidth

Agilent 81600B All-band Tunable Laser Source Technical Specifications December 2002

Agilent 8902A Measuring Receiver Product Note

Advanced Test Equipment Rentals ATEC (2832)

Agilent 81980/ 81940A, Agilent 81989/ 81949A, Agilent 81944A Compact Tunable Laser Sources

Agilent PSA Series Spectrum Analyzers Self-Guided Demonstration for Phase Noise Measurements

PCI Express Receiver Design Validation Test with the Agilent 81134A Pulse Pattern Generator/ 81250A ParBERT. Product Note

Agilent 83430A Lightwave Digital Source Product Overview

Agilent PSA Series Spectrum Analyzers Noise Figure Measurements Personality

Agilent E9300 Power Sensors E-Series Technical Overview

Agilent EPM Series Power Meters

Agilent 8703A Lightwave Component Analyzer Technical Specifications

Agilent 8902A Measuring Receiver

E/O and O/E Measurements with the 37300C Series VNA

Agilent PNA Series RF Network Analyzers

Agilent E8267C/E8257C/E8247C PSG

Advanced Test Equipment Rentals ATEC (2832)

Agilent AN Balanced Circuit Measurement with an Impedance Analyzer/LCR Meter/Network Analyzer Application Note

Agilent 87415A, 87400A Microwave Amplifiers

Obtaining Flat Test Port Power with the Agilent 8360 s User Flatness Correction Feature. Product Note

Agilent PNA Microwave Network Analyzers

Agilent 8703A Lightwave Component Analyzer Technical Specifications

Agilent 86146B Optical Spectrum Analyzer Technical Specifications

Agilent PSA Series Spectrum Analyzers Noise Figure Measurements Personality

Agilent E4438C ESG Vector Signal Generator Differential I/Q outputs. Product Note

Agilent PNA Microwave Network Analyzers

Agilent E8247/E8257C PSG CW and Analog Signal Generators

Agilent 83711B and 83712B Synthesized CW Generators

Agilent 8491A/B, 8493A/B/C, 11581A, 11582A and 11583C Coaxial Attenuators dc to 26.5 GHz

Agilent E8267C PSG Vector Signal Generator

Agilent Combining Network and Spectrum Analysis and IBASIC to Improve Device Characterization and Test Time

Agilent N1911A/N1912A P-Series Power Meters and N1921A/N1922A Wideband Power Sensors. Data sheet

Agilent 8614xB Optical Spectrum Analyzer Family Technical Specifications

Agilent dc Electronic Loads Models N3300A-N3307A

Agilent 8761A/B Microwave Switches

Agilent 8644A-1 Phase noise test with the Agilent 8644A and 8665A Signal Generators Product Note

Characterizing High-Speed Oscilloscope Distortion A comparison of Agilent and Tektronix high-speed, real-time oscilloscopes

Keysight N4373E 43.5/50/67 GHz Single-Mode Fiber Lightwave Component Analyzer for 100G/400G/1T Electro-Optical Test

Advanced Test Equipment Rentals ATEC (2832)

Agilent N4375B 20 GHz and 26.5 GHz Single-Mode Lightwave Component Analyzer Data Sheet

Agilent E8460A 256-Channel Reed Relay Multiplexer

Time-Domain Response of Agilent InfiniiMax Probes and Series Infiniium Oscilloscopes

Product Note E5100A-2

Agilent N5250A PNA Millimeter-Wave Network Analyzer 10 MHz to 110 GHz

Agilent 8614xB Optical Spectrum Analyzer Family Technical Specifications

Agilent U2000 Series USB Power Sensors. Data Sheet

Optical Dispersion Analyzer

expanding the possibilities

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

Advanced Test Equipment Rentals ATEC (2832) Agilent 8510 System Solutions

Agilent Introduction to the Fixture Simulator Function of the ENA Series RF Network Analyzers: Network De-embedding/Embedding and Balanced Measurement

Agilent Upgrade Guide for the 8510 Vector Network Analyzer Product Note

Agilent 8360B Series Synthesized Swept Signal Generators 8360L Series Synthesized Swept CW Generators Data Sheet

Agilent 8360B Series Synthesized Swept Signal Generators 8360L Series Synthesized Swept CW Generators

Optoelectronic Components Testing with a VNA(Vector Network Analyzer) VNA Roadshow Budapest 17/05/2016

Agilent 8752C RF Vector Network Analyzer

Agilent 4-Port PNA-L Network Analyzers

Agilent Highly Accurate Amplifier ACLR and ACPR Testing with the Agilent N5182A MXG Vector Signal Generator. Application Note

Agilent N4376B 20 GHz and 26.5 GHz Multimode Lightwave Component Analyzer. Data Sheet

System Cabling Errors and DC Voltage Measurement Errors in Digital Multimeters

How to Drive the Agilent Technologies Microwave Matrix and Transfer Switch via the E8483A Microwave Switch/Step Attenuator Driver.

Agilent Technologies 8114A 100 V/2 A Programmable Pulse Generator

Agilent Equalization Techniques and OFDM Troubleshooting for Wireless LANs

Agilent 8766/7/8/9K Microwave Single-Pole Multi-Throw Switches

Base Station Installation and Maintenance

Agilent PN 4395/96-1 How to Measure Noise Accurately Using the Agilent Combination Analyzers

Agilent 8920A RF Communications Test Set Product Overview

Agilent 2-Port and 4-Port PNA-X Network Analyzer

Measuring Photonic, Optoelectronic and Electro optic S parameters using an advanced photonic module

Advanced Test Equipment Rentals ATEC (2832)

6 Tips for Successful Logic Analyzer Probing

Agilent PSA Series Spectrum Analyzers Self-Guided Demonstration for GSM and EDGE Measurements

Agilent AN Applying Error Correction to Network Analyzer Measurements

Agilent 4285A Precision LCR Meter

Agilent NFA Noise Figure Analyzer

Agilent 970-Series Handheld Multimeters Data Sheet

Agilent E6651A Mobile WiMAX Test Set

Wavelength Calibration for the 8614X Series Optical Spectrum Analyzers. Product Note

Agilent N8973A, N8974A, N8975A NFA Series Noise Figure Analyzers. Data Sheet

Improving TDR/TDT Measurements Using Normalization Application Note

ME7220A. Radar Test System (RTS) Target Simulation & Signal Analysis for Automotive Radar Exceptional Performance at an Affordable Price.

Agilent PN Testing amplifiers and active devices with the Agilent 8510C Network Analyzer. Product Note

Agilent EPM-P Series Single- and Dual-Channel Power Meters Agilent E9320 Family of Peak and Average Power Sensors

Agilent 87075C Multiport Test Set

Agilent 8560 EC Series Spectrum Analyzers Data Sheet

HP 8509B Lightwave Polarization Analyzer. Product Overview. Optical polarization measurements of signal and components nm to 1600 nm

Agilent N4000A, N4001A, N4002A SNS Series Noise Sources 10 MHz to 26.5 GHz

Agilent N8480 Series Thermocouple Power Sensors. Technical Overview

Picking the Optimal Oscilloscope for Serial Data Signal Integrity Validation and Debug

Agilent 4-Port PNA-L Microwave Network Analyzer

8 Hints for Better Spectrum Analysis. Application Note

Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples. Application Note

Using an MSO to Debug a PIC18-Based Mixed-Signal Design

E/O & O/E measurements using the Anritsu 37300C series VNA

Transcription:

Agilent 86030A 50 GHz Lightwave Component Analyzer Product Overview

2 Characterize 40 Gb/s optical components Modern lightwave transmission systems require accurate and repeatable characterization of their optoelectronic, optical, and electrical components to guarantee high-speed performance. The Agilent 86030A 50 GHz lightwave component analyzer improves the design and specification of these lightwave components by accurately characterizing their bandwidth and reflection characteristics. For manufacturers building 40 Gb/s electro-optical, optical, and electrical components used in high-speed OC- 768 lightwave systems, the 86030A is necessary to completely characterize these components at modulation frequencies up to 50 GHz. Components such as photodiode receivers, lightwave modulators, and other optical and electrical components used in 40 Gb/s lightwave systems can be characterized in either an R&D or manufacturing environment with the 86030A. This system provides you with confidence in the devices you design and manufacture for highspeed lightwave systems. Electro-optical components Often the limiting elements in a fiber-optic transmission system are the electro-optical components (e.g. photodiodes, and modulators) which convert the electrical information to optical or vice versa. With the 86030A, calibrated measurements of modulation band-width, responsivity, and modulation range of an individual transducer are possible. Optical components Optical components such as fiber, connectors, splitters, couplers, and lenses make up much of a fiberoptic network. The 86030A measures the modulation bandwidth, insertion loss, group delay, and optical return loss of these components. systems, and require characterization to ensure optimal performance. Typical measurements are bandwidth, insertion loss or gain, impedance match, and group delay. Calibrated measurements One of the key benefits of the 50 GHz lightwave component analyzer is its ability to perform calibrated measurements on optical components. The system contains an O/E receiver that has been factory calibrated in magnitude, and characterized in phase. The ability to make calibrated measurements assures accuracy, reliability, and confidence in the components being measured. Additionally, the laser source, optical modulator, and calibrated O/E receiver are temperature stabilized which also improves the accuracy and repeatability of the measurements. Unique features Several unique features are utilized in the system to provide accurate measurements. A response and match calibration is available to remove the mismatch uncertainty associated with highly reflective O/E converters. Factory amplitude calibration of the system uses a NIST traceable laser heterodyne technique; a time consuming procedure which provides the most accurate calibration. Factory phase characterization of the system uses a new optical impulse response technique to characterize the phase response of the internal O/E receiver. Additionally the laser source, optical modulator, and calibrated O/E receiver are temperature stabilized to improve the accuracy and repeatability of the measurements. Verification device A verification device is included with the system. It consists of an Agilent 83440D photo detector and it s associated amplitude and phase data. This verification device can be used at any time to verify the measurement integrity of your system. A guided verification routine is provided which measures the verification device, and displays a graph of its response versus acceptable tolerances (see Figure 1). The verification device can be used periodically to monitor system calibration, and indicate when the optical test set needs to be recalibrated. It can also be used to resolve uncertainty if unexpected results are obtained from a test device. This verification capability provides confidence in the measurement integrity of the system. Electrical components Linear electrical components such as amplifiers, filters, and transmission lines are used in fiber-optic Figure 1. Typical verification device measured data, with tolerance limit lines.

3 86030A lightwave component analyzer. Remote programming for the 86030A is over a private LAN interface using standard Microsoft( Distributed Component Object Module (DCOM) interfaces and commands, which allow accessing the lightwave component analyzer application from a remote PC. S12 log MAG REF 13.0 db A/W 1.0 db/ 10 OPTICAL ELECTRICAL BANDWIDTH MEAS. C H START 0.045000000 GHz 03 02 2000 09:35:08 STOP 50.000000000 GHz 18 JUN 00 04:38:21 Figure 2. Typical guided measurement software screen for guided setup, calibration, and measurement. Guided measurement software Guided measurement software that is part of the system, provides an easy-to-use operator interface (see Figure 2). It provides pictorial diagrams of inter-connections for configuration, calibration, and measurements. On-screen prompts also guide the operator through the entire measurement process, from the calibration to the measurement. Display, analysis, and archiving of data Display, analysis, and archiving of data is easy and straightforward with the system. The measured data is displayed on the screen of the 8510C network analyzer (see Figure 3). Full use of the analyzer s functions such as markers, data formats, and data scaling features are available to the operator simply by pushing the appropriate keys on the network analyzer. Data can be archived to disk in either ASCII text or Microsoft Excel formats. The included Excel software allows data to be displayed and analyzed using standard Excel features and formats (see Figure 4). facturing test computer control the automated testing of your devices under test. This client computer may control many aspects of the testing operation in addition to controlling the 86030A lightwave component analyzer. The 86030A version B.01.08 system software contains a remote operation server and an application program interface that allows you to operate the 86030A remotely. This allows manufacturing test programmers to develop automated test programs, which can control the Responsivity (db Below 1 Amp/Watt) 6 8 10 12 14 16 18 Figure 3. Typical data displayed on Agilent 8510C network analyzer. Accuracy and confidence in characterizing components Modern lightwave transmission systems require accurate and repeatable characterizations of their electro-optical, optical, and electrical components to guarantee highspeed performance. The ability to make calibrated measurements with the 86030A ensures the accuracy of the measurements, while providing you with confidence in your device design, and device specifications. Microsoft is a U.S. registered trademark of Microsoft Corporation. Remote programmability for manufacturing test applications For manufacturing test applications, it is often desirable to have a manu- 20 Figure 4. Typical measured data of an O/E converter displayed in Microsoft Excel format.

4 System block diagram From 83651B To 8517B To 83651B External ALC Input Power Splitter PMF Temperature Stabilization A B A B Temperature Stabilization Laser 50 GHz Modulator Bias Tee/ 50 Ohm Term Directional Coupler Optical Output Power Temperature Stabilization Directional Coupler 3 db Pad Reference Optical Receiver Class IIIb CW Laser Output PMF Jumper Class IIIb Modulator Output Input Coupled Test Port Optical Receiver Input Optical Receiver RF Output RF Output Modulator Input Figure 5. Simplified block diagram of lightwave test set. Typical Measurement Repeatability For a measurement system to be useful when characterizing a device, it must provide repeatable measurements. The relative frequency response error limit specifications are quite large because the specifications must contain all the potential measurement uncertainties, plus an adequate guard band. Typical measurement repeatability values are much smaller. Figure 6 illustrates the short-term repeat-ability of the system. The same O/E device was measured two times with two user calibrations and two device connections. As can be seen from the plot, there is very little difference between the two measurements. Figure 7 shows the difference; there is about a 0.1 db offset due to connector repeatability, and a ±0.05 db difference to 40 GHz, and a ±0.2 db difference from 40 to 50 GHz.

5 Responsivity (db Below 1 Amp/Watt) 6 8 10 12 14 16 Typical sweep-to-sweep repeatability is illustrated in Figure 9. It shows the standard deviation between ten different swept traces. Standard Deviation (dbe) 0.025 0.02 0.015 0.01 0.005 18 20 0 Figure 9. Typical sweep-to-sweep repeatability. Measurement #1 Measurement #2 Figure 6. Typical short-term measurement repeatability; the two traces overlay almost exactly. db Difference 0.1 0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 Typical system-to-system repeatability is illustrated in Figure 10. It shows the difference between two measurements of the same device measured on two different systems. Difference Between Systems (dbe) 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 0.35 Figure 7. Typical short-term repeatability difference. Typical long-term repeatability is illustrated in Figure 8. It shows the difference observed between two measurements taken 15 hours apart on an O/E device. No disconnection or recalibration was performed. It illustrates the typical errors that can be expected due to system drift. 1 Figure 10. Typical difference between two systems. Figure 11 illustrates the difference between an O/E device measured with an 86030A system, and a metrology calibration of the device using a NIST traceable heterodyne technique. 2 0.3 1.5 0.2 1 db Difference 0.1 0 db Difference 0.5 0 0.5 0.1 1 0.2 1.5 0.3 Figure 8. Typical long-term repeatability. 2 Figure 11. Typical difference between metrology heterodyne measurement of an O/E device and the 86030A.

Specifications 6 System Specifications General Specifications Parameter Specification Specified temperature range 20 C to 30 C Operating temperature range 1 5 C to 40 C Storage temperature range 40 C to +75 C Power dissipation 1940 VA max. Size 1.6 x 0.6 x 0.9 meters General Optical/Electrical Specifications Parameter Modulation frequency range 2 Optical source center wavelength Optical output return loss 3 Optical input return loss 3 Average optical output power (modulator set to minimum insertion loss) 4 > 3 dbm Average optical output power (modulator set at quadrature) 5 > 0 dbm Average optical output power (laser output port) 6 > 8 dbm RF modulation power (for E/O mode) 7 0.045 30 GHz > 5 dbm 30 50 GHz > 2.5 dbm Maximum operating optical input power (to optical receiver input) 8 Maximum optical input power to optical receiver (without damage) Optical to Electrical Measurement Mode Specifications Specification 0.045 to 50 GHz 1550 to 1560 nm > 30 db > 25 db Do not exceed 4 mw (6 dbm) Do not exceed 15 mw (11.8 dbm) Relative frequency response concerns itself with the amount of error that accumulates when you compare the response of two or more frequency points. This would often be used in calculating the 3 db roll-off point of an optical detector. The largest contribution to this error term is dependent on the reflectivity of the electrical port of the O/E device. Thus, relative frequency response is specified as a function of electrical port reflectivity. The electrical reflectivity of any O/E device can be measured using the E/E mode on the 86030A. 1 A user calibration is valid over a ±3.0 C deviation from the initial user calibration temperature range. 2 Modulation frequency range is 0.045 to 50 GHz. System performance is not specified at modulation frequencies from 45 to 100 MHz. System specifications are for modulation frequencies from 0.100 to 50 GHz. 3 With factory new straight connectors. Improper connector care will degrade this specification. 4 With the modulator set to minimum insertion loss value. This specification is the default value set by the system software. Other power levels are settable from the system software. 5 With the modulator set at quadrature bias condition, which is the average of the minimum and maximum transmission state of the modulator. This specification indicates the default value set by the system software. 6 Other power levels are settable from the system software. 7 Power measured at the RF output port of the 86032A optical test set. System default power setting is 0 dbm. Other power levels are settable from the system software. O/E Relative Frequency Response Uncertainty 9 DUT reflection coefficient 10 0.25 0.5 1.0 Specification Specification Specification Freq. (dbe) (dbe) (dbe) range With/without With/without With/without attenuator attenuator attenuator 0.1 to 2 ±0.7/0.8 ±0.7/0.9 ±0.8/1.2 2 to 20 ±0.7/1.0 ±0.8/1.4 ±1.0/2.0 20 to 40 ±0.9/1.3 ±1.0/1.7 ±1.2/2.4 40 to 50 ±1.2/1.8 ±1.3/2.3 ±1.6/3.2 For devices with highly reflective electrical ports, such as unterminated photodetectors, the resultant mismatch uncertainty contributes to high measurement uncertainty. Using an attenuator on the electrical port of the 8517B will reduce mismatch uncertainty, and thus reduce the total measurement uncertainty. The above specifications are shown with a 6 db attenuator (supplied) on the electrical port of the 8517B, as well as without an attenuator. The system has the ability to characterize the mismatch of the device under test, to reduce total measurement uncertainty. A response and match user calibration is used to reduce measurement uncertainty due to device mismatch. With this calibration, relative frequency response uncertainty is reduced, as shown in the following table. O/E Relative Frequency Response Uncertainty 11 With response and match user calibration Specification (dbe) Frequency range With response and match user calibration 0.1 to 2 ±0.7 2 to 20 ±0.7 20 to 40 ±0.9 40 to 50 ±1.2 8 Power in excess of this value will cause measurement inaccuracies. 9 This is the relative frequency response uncertainty (dbe). Specifications are shown with a 6 db attenuator on the electrical port of the 8517B test set, as well as without an attenuator. Specification conditions: Response and isolation calibration, step mode of operation, 512 averages, factory default laser power setting, factory default optical modulation depth setting, and a signal-to-noise ratio greater than 20 dbe. 10 Device under test electrical port reflection coefficient. Specifications are shown for three different reflection coefficients. 11 Total relative frequency response uncertainty (dbe) which contains all of the uncertainty components. Specification conditions: Response and match calibration, step mode of operations, 512 averages, factory default laser power setting, factory default optical modulation depth setting, and a signal-to-noise ratio greater than 20 dbe.

7 Absolute Noise Floor (O/E mode) Frequency Range Specification 12 (dbe) 0.1 to 0.2 50 0.2 to 0.3 60 0.3 to 0.5 62 0.5 to 10 70 10 to 20 62 20 to 30 56 30 to 40 47 40 to 50 42 Absolute Responsivity Uncertainty Absolute responsivity uncertainty will be larger than the relative responsivity error, due to additional uncertainty contributed by the calibration transfer process, and the optical and electrical connector repeatability error. O/E Absolute Frequency Response Uncertainty 13 (A characteristic, not a specification) DUT reflection coefficient 14 0.25 0.5 1.0 Frequency range With/without With/without With/without With response & attenuator attenuator attenuator match user calibration (dbe) (dbe) (dbe) (dbe) 15 0.1 to 2 ±1.2/1.3 ±1.2/1.4 ±1.3/1.7 ±1.2 2 to 20 ±1.2/1.5 ±1.3/1.9 ±1.5/2.5 ±1.2 20 to 40 ±1.4/1.8 ±1.5/2.2 ±1.7/2.9 ±1.4 40 to 50 ±1.7/2.3 ±1.8/2.8 ±2.1/3.7 ±1.7 12 Absolute noise floor in O/E mode of operation. Units are db electrical relative to 1 amp/watt. Specification conditions: Response and isolation calibration, step mode of operation, 512 averages, factory default laser power setting, factory default optical modulation depth setting, a signal-to-noise ratio greater than 20 dbe. This noise floor specification pertains to O/E converters with responsivity less than 1 amp/watt. O/E converters with large gain will cause the noise floor to rise. 13 Specifications are shown with a 6 db attenuator on the electrical port of the 8517B test set, as well as without an attenuator. Specification conditions: Response and isolation calibration, step mode of operation, 1024 averages, factory default laser power setting, factory default optical modulation depth setting, and a signal-to-noise ratio greater than 20 dbe. 14 Device under test electrical port reflection coefficient. Specifications are shown for three different reflection coefficients. 15 Total relative frequency response uncertainty (dbe) which contains all the uncertainty components. Specification conditions: Response and match calibration, step mode of operation, 512 averages, factory default laser power setting, factory default optical modulation depth setting, and a signal-tonoise ratio greater than 20 dbe.

8 Electrical to Optical Measurement Mode Specifications Relative frequency response concerns itself with the amount of error that accumulates when you compare the response of two or more frequency points. This would often be used in calculating the 3 db roll-off point of a modulator. The largest contribution to this error term is dependent on the reflectivity of the electrical port of the E/O device. Thus, relative frequency response is specified as a function of electrical port reflectivity. The electrical reflectivity of any E/O device can be measured using the E/E mode on the 86030A. E/O Relative Frequency Response Uncertainty 16 DUT reflection coefficient 17 0.25 0.5 1.0 Frequency Specification Specification Specification range (dbe) (dbe) (dbe) 0.1 to 2 ±0.6 ±0.8 ±1.3 2 to 20 ±0.9 ±1.3 ±2.1 20 to 40 ±1.0 ±1.5 ±2.5 40 to 50 ±1.4 ±2.1 ±3.4 Absolute Noise Floor (E/O mode) Frequency Range Specification 18 (dbe) 0.1 to 0.2 55 0.2 to 0.3 57 0.3 to 0.5 60 0.5 to 10 61 10 to 20 58 20 to 30 55 30 to 40 53 40 to 50 50 16 Total relative frequency response uncertainty (dbe) which contains all the uncertainty components. Specification conditions: Response and isolation calibration, 512 averages, factory default laser power setting, factory default optical modulation depth setting, and a signal-to-noise ratio greater than 20 dbe. 17 Device under test electrical port reflection coefficient. Specifications are shown for three different reflection coefficients. 18 Absolute noise floor in E/O mode of operation. Units are db electrical relative to 1 watt/amp. Specification conditions: Response and isolation calibration, 512 averages, factory default laser power setting, factory default optical modulation depth setting, and a signalto-noise ratio greater than 20 dbe. 19 Device under test electrical port reflection coefficient. Specifications are shown for three different reflection coefficients. 20 Optical noise floor is specified as db below the 0 dbo loss reference. Specification conditions: Response and isolation calibration, 512 averages, factory default laser power settings, factory default modulation power setting, and a signal-to-noise ratio greater than 20 dbe. Absolute Responsivity Uncertainty (E/O mode) Absolute responsivity uncertainty will be larger than the relative responsivity error, due to additional uncertainty contributions by the calibration transfer process, and the optical and electrical connector repeatability error. Absolute Responsivity Uncertainty (A characteristic, not a specification) DUT reflection coefficient 19 0.25 0.5 1.0 Frequency range (dbe) (dbe) (dbe) 0.1 to 2 ±1.1 ±1.3 ±1.8 2 to 20 ±1.4 ±1.8 ±2.6 20 to 40 ±1.5 ±2.0 ±3.0 40 to 50 ±1.9 ±2.6 ±3.9 Optical to Optical Measurement Mode Specifications Optical Noise Floor Frequency Range Specification 20 (dbo) 0.1 to 0.2 24 0.2 to 0.3 27 0.3 to 0.5 30 0.5 to 10 33 10 to 20 30 20 to 30 27 30 to 40 22 40 to 50 18 Electrical to Electrical Measurement Mode Specifications When configured as a lightwave component analyzer, the specifications for the E/E mode of operation is similar to the 85107B 50 GHz vector network analyzer, with the following exceptions. The user does not have control of the RF power applied to the 8517B test set, and the accuracy of the first points in a trace which are in the 45 MHz to 500 MHz range is significantly degraded. The full performance specifications of the 85107B, which are shown in this document, are obtained by reconnecting the 50 GHz 83651B source directly to the 8517B test set. These specifications are for a system calibrated with an 85056A 2.4 mm calibration kit using full two-port error correction (with sliding load) user calibration.

9 Dynamic Range (for transmission measurements) Frequency Range 0.045 0.84 0.84 20 20 40 40 50 Maximum power +17 dbm +8 dbm +3 dbm 4 dbm measured at port 2 Reference power +2 dbm 7 dbm 17 dbm 29 dbm at port 1 (nominal) Minimum power 75 dbm 97 dbm 91 dbm 90 dbm measured at port 2 Receiver dynamic 92 db 105 db 94 db 86 db range System dynamic 77 db 90 db 74 db 61 db range Measurement Port Characteristics 21 Frequency range Residual 0.045 2 2 20 20 40 40 50 Directivity 42 db 42 db 38 db 36 db Source match 41 db 38 db 33 db 31 db Load match 42 db 42 db 38 db 36 db Reflection tracking ±0.001 db ±0.008 db ±0.02 db ±0.027 db Transmission tracking ±0.014 db ±0.043 db ±0.110 db ±0.137 db Crosstalk 99 db 110 db 93 db 81 db Measurement uncertainty Reflection measurements Receiver noise floor Magnitude Phase Transmission measurements Magnitude Phase 21 After a user calibration with full 2-port error correction.

10 Maximum Input Power to the 8517B Test Ports The following maximum power levels into the 8517B test set ports should not be exceeded in order to avoid an IF overload condition in the receiver, which can cause a non-linear receiver error. Frequency range Max power into 8517B test set (dbm) 0.045 to 2 +18 2 to 20 +8 20 to 40 +4 40 to 50 3 Typical Optical Modulation Power This table shows the typical optical modulation power available from the output of the laser modulator with factory default settings. Frequency range Typical optical modulation power (dbm) 0.045 to 0.84 0 0.84 to 20 3 20 to 40 5 40 to 50 10 Optical Test Set Typical Characteristics The system has the ability to monitor input and output power levels. Laser power setting accuracy: ±0.5 db over the 0 to 10 dbm range. Output power monitor accuracy: ±0.5 db over the 10 to 5 dbm range. Input power monitor accuracy: ±0.5 db over the 10 to 5 dbm range. Configuration Options 86030A-120: 110-130 volt a.c. power operation 86030A-230: 220-240 volt a.c. power operation 86030A-011: Diamond HMS-10 optical connector interface 86030A-012: FC/PC optical connector interface 86030A-013: DIN 47256 optical connector interface 86030A-014: ST optical connector interface 86030A-017: SC optical connector interface Ordering Information For more information, or to order a system, contact your local sales engineer. www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent Technologies Test and Measurement Support, Services, and Assistance Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent s overall support policy: Our Promise and Your Advantage. Our Promise Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available. Your Advantage Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products. By internet, phone, or fax, get assistance with all your test & measurement needs. Online assistance: www.agilent.com/comms/lightwave Phone or Fax United States: (tel) 1 800 452 4844 Canada: (tel) 1 877 894 4414 (fax) (905) 282 6495 China: (tel) 800-810-0189 (fax) 1-0800-650-0121 Europe: (tel) (31 20) 547 2323 (fax) (31 20) 547 2390 Japan: (tel) (81) 426 56 7832 (fax) (81) 426 56 7840 Korea: (tel) (82-2) 2004-5004 (fax)(82-2) 2004-5115 Latin America: (tel) (305) 269 7500 (fax) (305) 269 7599 Taiwan: (tel) 080-004-7866 (fax) (886-2) 2545-6723 Other Asia Pacific Countries: (tel) (65) 375-8100 (fax) (65) 836-0252 Email: tm_asia@agilent.com Product specifications and descriptions in this document subject to change without notice. 2000, 2002 Agilent Technologies, Inc. Printed in USA September 27, 2002 5968-9734E