Simultaneous Four-Wave Mixing and Cross-Gain Modulation for Implementing All Optical Full Adder without Assist Light

Similar documents
Simulation of All-Optical XOR, AND, OR gate in Single Format by Using Semiconductor Optical Amplifiers

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection

Analysis of Techniques for Wavelength Conversion in Semiconductor Optical Amplifier

THE USE OF SOA-BASED MACH-ZEHNDER INTERFEROMETER IN DESIGNING/IMPLEMENTING ALL OPTICAL INTEGRATED FULL ADDER-SUBTRACTOR AND DEMULTIPLEXER

Optical Transport Tutorial

All Optical Universal logic Gates Design and Simulation using SOA

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY

Bit error rate and cross talk performance in optical cross connect with wavelength converter

Simulation and Performance Analysis of Optical Wavelength Converters based on Cross Gain Modulation (XGM) in SOA

An approach for Realization of all optical NAND gate using Nonlinear Effect in SOA

Implementation of All-Optical Logic AND Gate using XGM based on Semiconductor Optical Amplifiers

Design of Ultra High Capacity DWDM System with Different Modulation Formats

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF

International Journal of Advanced Research in Computer Science and Software Engineering

All-optical logic gates using a semiconductor optical amplifier assisted by an optical filter

PERFORMANCE ANALYSIS OF WDM PONS BASED ON FP-LD USING RZ-OOK AND NRZ-OOK

Design of an Optical Submarine Network With Longer Range And Higher Bandwidth

OCIS codes: ( ) Optical logic; ( ) lasers, injection-locked.

Performance Analysis of Optical Time Division Multiplexing Using RZ Pulse Generator

Performance of Optical Encoder and Optical Multiplexer Using Mach-Zehnder Switching

EDFA Applications in Test & Measurement

Analysis of Nonlinearities in Fiber while supporting 5G

ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS

ISSN (ONLINE): , ISSN (PRINT):

Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels

1.6 Tbps High Speed Long Reach DWDM System by incorporating Modified Duobinary Modulation Scheme

All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking

Performance Evaluation of Different Hybrid Optical Amplifiers for 64 10, and Gbps DWDM transmission system

Effect of Signal Direct Detection on Sub-Carrier Multiplexed Radio over Fiber System

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 26

Implementation and analysis of 2 Tbps MDRZ DWDM system at ultra narrow channel spacing

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm

40Gb/s Optical Transmission System Testbed

Simulative Analysis of 40 Gbps DWDM System Using Combination of Hybrid Modulators and Optical Filters for Suppression of Four-Wave Mixing

Design and Implementation of All-optical Demultiplexer using Four-Wave Mixing (FWM) in a Highly Nonlinear Fiber (HNLF)

Module 19 : WDM Components

Multi-format all-optical-3r-regeneration technology

Performance Analysis of OFDM FSO System using ODSB, OSSB and OVSB modulation scheme by employing Spatial Diversity

Advanced Optical Communications Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

Spectral Response of FWM in EDFA for Long-haul Optical Communication

A review on optical time division multiplexing (OTDM)

International Journal of Engineering and Techniques - Volume 3 Issue 4, July-Aug 2017

CHAPTER 4 RESULTS. 4.1 Introduction

Multi-format receiver for non-return-to-zero binary-phase-shift-keyed and non-return-to-zero amplitude-shit-keyed signals

SIMULATIVE INVESTIGATION OF SINGLE-TONE ROF SYSTEM USING VARIOUS DUOBINARY MODULATION FORMATS

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Prabhjeet Singh a, Narwant Singh b, Amandeep Singh c

Design and Performance Analysis of Optical Transmission System

Application Instruction 001. The Enhanced Functionalities of Semiconductor Optical Amplifiers and their Role in Advanced Optical Networking

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates

Optical Fiber Technology

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks

International Journal of Engineering Research & Technology (IJERT) ISSN: Vol. 2 Issue 9, September

A New Logic Gate for High Speed Optical Signal Processing Using Mach- Zehnder Interferometer (MZI)

INVESTIGATION OF ALL-OPTICAL INVERTER SYSTEM WITH NRZ AND RZ MODULATION FORMATS AT 100 Gbit/s

OPTICAL NETWORKS. Building Blocks. A. Gençata İTÜ, Dept. Computer Engineering 2005

Performance Analysis of Designing a Hybrid Optical Amplifier (HOA) for 32 DWDM Channels in L-band by using EDFA and Raman Amplifier

The non-linear behaviour of laser diodes integrated with semiconductor optical amplifiers.

Performance Investigation of RAMAN-EDFA HOA for DWDM System (Received 17 September, 2016 Accepted 02 October, 2016)

Improved Analysis of Hybrid Optical Amplifier in CWDM System

Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks.

All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Mahendra Kumar1 Navneet Agrawal2

PERFORMANCE ANALYSIS OF 4 CHANNEL WDM_EDFA SYSTEM WITH GAIN EQUALISATION

80 GBPS DOWNSTREAM TRANSMISSION USING DQPSK AND 40 GBPS UPSTREAM TRANSMISSION USING IRZ/OOK MODULATION IN BIDIRECTIONAL WDM-PON

Performance analysis of semiconductor optical amplifier using four wave mixing based wavelength Converter for all Optical networks.

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System

! Couplers. ! Isolators/Circulators. ! Multiplexers/Filters. ! Optical Amplifiers. ! Transmitters (lasers,leds) ! Detectors (receivers) !

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING. FINAL EXAMINATION, April 2017 DURATION: 2.5 hours

Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA

EDFA WDM Optical Network using GFF

π code 0 Changchun,130000,China Key Laboratory of National Defense.Changchun,130000,China Keywords:DPSK; CSRZ; atmospheric channel

from ocean to cloud EFFICIENCY OF ROPA AMPLIFICATION FOR DIFFERENT MODULATION FORMATS IN UNREPEATERED SUBMARINE SYSTEMS

Performance Analysis of Dwdm System With Different Modulation Techique And Photodiode

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA

SOA-BASED NOISE SUPPRESSION IN SPECTRUM-SLICED PONs: IMPACT OF BIT-RATE AND SOA GAIN RECOVERY TIME

Performance Analysis of Multi-format WDM-RoF Links Based on Low Cost Laser and SOA

Performance Analysis of WDM RoF-EPON Link with and without DCF and FBG

EDFA-WDM Optical Network Analysis

Photoneco white papers: Single-modulator RZ-DQPSK transmitter Description of the prior art

10Gbps Optical Line Using Electronic Equalizer and its Cost Effectiveness

Teknologi Malaysia (UTM), 81310, Johor Bahru, Malaysia

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM

All-optical clock division at 40 GHz using a semiconductor amplifier. nonlinear interferometer

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Minimization of amplified spontaneous emission noise in upstream SuperPON 512 ONU, 10 Gbit/s.

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

Compensation of Dispersion in 10 Gbps WDM System by Using Fiber Bragg Grating

Comparative analysis of Spectral Phase Encoding/Decoding based OCDMA Communication System for two Optical Modulation Formats

The Reduction of FWM effects using Duobinary Modulation in a Two-Channel D-WDM System

Transcription:

Simultaneous Four-Wave Mixing and Cross-Gain Modulation for Implementing All Optical Full Adder without Assist Light Jaspreet Kaur 1, Naveen Dhillon 2, Rupinder Kaur 3 1 Lecturer, ECE, LPU, Punjab, India 2 HOD, ECE, RIET, Punjab, India 3 Assistant Professor, ECE, RIET, Punjab, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract The ever increasing speed of processing enhances speed and capacity of the optical telecommunication systems reaches the limit of networks by avoiding expensive and time consuming electronic device and the demand for logic operations Optical to Electrical conversions and vice-versa. To such as switching, decision-making, regenerating and overcome the speed limitations posed by these electrical basic or complex computing is rapidly increasing. signal processing, all optical networks have been Nowadays due to various advantages of optical anticipated as future of ultra high speed switching [1].The networks like high speed, less complexity and compact successful implementation of all optical networks will size All-optical devices are preferred as compared to largely depend on use of optical logic gates, which will legacy networks. Optical gates are building blocks of remove the conventional need of intermediate electrical these all-optical devices. Using non linearity of optical signal processing. The optical logic gates are based on the amplifiers it is possible to implement the optical logic principle of optical non-linearity which may be achieved gates. by either using non linear fibre or wavelength conversions The implementation of all optical half adder is based on SOA[2][7]. As compared to fibre based non proposed in optical domain using SOA non linearity. linearity, the use of SOA is highly appreciated because of Simultaneous four wave mixing and cross gain many advantages linked with SOA, which include higher modulation in a Semiconductor optical amplifier are gain, wide bandwidth, and higher fidelity. used to demonstrate all-optical full addition module of two NRZ on-off keying data streams using four 2. ALL-OPTICAL NETWORKS VS LEGACY semiconductor optical amplifiers and without the use of NETWORKS any assist light. In the experimental demonstration, we implement the logical functions with an extinction ratio larger than 15 db and achieve error-free signal processing at the repetition rate of 60 Gbit/s. The output of AND gate is realized using FWM effect whereas NOR output is realized using XGM effect. The two outputs are combined using a coupler to obtain the final Full adder output at 60 Gbit/s. Key Words: Semiconductor optical amplifiers (SOA), Cross Gain Modulation (XGM), Four Wave Mixing (FWM), OEO (Optical to Electrical conversion). 1. INTRODUCTION Binary logic gates are the basic building blocks of all the digital circuits like adders, multiplexers, counters, decoders, registers etc [1].However in today s scenario where the demand of high speed photonic networks is increasing continuously, the electronic gates are a major challenge because of the intermediate electrical processing involved. The increasing demand for high speed networks forced the modern research trends to ultra-fast all-optical signal processing. All-optical signal The main purpose of using all-optical network was to keep the data signals completely in optical domain from transmitter to receiver to eliminate the electronic conversions. In case of optical to electrical to optical (OEO) systems, the incoming WDM fibre which consists of more than one wavelength is de-multiplexed into its constituent wavelengths [3]. Each wavelength requires a separate transponder which convert the optical signal into electrical, regenerate it and then again convert it into optical domain [3]. The signal is back converted into electrical domain for processing by electronic switch. These conversions lead to increase in complexity, cost and power consumption where in case of all-optical systems, transponders are needed only for the wavelengths that are dropped or added at a particular node [3]. With wavelength division multiplexing (WDM), different wavelengths could be multiplexed together in a single fibre. These wavelengths can also be amplified together, without using one amplifier per wavelength. Another benefit of the all-optical systems is the provisioning time for a new connection is greatly decreased, as equipment needs to be installed only at the endpoints, along the path [3].The use of all optical systems results in savings in 2015, IRJET ISO 9001:2008 Certified Journal Page 1291

power consumption and leads to reduction in cost also and still it needs more advances to cope up with future networks [3]. So, all-optical arithmetic based devices are of great interest for research. 3. OPERATION PRINCIPLE The principle of an SOA is stimulated emission. When an input optical signal is fed to SOA it leads to stimulated emission on the excited electrons inside the SOA and as the input signal travels through the SOA, stimulated emission continues until the photons exit together as an amplified signal. Due to this the carrier density in the SOA changes, because the signal at one wavelength affects the gain of signal at another wavelength. This property of SOA can be used for implementation of high speed logic gates. Therefore, if two input signals with frequency difference less than 6nm and signal power to the pump power ratio nearly equal to 1 are given to SOA, the FWM effect and XGM effect can be observed simultaneously [4]. Hence, with this property of SOA we can extract AB or AB due to XGM effect from the system, when two input signals are fed at different power levels to SOA. Attenuators can be used for creating the difference in power of the input signals. With XGM effect, AB is obtained when A input is high and AB is obtained where as when B is high. On combining AB and AB, output of XOR gate is realized. The XOR gate results in the value of logic 1 when exactly one of the inputs equals to logic 1. Also, due to the generation of harmonic frequency at sum and difference frequencies, FWM effect occurs which give output of AND operation i.e. AB, AND gate give output 1 when both the inputs are high as shown in figure 1. and carry corresponding to the possible inputs are shown in table 1. Table 1: Truth table for full adder Input A Input B Input C in Sum (S out) Carry (c out) 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 4. EXPERIMENTAL DEMONSTRATION AND DISCUSSION The experimental setup for all-optical full adder has been shown in Figure 2. Two mode locked laser diodes (MLLD) produce two Gaussian pulses one at 1550 nm (Signal A) with power 13 dbm and other at 1553 nm (Signal B) at power 17dbm. The pulse trains are modulated by two intensity modulators with 60 Gbit/s PRBS data, separately. Then two branches are combined in the coupler for amplification. A power splitter is used to split the information signal into four branches. A full-adder adds two one-bit binary numbers (A and B) and a carry in. This full-adder operation can be achieved by using two half adder. In first half adder input message signal A and B are modulated separately with 60 GB PRBS signal and coupled through a coupler which will give S A B. Now this signal is further modulated with C in which can be expressed as X A B C By employing this principle, SOA can be used for implementation of logic gates. In full adder module, the outputs obtained from sum In these four branches, four 2 nm band pass filters (BPF), two tuneable optical delay lines and four attenuators are used to extract the target data, align the time difference and control the powers. The information signals in the first two branches are coupled into SOA 1 after optimized polarization control. The average power of information signal A is attenuated to 1.29 dbm, while information signal B has the average power of 12.29 dbm, which is used as a pump signal. The property of XGM, which is insensitive to polarization, occurs with the high value of signal B and the function of AB is achieved, which is 2015, IRJET ISO 9001:2008 Certified Journal Page 1292

extracted by a 0.6 nm BPF centred at 1550 nm. Since the generation of FWM in the SOA is polarization dependent, the information signals in the other two branches are coupled into SOA 2 after the individual polarization control. The average powers of signal A and signal B are adjusted to 0.39 dbm and 0.703 dbm, respectively. In this case, information signal A is used as a pump signal and the function of AB is filtered out by a 0.6 nm BPF at 1553 nm. Apart from this, a new signal is generated when both input signals are 1 i.e. AB, resulted from the FWM effect at 1547 nm (Harmonic frequency ( FWM 2 B )) in SOA 2. The information signals AB and AB are combined to perform S A B. The average powers of AB, AB, AB and A B are 9.8 dbm, 10.3 dbm, -.092 dbm and 11.3dBm respectively. In this module, SOA 1 and SOA 2 are biased at 343 ma and 451 ma with 0.15 confinement factor. Now, the output of half adder is obtained at frequency 1550 nm and 1553 nm. So, frequency convertor is used at 1550 nm so as to achieve the output at single wavelength i.e at 1553 nm. This output S act as input for second half adder signal. The second output is obtained from carry in signal C in at 1550 nm. These two input signals are divided into two parts by using a splitter. The information signals at different wavelength are combined through couplers. In first Coupler, the input C in is at high power of 5.1 dbm where as input S is at low power of 1.1 dbm. In SOA 3, the output achieved by XGM is at 1553 nm. Similarly, in second Coupler, the input C in is at low power of -0.77 dbm where as input S is at high power of 6.3 dbm. In SOA 4, the output achieved by XGM is at 1550 nm. On combining these outputs through coupler, output of full adder is achieved successfully. The output for carry out of full adder is obtained by combining the carry of two half adders. The outputs at different stages are as given below: INPUT A = 1100001 INPUT B = 1011011 CARRY OF HALF ADDER (AB) = 1101000 2015, IRJET ISO 9001:2008 Certified Journal Page 1293

5. CONCLUSIONS CARRY OUT C OUT = 1101010 S = A B = 0100011 The all-optical full adder has been implemented successfully with use of four SOAs. It consist of two signals A, B and a carry-in 60 Gbits/s NRZ-OOK signals as input and sum, carry-out as output. By the use of non-linear properties of SOA such as Cross Gain Modulation and Four Wave Mixing, logic operations such as XOR, AND, OR has been achieved. The BER Performance of all-optical full adder is approximately 10-5. ACKNOWLEDGMENT We would like to thank our parents, friends and my Co Authors for being a constant source of inspiration and support while writing this research paper. Without their help this would not have been a success. REFERENCES OUTPUT OF FULL ADDDER (S C) = 1111001 [1] Kristian E. Stubkjaer, Semiconductor Optical Amplifier-Based All-Optical Gates for High-Speed Optical Processing, IEEE Journal on selected topics in Quantum Electronics,Vol. 6, No. 6, November/December 2000 A. [2] A. Teixeira, T. Silveiral, P. Andrd, R Nogueiral, G. Tosi- Bellefi, P. Monteirol, J. Da Rochal, All-optical switching with SOA based devices 12-17 September2005, Yaya, Cdmea, UkraIhe IEEE. [3] Adel A. M. Saleh and Jane M. Simmons, All-Optical Networking Evolution, Benefits, Challenges, and Future Vision. Proceedings of the IEEE, vol. 100, no. 5, May 2012, pp. 1105-1117 2012 IEEE 2015, IRJET ISO 9001:2008 Certified Journal Page 1294

[4] Peili li, Xinliang Zhang, Zezhou Zheng and Dexiu Huang, Simultaneous demonstration on 10 Gb/s wavelength conversion four-wave mixing and cross gain modulation in semiconductor optical amplifier Opitca applicata, Vol XXXIV, No. 1,2004. [5] S. H. Kim, et al., All-optical half adder using cross gain modulation in semiconductor optical amplifiers, Opt. Express, vol. 14, no. 22, pp.10693 10698, 2006. [6] S. Kumar, A. E. Willner, D. Gurkan, K. R. Parameswaran, and M. M. Fejer, All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks, Opt. Express, vol. 14, no. 22, pp. 10255 10260, 2006. [7] K. Sun, J. Qiu, M. Rochette, L. R. Chen, All- Optical Logic Gates (XOR, AND, and OR) Based on Cross Phase Modulation in a Highly Nonlinear Fiber ECOC 2009, 20-24 September, 2009, Vienna, Austria. [8] Bo Dai, Satoshi Shimizu, Xu Wang and Naoya Wada, Simultaneous All-Optical Half-Adder and Half-Subtracter Based on Two Semiconductor Optical Amplifiers ieee photonics technology letters, vol. 25, no. 1, january 1, 2013. 2015, IRJET ISO 9001:2008 Certified Journal Page 1295