The quantum cascade laser: a unifying concept for generating electromagnetic radiation from 3 to 300µm wavelength

Similar documents
High power and single frequency quantum. cascade lasers for gas sensing. Stéphane Blaser

MBE Growth of Terahertz Quantum Cascade Lasers Harvey Beere

Surface-Emitting Single-Mode Quantum Cascade Lasers

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

AMELIORATION DES PERFORMANCES DES LASERS A CASCADE QUANTIQUE - ETUDE DU CONFINEMENT OPTIQUE ET DES PROPRIETES THERMIQUES

Advanced semiconductor lasers

About Omics Group conferences

Continuous wave operation of quantum cascade lasers above room temperature

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

Optoelectronics ELEC-E3210

NGS-13, Guildford UK, July 2007

Luminous Equivalent of Radiation

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

InP-based Waveguide Photodetector with Integrated Photon Multiplication

Long wavelength electrically pumped GaSb-based Buried Tunnel Junction VCSELs

Ultra-sensitive, room-temperature THz detector using nonlinear parametric upconversion

THz quantum cascade lasers with wafer bonded active regions

Novel Integrable Semiconductor Laser Diodes

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

Ultra-low voltage resonant tunnelling diode electroabsorption modulator

HIGH-EFFICIENCY MQW ELECTROABSORPTION MODULATORS

SUPPLEMENTARY INFORMATION

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

Optoelectronic integrated circuits incorporating negative differential resistance devices

Investigation of the tapered waveguide structures for terahertz quantum cascade lasers

Coupling terahertz radiation between sub-wavelength metal-metal waveguides and free space using monolithically integrated horn antennae

Lecture 18: Photodetectors

Optical MEMS in Compound Semiconductors Advanced Engineering Materials, Cal Poly, SLO November 16, 2007

Physics of Waveguide Photodetectors with Integrated Amplification

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

SUPPLEMENTARY INFORMATION

A continuous-wave Raman silicon laser

GaSb based high power single spatial mode and distributed feedback lasers at 2.0 μm

Introduction to Optoelectronic Devices

R. J. Jones Optical Sciences OPTI 511L Fall 2017

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

SUPPLEMENTARY INFORMATION

10 W high-efficiency high-brightness tapered diode lasers at 976 nm

Figure 1. Schematic diagram of a Fabry-Perot laser.

Coherent Receivers Principles Downconversion

Review of Semiconductor Physics

Wavelength switching using multicavity semiconductor laser diodes

Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Surface plasmon photonic structures in terahertz quantum cascade lasers

Photomixer as a self-oscillating mixer

InP-based Waveguide Photodetector with Integrated Photon Multiplication

High-power semiconductor lasers for applications requiring GHz linewidth source

A continuous-wave optical parametric oscillator for mid infrared photoacoustic trace gas detection

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

Tapered Amplifiers. For Amplification of Seed Sources or for External Cavity Laser Setups. 750 nm to 1070 nm COHERENT.COM DILAS.

Cavity QED with quantum dots in semiconductor microcavities

Design of InGaAs/InP 1.55μm vertical cavity surface emitting lasers (VCSEL)

Distributed-feedback quantum cascade laser emitting at 3.2 μm

UNMATCHED OUTPUT POWER AND TUNING RANGE

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in

Phase-locked array of quantum cascade lasers with an

rd IEEE International Semiconductor Laser Conference (ISLC 2012) San Diego, California, USA 7 10 October IEEE Catalog Number: ISBN:

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

Recent advances in high-performance 2.X µm Vertical External Cavity Surface Emitting Laser (VECSEL)

arxiv:physics/ v2 [physics.optics] 17 Mar 2005

Instruction manual and data sheet ipca h

Sub 300 nm Wavelength III-Nitride Tunnel-Injected Ultraviolet LEDs

High efficiency laser sources usable for single mode fiber coupling and frequency doubling

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Room Temperature. from Alpes Lasers

Functional Materials. Optoelectronic devices

Chapter 12: Optical Amplifiers: Erbium Doped Fiber Amplifiers (EDFAs)

A Phase-Locked Terahertz Quantum Cascade Laser

Lecture 1: Course Overview. Rajeev J. Ram

ECE 340 Lecture 29 : LEDs and Lasers Class Outline:

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

DIODE LASER SPECTROSCOPY (160309)

Key Questions. What is an LED and how does it work? How does a laser work? How does a semiconductor laser work? ECE 340 Lecture 29 : LEDs and Lasers

Bistability in Bipolar Cascade VCSELs

15 Transit Time and Tunnel NDR Devices

Modulation of light. Direct modulation of sources Electro-absorption (EA) modulators

High-efficiency, high-speed VCSELs with deep oxidation layers

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

Thermal management and thermal properties of high-brightness diode lasers

Laser Diode. Photonic Network By Dr. M H Zaidi

Tera-Hz Radiation Source by Deference Frequency Generation (DFG) and TPO with All Solid State Lasers

Waveguide-based single-pixel up-conversion infrared spectrometer


Lecture 4 INTEGRATED PHOTONICS

DESIGN TEMPLATE ISSUES ANALYSIS FOR ROBUST DESIGN OUTPUT. performance, yield, reliability

Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I

Intersubband spectroscopy of electron tunneling in GaN/AlN coupled quantum wells

S Optical Networks Course Lecture 2: Essential Building Blocks

Mode-locking and frequency beating in. compact semiconductor lasers. Michael J. Strain

VCSELs With Enhanced Single-Mode Power and Stabilized Polarization for Oxygen Sensing

Fabrication of antenna integrated UTC-PDs as THz sources

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in

Quantum cascade laser-based photoacoustic sensor for environmental pollution monitoring

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g<

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems

Diode lasers for sensor applications. Bernd Sumpf Ferdinand-Braun-Institut Lichtenwalde, October 18, 2012

High Power AlGaInAs/InP Widely Wavelength Tunable Laser

Transcription:

The quantum cascade laser: a unifying concept for generating electromagnetic radiation from 3 to 300µm wavelength C. Sirtori Matériaux et phénomènes quantiques, Université Paris 7 - Denis Diderot ALCATEL-THALES III-V lab, Palaiseau FRANCE

Collaborators S. Barbieri W. Maineault A. Vasanelli L. Sapienza S. Dhillon C. Ciuti S. Laurent P. Filloux C. Manquest D. Dolfi A. De Rossi M. Calligaro X. Marcadet I. Sagne, U. Gennser R. Colombelli, Y.Chassagneux J. Faist G. Scalari M Giovannini J. Alton H. Beere D. Ritchie

Outline Introduction on QC lasers Performances and applications in the 3 15 µm wavelength region THz lasers THz side band generation Phased match interaction between telecom frequencies and THz radiation High frequency modulation of a 3THz laser Conclusions

What does a QC laser look like?

Single Laser mounted on copper block Au wires In solder Laser 6 mm Copper block Laser Alumina 10-100 µm

Quantum Cascade Laser, what dimensions? 1m 1mm 100µm 10µm 1µm 100nm 10nm 1nm 1Å 1 atome 3 Å 1 cheveu 50µm = 0.00005m Semiconductor layers deposited by MBE

Photo TEM 8.3nm Courtesy of I. Sagnes, LPN

The materials

GaAs transistors and high power laser diode InP telecom devices

The quantum well: the building block 25 Å AlSb InAs AlSb E 2 E 12 The quantum well is the elementatary constituent of our system E 1 Croissance

Energy versus position in a quantum well structure Conduction band quantum well V(z) 2 Energy AlAs E 2 E 1 AlAs 1 GaAs Valence band quantum well Position z The confinement potential is only in the direction of growth (z) Electrons are free particles in the plane

Intersubband transition energies hν 1 Same material system Different quantum well widths Diffeferent transition energies hν 1 = 4 hν 2 hν 2 Intersubband transitions depend primarily on width of the quantum well and not on the materials constituent the heterostructure

T max of QC lasers vs. wavelength Pulsed operation Atmospheric windows III-V compounds phonon bands Temperature (K) 500 400 300 200 100 InP based lasers Peltier GaAs based lasers LN 2 Sb based lasers Data (some are unpublished): Bell Labs Neuchatel THALES Walter Schottky (Munich) Northwestern University AOI (Houston) TU Vienna MIT University of Montpellier 0 2 5 10 20 Wavelength (µm) 50 100 200 Range of operation: 2.7-350µm or 120 0.85THz

Quantum design

Coupled-quantum-wells quasi molecules Quantum engineering of intersubband transitions is enabled by coupling of quantum wells through thin tunneling barriers: Symmetric coupled-quantum-wells Asymmetric coupled-quantum-wells 1 1 1 1 1A 1S 2 1 Formation of a symmetric and antisymmetric doublet Hybridisation of orbitals with different quantum numbers molecule of hydrogen

QC laser design Injection barrier 2 Minigap 1 Electron reservoir Injector 2 Minigap 2 Minigap 1 1 Active region 2 Minigap 1 Cascade Action: 1) N p photons per electron traversing the structure (N p ~100 @THz) 2) The total population inversion is distributed over all the period

Quantum cascade design and material TEM Micrograph Band diagram INJECTOR EMITTER x 25 "MINIGAP" "MINIBAND" 3 45 nm 2 1 E Courtesy of C. Gmachl Bell Labs, Lucent Tech.

Cascade Cascade: répétition d une période -> 1 électron peut générer plusieurs photons

Three well active region (λ = 4.3µm) Energy (mev) 1100 1000 900 800 700 600 500 400 300 200 100 0 0 200 400 600 800 Z (Å) V = V th V = 0 Energy (mev) 1100 1000 900 800 700 600 500 400 300 200 100 0 0 200 400 600 800 Z (Å)

Today s best performances in the mid-infrared (3-10µm)

CW operation of QC lasers (State-of-the-art) Threshold current density [ka/cm 2 ] 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 10.5 380K 400 Voltage [V] 9.0 7.5 6.0 4.5 360K 340K 320K 300K 280K 260K 240K 240K 350 300 250 200 150 Power [mw] re-grown Fe:InP Plated Au InP cladding Active core InP cladding n + InGaAs layer re-grown Fe:InP 3.0 1.5 380K 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Current [A] 100 50 0 n + InP substrate 2 µm Burried heterostructures for optiumum power dissipation L. Dhiel et al. APL (2006) Division of Engineering and Applied Sciences Harvard University

Single mode QCLs for spectroscopy applications Wavelength (µm) 5,47 5,46 5,45 5,44 5,43 5,42 Intensity (a.u.) 100 300 K 10 1 0,1 QCL DFB 616-12-6 0,01 1828 1830 1832 1834 1836 1838 1840 1842 1844 1846 Photon Energy (cm -1 ) Control of the wavelength via the top grating design (advanced modelling available) Control of the chirp vs time via the AR design and injector doping level Full 2" processing for the realisation of DFB QCLs

DFB QCL product characteristics Intensity (a.u.) 1 0,1 0,01 1E-3 1E-4 300 K Wavelength (µm) 7,9 7,8 1E-5 1256 1260 1264 1268 1272 1276 1280 1284 1288 1292 1296 Photon Energy (cm -1 ) Wavelength range covered : from 4 to 10 µm Control of the emission wavelength : +/- 1 cm -1 SMSR higher than to 30 db Peak power higher than 200 mw Average power higher than 10 mw Voltage (V) 12 10 8 6 4 2 0 100 ns, 500kHz 300K Intensity (a.u.) 0 0 1 2 3 4 5 Current density (ka/cm 2 ) 1 DFB QCLs 0.1 0.01 1E-3 Wavelength (µm) 10 9 8 7 6 5 250 200 150 100 50 Optical peak power (mw) xavier.marcadet@3-5lab.fr 1E-4 1000 1200 1400 1600 1800 2000 2200 Photon Energy (cm -1 )

Single-mode CW-RT operation up to >50C at 5.23µm (DFB) @-30C: I th =75mA (j th ~ 0.71 ka/cm 2 ) / @30C: I th =130mA (j th ~ 1.24 ka/cm 2 ) P el, < 1W -> very low consumption

Applications QC lasers are a mid infrared laser technology based on III-V semiconductor compounds such as GaAs and InP Spectroscopic applications (Gas, molecular detection) Output power = 10mW, CW operation, control on the linewidth Medical Environmental Security (Explosive detection) Optical countermeasure (High power devices) Output power > 1W, CW operation non strictly necessary 3-4µm for missile out-steering 8-10µm for night vision blinding

THz generation (70-350µm)

Active region design: 2THz QCL Injection well Injection barrier Al 0.1 Ga.0.9 As/GaAs Miniband Barbieri et al., APL, vol. 85, 1674 (2004) Miniband 16 mev Miniband Miniband 8meV 14 mev Length of a period (1276Å) Al concentration 10% (all previous structure 15%) 1 2 Reduce the roughness scattering Increase the barrier thickness

Device Processing

Performances of a 3 THz QC laser T max = 96K(pulsed), 70K(cw) Voltage (V) 0,0 0,5 1,0 1,5 2,0 150 3 2 1 Pulsed 3 x 0.2mm 2 device Current (A) 0 0 100 200 300 Current density(a/cm 2 ) 4K 20K 40K 60K 70K 77K 80K 90K 95K 100 50 0 Peak power (mw) 1.0 2.60 2.75 2.90 3.05 0.5 0 10.5 11.0 11.5 12.0 12.5 13.0 2% peak wall-plug efficiency at 4K 0.4% wall-plug efficiency in CW

THz QC µ-disk lasers I. Microcavites THz seuils ultra faibles (5mA) 40µm Current (ma) 0 5 10 15 20 25 30 35 40 45 50 55 3.0 2.5 Voltage (V) 2.0 1.5 1.0 0.5 6K 26K 42K 57K 70K Output power (a.u.) Y. Chassagneux et al., APL (2007) 0.0 0 20 40 60 80 100 120 140 160 180 Current Density (A/cm²)

THz transfer on an optical carrier

THz side band generation at telecom frequencies Top metal contact ω 1 - Ω 3 ω 1 ω 1 + Ω 3 ω 1 Ω 3 THz QCL active region NIR guiding layer Bottom doped layer/ metal contact THz mode Top contact layer NIR guiding layer NIR mode Bottom contact layer

THz transfer on an optical carrier ω sideband = ω telecom - Ω THz ω telecom THz QCL Ω THz THz inscribed onto NIR Sideband leaving QCL NIR beam entering QCL A telecom beam (ω telecom ) is coupled into a THz QCL emitting at Ω THz (2.8THz). The interaction of these frequencies with the laser material generates THz sidebands (ω sideband ) with the phase and amplitude of the THz beam inscribed onto this NIR carrier.

THz side band generation @ 1.3µm and 1.5µm Power (W) 1E-7 1E-8 1E-9 1E-10 Frequency (THz) 234 232 230 228 226 ω 1 2.8THz 2.8THz ω 1 + Ω 3 ω 1 - Ω 3 Power (W) 1E-4 1E-5 1E-6 1E-7 1E-8 Frequency (THz) 196 194 192 190 188 ω 1 2.8THz 2.8THz ω 1 + Ω 3 ω 1 - Ω 3 1E-11 1E-9 1E-12 1280 1290 1300 1310 1320 1330 Wavelength (nm) 1E-10 Typical NIR input power 100µW 1mW 1540 1560 1580 Wavelength (nm) By injecting 100mW of power ~ 1µW on the sidebands S. Dhillon et al. Nature Photonics (2007)

High frequency modulation

THz + GHz sidebands on a telecom carrier Experimental setup dc bias RF Optical Spectrum Analyzer GHz sidebands at 9GHz Diode laser 38 THz QCL From centimetres to micrometers RF generator l > 1.5cm 0 < f < 20GHz THz QCL λ = 103mm W = 2.9THz Diode laser λ = 1571nm f = 190.9 THz Power (µw) 100 10 1 0.1 0.01 0.001 1E-3 Frequency (THz) 194 192 190 188 (b) 2.9THz 0.0001 1E-4 1540 1560 1580 1600 Intensity (arb. u.) 1.0 0.5 9GHz Wavelength (nm) 188.07 188.10 Frequency (THz)

Continuous sideband tuning up to ~13GHz P RF = 20dBm 12.8GHz Intensity (arb. units) Intensity (arb. units) f RF = 5GHz 188.05 188.10 Frequency (THz) f RF = 12.5GHz Intensity (arb. units) 12.6GHz 12.5GHz 12.3GHz 10GHz 9GHz 8GHz 7GHz 6GHz 5GHz 4GHz 2GHz Modulation off 39 188.05 188.10 Frequency (THz) 188.00 188.05 188.10 188.15 188.20 Frequency (THz)

Resonance effect at the round-trip frequency Number of sidebands increases at f roudtrip and f roudtrip /2 Signature of mode-locking f RT /2 = 6.05GHz f RT = 12.3GHz Round trip measured Independently on 3mm multi mode device. f Rtrip = 12.287 GHz # of sidebands 12 10 8 6 4 2 40 2 4 6 8 10 12 14 Frequency (GHz)

Conclusions Direct THz generation Quantum cascade lasers have been demonstrated down to 0.85THz Tens of mw of THz power are produced in cw up to 77K Using microcavity current thresholds of few ma have been demonstrated Nonlinear THz generation Frequency mixing is a phase-matched process in III-V compounds THz on fibre High frequency modulation of a THz laser THz applications (2 4THz) Imaging (medical and security) Local oscillators (Astronomy)

THz and NIR guided modes Doped Layers Al 0.02 Ga 0.98 As GaAs Al 0.02 Ga 0.98 As Semi-insulating GaAs substrate Phase matching between Optical intensity (80µm) 0.08 0.06 0.04 0.02 FIR QC active region NIR guide Semi-insulating GaAs substrate NIR mode; λ = 1.3µm; α = 0.46cm -1 FIR mode; λ = 80µm; α = 7.15cm -1 0.8 0.6 0.4 0.2 Optical intentsity (1.3µm) fundamental modes! Very high overlap factor 0 0 10 20 30 40 0 Distance (µm)

Refractive index of GaAs Refractive Index 5 4 3 Bulk GaAs Reststrahlenband Index 3.6 Phase matching is possible between two near-infrared beams and a far-infrared beam We propose to obtain the phase matching by using waveguide for THz quantum cascade lasers 2 1 10 100 Wavelength (µm)

Polaritonic phase matching 3.9 g Vienna data GaAs bulk Refractive index 3.6 3.3 Reststrahlen band 3.0 1 10 100 Wavelngth (µm) V. Berger, C. Sirtori; Semicond. Sci. Technol. 19, 964 (2004)

Parametric down conversion using QC n 1 dn( ω) dω + 1 ω 1 ( ω Ω ) 3.9 g Vienna data GaAs bulk Refractive index 3.6 3.3 Reststrahlen band 3.0 1 10 100 Wavelngth (µm) V. Berger, C. Sirtori; Semicond. Sci. Technol. 19, 964 (2004)

Towards Phase matching @ 1.55µm Engineering of the modal refractive index by increasing the overlap of the mode with surrounding air 3.9 GaAs bulk Refractive index 3.6 3.3 Reststrahlen band 50µm 3.0 1 10 100 Wavelngth (µm) Use of erbium amplifiers!!

2.0 THz QCL: performance back coated 3.15 x 0.25 mm 2 device: T max = 77K(pulsed); 47K(cw) Current (A) 0,0 0,5 1,0 1,5 Current (A) 0,0 0,4 0,8 1,2 Voltage (V) 1,8 0,9 4K 20K 30K 40K 50K 60K 70K 77K 0,0 0 50 100 150 Current density (A/cm 2 ) 75 50 25 0 Peak Power (mw) Power (mw) 20 15 10 Intensity (arb. units) 1.9 2.0 2.1 1.0 1.3 A T = 4K 1.35 A 0.5 Frequency (THz) 0.0 63 67 70 Frequency (cm -1 ) 4K 20K 30K 5 35K 40K 45K 47K 0 0 50 100 150 Current density (A/cm 2 ) 20 15 10 5 0 C. Worrall, et al. Optics Express (2006)

Double-metal waveguide B. S. Williams et al., Appl. Phys. Lett, vol. 83, 5143 (2003) 0.10 Mode intensity (arb. units) 0.08 0.06 0.04 0.02 metal layer active region metal layer Γ = 100% α = 13 cm -1 AR n + host-substrate 0.00 Top metal contact 0 20 Distance (µm) Bottom metal contact Advantage: Overlap factor 100%, independent from λ and doping; strong lateral confinement Drawback: Low out-coupling (R > 0.9); More difficult fabrication

Waveguide engineering to PM @1.55 µm The overlap with the air surrounding the ridge decreases the n modal Efficiency (a.u.) Single Double metal Plasmon 170µm 60 50 46 44µm Phase matched Wavelength (µm) 1.60 1.55 1.50 1.45 1.40 1.35 1200 1400 1600 1800 Pump Wavelength Wavelength (nm) (µm) 50 55 60 65 70 75 80 Ridge Size Width (µm) (µm) Phase matched point with NIR shifts to longer wavelengths 1.5µm

Tuning the modal phase matching between 1.3 to 1.5µm Phase matching curve for 4 different device widths Efficiency (10-5 ) 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 47µm 42µm 52µm 150µm 1200 1300 1400 1500 1600 Wavelength (nm)

Nonlinearity from bulk GaAs 200 150 100 50 χ (2) is provided by the GaAs xyz P x (ω 1 +Ω 3 ) = χ (2) E y (Ω 3 )E z (ω 1 ) xyz 0-100 0 100 200 300 Angle between polarisations ( ) ω 1 TE polarised Ω 3 TM polarised ω 1 TE polarised Ω 3 TE polarised ω 1 + Ω 3 TE polarised No generation

Fabry-Perot fringes Efficiency (x 10-5 ) 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0,0 Efficiency (x 10-5 ) 1,6 1,4 1,2 1,0 0,8 0,6 0,4 0,2 1300 1400 1500 1600 Wavelength (nm) 0,0 1300 1400 1500 1600 Wavelength (nm)

0,0 0,2 0,4 0,6 0,8 1,0 Wavelength (µm) 1315,0 1315,1 1315,2 Fabry Perot Fringes 1,0 0,8 0,6 0,4 0,2 0,0 (x Efficiency ) 10-5 Efficiency (x 10-5 ) 1590,0 1590,3 1590,6 Wavelength (nm)

Efficiency (x 10-5 ) Group refractive index and losses Group refractive index 4,0 3,5 3,0 2,5 2,0 1,5 1,0 0,5 0,0 Wavelength (nm) 1540 1550 1560 1570 1580 1590 1600 1,0 0,8 0,6 0,4 0,2 0,0 1315,0 1315,1 1315,2 Wavelength (µm) Efficiency (x 10-5 ) n=3.54 n=3.44 1280 1290 1300 1310 1320 1330 1,0 0,8 0,6 0,4 0,2 Wavelength (nm) 0,0 1590,0 1590,3 1590,6 Wavelength (nm) At 1.3µm α ~ 1cm -1 At 1.55µm α = 3.5 cm -1

Telecom applications Fibre transmission of signal from a THz laser Modulated THz will be ascribe on the NIR beam Optical fibre Ω (t) 1550 nm filter Detector

THz up conversion Wavelength (µm) 1.61 1.60 1.59 1.58 1.57 1.56 1.55 Intensity (pw) 200 150 100 50 0 1603.2 1603.4 1603.6 1603.8 1604.0 1604.2 ω 1 - Ω 3 11.7meV ω 1 11.7meV ω 1 + Ω 3 1E-7 1E-8 1E-9 1E-10 1E-11 Power (W) Wavelength (nm) 1E-12 770 775 780 785 790 795 800 Energy (mev) Better resolution than common FTIR

Non-linear efficiency η = 2 x 10-5 η 1 x 10-4 Experiment Theory η = P( ω1 + Ω P( ω ) 1 3 ) = 2 P( Ω 3 ) Z 3 0 ( ω1 n 1 Ω n n 2 3 3 ) 2 2 d L A eff 2 L = interaction length This parameter can be easily increased of a factor hundred by changing the reflectivity of the facets (R ~ 0.9) BUT THE OPTICAL LOSSES limit us to 1/α, thus < 3mm

ω 3 = ω 2 +Ω 1 Quantum cascade OPO QC laser just below threshold ω 2 Ω 1 What is for? If the Idler (Ω 1 ) is contained in the gain curve of the QC laser then its losses can be vanishing small The threshold can be reached by only overcoming the mirror losses Interplay between linear and non-linear gain Tunability Phase locking of between µ-wave and telecom

Conclusions THz side band generation Transfer of a THz wave on an optical carrier The process is phase matched The phase matched from 1.3 to 1.6µm can be tuned by waveguide engineering The process can be used to generate THz (Frequency mixing) OPO?

Conclusions Direct THz generation Quantum cascade lasers have been demonstrated down to 1.9THz Tens of mw of THz power are produced in cw up to 77K Using double metal structures ma current threshold are demonstrated Nonlinear THz generation Difference frequency generation is phase-matched in III-V THz waves on fibre Injecting THz pulses into a QC THz laser Amplification of THz pulses Rep-rate multiplier