DatasheetDirect.com. Visit to get your free datasheets. This datasheet has been downloaded by

Similar documents
HA12134A, HA12135A, HA12136A

HA17555 Series. Precision Timer

HA17358/A Series. Dual Operational Amplifier. ADE A (Z) Rev. 1 Mar Description. Features. Features only for A series

HA178L00 Series. 3-terminal Fixed Voltage Regulators. Standard Output Voltage Tolerance ±8%

2SC5628. Silicon NPN Epitaxial High Frequency Amplifier / Oscillator. ADE A (Z) 2nd. Edition April Features. Outline

2SC1775, 2SC1775A. Silicon NPN Epitaxial. Application. Outline. Low frequency low noise amplifier Complementary pair with 2SA872/A TO-92 (1)

HA17358/A Series. Dual Operational Amplifier. ADE (Z) 1st Edition July Description. Features. Features only for A series

2SD787, 2SD788. Silicon NPN Epitaxial. ADE (Z) 1st. Edition Mar Application. Outline

2SC5702. Silicon NPN Epitaxial High Frequency Amplifier / Oscillator. ADE (Z) 1st. Edition Mar Features. Outline

2SD667, 2SD667A. Silicon NPN Epitaxial. ADE (Z) 1st. Edition Mar Application. Outline

HA17080 Series. J-FET Input Operational Amplifiers. Description. Features

HA17903, HA17393 Series

2SA1083, 2SA1084, 2SA1085

HA General-Purpose Operational Amplifier (Frequency Compensated)

2SC2979. Silicon NPN Triple Diffused

2SC460, 2SC461. Silicon NPN Epitaxial Planar. Application. Outline. 2SC460 high frequency amplifier, mixer 2SC461 VHF amplifier, mixer TO-92 (2)

2SK2596. Silicon N-Channel MOS FET UHF Power Amplifier. ADE (Z) 1st. Edition Mar Features. Outline

PF08103B. MOS FET Power Amplifier Module for E-GSM900 and DCS1800 Dual Band Handy Phone. ADE D (Z) 5th Edition Jan Application.

2SK1303. Silicon N-Channel MOS FET

2SJ534. Silicon P Channel MOS FET High Speed Power Switching. ADE C (Z) 4th. Edition Jul Features. Outline

2SK3235. Silicon N Channel MOS FET High Speed Power Switching

2SJ517. Silicon P Channel MOS FET High Speed Power Switching. ADE B (Z) 3rd. Edition Jul Features. Outline

2SJ363. Silicon P-Channel MOS FET. Application. Features. Outline. Low frequency power switching

2SK1300. Silicon N-Channel MOS FET

2SJ553(L), 2SJ553(S)

2SK2393. Silicon N-Channel MOS FET. Application. Features. Outline. High voltage / High speed power switching

2SJ217. Silicon P-Channel MOS FET

HA17324/A Series. Quad Operational Amplifier

2SK975. Silicon N-Channel MOS FET

2SJ130(L), 2SJ130(S)

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

HA16103 FPJ/FPK. Watchdog Timer. Description. Functions. Features. Ordering Information

Photo IC diode. Wide operating temperature: -40 to +105 C. S MT. Absolute maximum ratings

Energy saving sensors for TV brightness controls, etc.

Compact SMD type high output LED

InGaAs PIN photodiodes

InAs photovoltaic detectors

5 W XENON FLASH LAMP MODULES

XENON FLASH LAMP MODULES

PF0030 Series. MOS FET Power Amplifier. ADE (Z) 1st. Edition July Features. Ordering Information. Pin Arrangement

InGaAs PIN photodiodes

High power LED, peak emission wavelength: 1.45 µm

InGaAs PIN photodiodes

2SC4927. Silicon NPN Triple Diffused. Application. Features. Outline. TV/character display horizontal deflection output. High breakdown voltage V CES

2SB648, 2SB648A. Silicon PNP Epitaxial. Low frequency high voltage amplifier complementary pair with 2SD668/A

Applications S S S S 1024

TA8223K TA8223K. Low Frequency Power Amplifier. Features TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

2SK1056, 2SK1057, 2SK1058

InAs photovoltaic detectors

2SK1949(L), 2SK1949(S)

TA8227P TA8227P. Low Frequency Power Amplifier. Features TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

2SK2554. Silicon N-Channel MOS FET. November Application. Features. Outline. High speed power switching

InGaAs PIN photodiodes

Photo IC diodes S SB S CT. Spectral response close to human eye sensitivity. Absolute maximum ratings (Ta=25 C)

PHOTOMULTIPLIER TUBE MODULES, NEW RELEASED PAMPHLET

Si photodiodes with preamp

Si photodiodes with preamp

Maintenance/ Discontinued

Video signal switcher

TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TA8251AH

HA13565F. Three-Phase Brushless DC Motor Driver IC. ADE A (Z) 2nd. Edition April Description. Functions. Features

Video signal switcher

TA8210AHQ,TA8210ALQ Features

LA4805V. 3 V Stereo Headphone Power Amplifier

Photodiode arrays with ampli er

Digital Cameras for Microscopy

Discontinued AN W 2 (18 V, 8 Ω) Power Amplifier with Mute Function and Volume Control

Applications Mini radio cassette players/recorders, portable radios, transceivers and other portable audio devices

Maintenance/ Discontinued

Vocal fader IC BA3837 / BA3837F / BA3838F. Multimedia ICs

TA8263BH TA8263BH. Max Power 43 W BTL 4 ch Audio Power IC. Features TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA8252H TA8252H. Max Power 37W BTL 4ch Audio Power IC. Features TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

Maintenance/ Discontinued

TOSHIBA Bi-CMOS Digital Integrated Circuit Silicon Monolithic. TB2904HQ (o)

Radiation detection modules

TA8254BHQ TA8254BHQ. Max Power 45 W BTL 2 ch Audio Power IC. Features TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

3 Dual operational amplifier with switch for car audio systems

1SS120. Silicon Epitaxial Planar Diode for High Speed Switching. Features. Ordering Information. Pin Arrangement

TA8264AH TA8264AH. Max Power 41 W BTL 4 ch Audio Power IC. Features TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

unit: mm 3024A-SIP10H

LCOS-SLM (Liquid Crystal on Silicon - Spatial Light Modulator)

TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TA8258H

Audio Accessory IC Series Ground Isolation Amplifier BA3121F, BA3123F Rev.A 1/8

AN W 2 (18 V, 8 Ω) Power Amplifier with Mute Function and Volume Control. ICs for Audio Common Use. Overview. Features.

AN W 2 (18 V, 8 Ω) Power Amplifier with Mute Function and Volume Control. ICs for Audio Common Use. Overview. Features.

Maintenance/ Discontinued

TA8201AK TA8201AK. BTL Audio Power Amplifier. Features TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TECHNICAL INFORMATION. How to Use UVTRON

Band-pass filter for spectrum analyzer for car audio systems BA3834F

Maintenance/ Discontinued

NJM2783. Preliminary. Monaural Microphone Amplifier with ALC

R1RP0416D Series. 4M High Speed SRAM (256-kword 16-bit) Description. Features. Ordering Information. REJ03C Z Rev Mar.12.

MEMS-FPI spectrum sensor

TOSHIBA Bi-CMOS Digital Integrated Circuit Silicon Monolithic TB2901H

01 12-bit digital output

Maintenance/ Discontinued

unit: mm 3160-SIP23HZ

TOSHIBA Bi-CMOS Linear Integrated Circuit Silicon Monolithic TB2926HQ. High output power Weight: 7.7 g (typ.) P OUT MAX (1) = 45 W (typ.

Old Company Name in Catalogs and Other Documents

UTC UNISONIC TECHNOLOGIES CO., LTD. 1 LINEAR INTEGRATED CIRCUIT LOW FREQUENCY POWER AMPLIFIER

Transcription:

DatasheetDirect.com Your dedicated source for free downloadable datasheets. Over one million datasheets Optimized search function Rapid quote option Free unlimited downloads Visit www.datasheetdirect.com to get your free datasheets. This datasheet has been downloaded by http://www.datasheetdirect.com/

RELATED PRODUCTS FOS (Fiber optic plate coated with X-ray scintillator) The FOS is an optical device for X-ray imaging, fabricated by coating an X-ray scintillator material over a fiber optic plate consisting of tens of million glass fibers each a few micrometers in diameter. The FOS provides higher sensitivity and resolution than currently used sensitized paper films and also allows realtime digital radiography when directly coupled to a commercially available CCD. The fiber optic plate used in the FOS has excellent X-ray absorption characteristics, so that X-rays penetrating the X-ray scintillator and directly entering the CCD are minimized to less than 1 %. This protects the CCD from the deterioration and increased noise caused by X-ray irradiation, assuring a long service life and maintaining high image quality. Various sizes and shapes of FOS are available to meet your particular needs, including tapered FOP types. Structure "MEMORY STICK" is trademark of Sony Corporation. Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office. Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. 001 Hamamatsu Photonics K.K HOMEPAGE URL http://www.hamamatsu.com HAMAMATSU PHOTONICS K.K., Electron Tube Center 314-5, Shimokanzo, Toyooka-village, Iwata-gun, Shizuoka-ken, 438-0193, Japan, Telephone: (81)539/6-548, Fax: (81)539/6-05 U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P. O. Box 6910, Bridgewater. N.J. 08807-0910, U.S.A., Telephone: (1)908-31-0960, Fax: (1)908-31-118 E-mail: usa@hamamatsu.com Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-811 Herrsching am Ammersee, Germany, Telephone: (49)815-375-0, Fax: (49)815-658 E-mail: info@hamamatsu.de France: Hamamatsu Photonics France S.A.R.L.: 8, Rue du Saule Trapu, Parc du Moulin de Massy, 9188 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: infos@hamamatsu.fr United Kingdom: Hamamatsu Photonics UK Limited: Howard Court, 10 Tewin Road Welwyn Garden City Hertfordshire AL7 1BW, United Kingdom, Telephone: 44-(0)1707-94888, Fax: 44(0)1707-35777 E-mail: info@hamamatsu.co.uk North Europe: Hamamatsu Photonics Norden AB: Smidesvägen 1, SE-171-41 SOLNA, Sweden, Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01 E-mail: info@hamamatsu.se Italy: Hamamatsu Photonics Italia: S.R.L.: Strada della Moia, 1/E, 000 Arese, (Milano), Italy, Telephone: (39)0-935 81 733, Fax: (39)0-935 81 741 E-mail: info@hamamatsu.it TMCP109E0 JUN. 001 IP (1000)

Audio Signal Processor for Car Deck and Cassette Deck (Dolby B/C-type NR with PB Amp) ADE-04-016 1st Edition Nov. 199 Description series are silicon monolithic bipolar IC providing Dolby noise reduction system*, music sensor and PB equalizer system in one chip. Functions PB equalizer Dolby B/C-NR Music sensor channel channel 1 channel Features Different type of PB equalizer characteristics selection (normal/chrome or metal) is available with fully electronic control switching built-in. type of input selection (RADIO/TAPE) is available. Changeable to Forward, Reverse-mode for PB head with fully electronic control switching built-in. Available to change music sensing level by external resistor. Music sensing level selection is available with fully electronic control switching built-in. Available to change frequency response of music sensor. NR-ON/OFF and REC/PB fully electronic control switching built-in. 4 type of PB-out level. Available to allow common PCB designs with HA1163 series. * Dolby is a trademark of Dolby Laboratories Licensing Corporation. A license from Dolby Laboratories Licensing Corporation is required for the use of this IC.

Ordering Information Operating voltage range* 1 Products PB-OUT level REC-OUT level Dolby-level Min Max 300 mvrms 300 mvrms 300 mvrms 7.0V 16V HA1174 450 mvrms 300 mvrms 300 mvrms 8.0V 16V HA1175 580 mvrms 300 mvrms 300 mvrms 9.5V 16V HA1177 775 mvrms 300 mvrms 300 mvrms 1.0V 16V Note: 1. The minimum operating voltage of series are defferent from the HA1163 series (Dolby B - type). Pin Description (V CC = 9 V Single supply, Ta = 5 C, No signal, The value in the table show typical value) Pin No. Terminal name Zin DC voltage Equivalent circuit, 41 TAI 100 kω V CC / Description Tape input V CC / 4, 39 RAI Radio input 5 MSI Music sensor rectifier input 10, 33 HLS DET.5 V Time constant pin for rectifier 11, 3 LLS DET 3 BIAS 8 V Reference current input GND Rev.1, Nov. 199, page of 66

Pin Description (V CC = 9 V Single supply, Ta = 5 C, No signal, The value in the table show typical value) (cont) Terminal DC Pin No. name Zin voltage Equivalent circuit 4 MS DET V CC Description Time constant pin for rectifier 19 MS GV 100 kω GND Mode control input DGND GND 40 RIP V CC / Ripple filter Rev.1, Nov. 199, page 3 of 66

Pin Description (V CC = 9 V Single supply, Ta = 5 C, No signal, The value in the table show typical value) (cont) Terminal DC Pin No. name Zin voltage Equivalent circuit 43, 56 EQ OUT V CC / V CC Description Equalizer output 6, 37 PB OUT Play back (Decode) output 30 MS V REF Reference voltage buffer output 6 MA OUT Music sensor amp output 47, 5 V REF Reference voltage buffer output 1, 31 REC OUT Recording (Encode) output 8, 35 SS Spectral skewing amp. output 44, 55 EQ OUT-M V CC / V CC Equalizer output (Metal) GND GND Rev.1, Nov. 199, page 4 of 66

Pin Description (V CC = 9 V Single supply, Ta = 5 C, No signal, The value in the table show typical value) (cont) Terminal DC Pin No. name Zin voltage Equivalent circuit 1 MS OUT MS V CC Description Music sensor output to MPU D GND V CC V CC Power supply 3 MS V CC 0 D GND 0V Digital (Logic) ground 7 MS GND Music sensor ground 49, 50 GND Ground 48, 51 FIN V CC / PB - EQ input for forward 46, 53 RIN PB - EQ input for reverse 45, 54 NFI Negative feedback terminal of PB - EQ amp. 8 NOI Negative feedback input for normal speed 9 FFI Negative feedback input for FF or REW Rev.1, Nov. 199, page 5 of 66

Pin Description (V CC = 9 V Single supply, Ta = 5 C, No signal, The value in the table show typical value) (cont) Pin No. Terminal name Zin DC voltage Equivalent circuit 13 C/B 100 kω Description Mode control input 14 ON/OFF 15 REC/PB 16 TAPE/RADIO GND D GND 17 10 µ/170 µ 18 F/R 7, 36 SS1 V CC / Spectral skewing amp. input 9, 34 CCR V CC / Current controled resistor output 1, 5, 38, 4 NC No connection Rev.1, Nov. 199, page 6 of 66

Block Diagram RADIO IN(L) PBOUT(L) RECOUT(L) EQOUT(L) 44 45 46 48 49 GND 50 GND 51 53 54 56 4 41 40 39 38 37 36 35 34 33 3 31 30 9 43 10/70 47 V REF(L) 5 V REF(R) 55 10/70 EQOUT(R) R/F R/F RIP 1 1 BIAS 1 3 4 T/R T/R 5 DOLBY B/C-NR LPF S/R DOLBY B/C-NR MS AMP MS VREF 6 7 8 9 10 11 1 13 8 7 MS GND 6 5 4 3 DET MS V CC V CC MS OUT 1 D GND 0 19 MS GV (S/R) 18 17 16 15 F/R 14 ON/OFF C/B 10 µ/70 µ TAPE/RADIO REC/PB VCC To Microcomputer From Microcomputer RADIO IN(R) PBOUT(R) RECOUT(R) Absolute Maximum Ratings Item Symbol Ratings Unit Condition Supply voltage V CC max 16 V Power dissipation P T 500 mw Ta 85 C Operating temperature Topr 40 to 85 C Storage temperature Tstg 55 to 15 C Rev.1, Nov. 199, page 7 of 66

Electrical Characteristics (Ta = 5 C Dolby level 300 mvrms (Rec-out pin)) V CC = 9.0 V HA1175 V CC = 1.0 V HA1174 V CC = 9.0 V HA1177 V CC = 14.0 V Item Symbol Min Typ Max Unit Test Condition Note Quiescent current I Q 10.0 16.0 4.0 ma No input No Signal 70 µ Input GvIA TAI 18.5 0.0 1.5 db Vin = 0 db, f = 1 khz Amp. GvIA RAI 15.5 17.0 18.5 gain HA1174 GvIA TAI.0 3.5 5.0 Vin = 0 db, f = 1 khz GvIA RAI 19.0 0.5.0 HA1175 GvIA TAI 4. 5.7 7. Vin = 0 db, f = 1 khz GvIA RAI 1..7 4. HA1177 GvIA TAI 6.7 8. 9.7 Vin = 0 db, f = 1 khz GvIA RAI 3.7 5. 6.7 B-type Encode ENC k.8 4.3 5.8 db Vin = 0 db, f = khz boost ENC 5k 1.7 3. 4.7 Vin = 0 db, f = 5 khz C-type Encode ENC 1k (1) 3.9 5.9 7.9 db Vin = 0 db, f = 1 khz boost ENC 1k () 18.1 19.6 1.6 Vin = 60 db, f = 1 khz ENC 700 9.8 11.8 13.8 Vin = 30 db, f = 700 Hz Signal handling Vo max 1.0 13.0 db THD = 1%, f = 1 khz *1 Signal to noise S/N 60.0 64.0 db Rg = 5.1 kω, CCIR/ARM ratio THD THD 0.3 % Vin = 0 db, f = 1 khz Channel CT RL (1) 70.0 85.0 db Vin = 0 db, f = 1 khz RAI input separation CT RL () 50.0 60.0 Vin = 0.6 mvrms, f = 1 khz EQ input Crosstalk CT EQ RAI 70.0 80.0 Vin = 0.6 mvrms, f = 1 khz EQ input CT RAI EQ 50.0 60.0 Vin = 0 db, f = 1 khz RAI input PB - EQ gain Gv EQ 1k 37.0 40.0 43.0 db Vin = 0.6 mvrms, f = 1 khz 10 µ PB - EQ maximum output Gv EQ 10k (1) 33.0 36.0 39.0 Vin = 0.6 mvrms, f = 10 khz Gv EQ 10k () 9.0 3.0 35.0 70 µ VoM 300 600 mvrms THD = 1%, f = 1 khz *1 PB - EQ THD THD - EQ 0.3 % Vin = 0.6 mvrms, f = 1 khz Noise voltage level converted in input V N 0.7 1.5 µvrms Rg = 680 Ω, DIN - AUDIO MS sensing level V ON (1) 36.0 3.0 8.0 db f = 5 khz, Normal speed V ON () 18.0 14.0 10.0 f = 5 khz, High speed Rev.1, Nov. 199, page 8 of 66

Electrical Characteristics (Ta = 5 C Dolby level 300 mvrms (Rec-out pin)) (cont) V CC = 9.0 V HA1175 V CC = 1.0 V HA1174 V CC = 9.0 V HA1177 V CC = 14.0 V Item Symbol Min Typ Max Unit Test Condition Note MS output low V OL 1.0 1.5 V level MS output leak current I OH 0.0.0 µa Control voltage V IL 1.5 V Note: V IH 3.5 5.3 1. V CC = 7.0 V, HA1174 V CC = 8.0 V, HA1175 V CC = 9.5 V, HA1177 V CC = 1.0 V Rev.1, Nov. 199, page 9 of 66

Series Test Circuit R30 10 k R9 10 k EQOUT (L) PBOUT (L) SW RECOUT (L) ON SW1 EQOUT(L) SW3 SW4 OFF L R RAI (L) PBOUT(L) SW5 EQIR (L) EQIF(L) R33 5.1 k C1 00 p R8 18 k RECOUT(L) R7 330 k C7 µ R41 680 C6 µ R40 680 R39 180 R38 330 k R36 1 k R37 18 k R35 5.1 k C5 µ C4 R34 5.1 k C3 µ 0.47 µ C19. µ 49 48 47 46 45 44 43 4 41 40 39 38 37 36 35 34 33 3 31 30 9 8 7 6 5 4 3 GND FIN (L) VREF (L) RIN (L) NFI (L) EQ OUT-M (L) EQ OUT (L) N.C. TAI (L) C 1 µ RIP RAI (L) N.C. PB OUT (L) R3 k SS1 (L) C0 00 p SS (L) R31 560 CCR (L) C18 00 p HLS DET (L) C17 µ C15. µ LLS DET (L) C16 µ /4/5/7 (PB 1 Chip) REC OUT (L) R6 33 k MS VREF C8 4700 p R5 47 k FFI NOI MS GND MA OUT C14 µ R4 330 k MSI MS DET C13 0.33 µ MS V CC V CC SW15 L R SW16 EQIF(R) EQIR (R) RAI (R) GND 50 C1 µ FIN (R) 51 R1 680 VREF (R) 5 C µ RIN (R) 53 R 680 NFI (R) 54 C3 µ R3 180 EQ OUT-M (R) 55 R6 18 k R5 330 k EQ OUT (R) R7 1 k 56 N.C. 1 R8 5.1 k C4 µ TAI (R) R9 5.1 k BIAS 3 R11 18 k RAI (R) 4 C5 0.47 µ N.C. 5 C8. µ R1 k PB OUT (R) 6 C6 00 p SSI (R) 7 C7 00 p SS (R) 8 R13 560 C9 00 p CCR (R) 9 HLS DET (R) 10 C10 µ LLS DET (R) 11 C1. µ C11 µ REC OUT (R) 1 C31 µ B C/B 13 C R16 k SW7 ON/ OFF 14 C3 µ R17 k SW6 REC /PB 15 C33 µ R18 k SW5 TAPE/ RADIO 16 R19 k SW4 10µ /70µ 17 R0 k SW3 F/R 18 R1 k SW OFF ON TAP RAD FOR REV SW14 MS GV 19 R k SW1 PB REC 10 µ 70 µ SER REP D GND 0 SW13 SW1 SW11 SW10 SW9 SW8 R3 3.9 k MS OUT 1 ON OFF R10 5.1 k SW17 MSOUT RECOUT(R) PBOUT(R) SW18 AC VM1 AUDIO SG EQOUT(R) RECOUT(R) PBOUT(R) R EQOUT(R) SW19 SW0 R14 10 k R15 10 k Unit R: C: F Ω NOISE METER OSCILLO SCOPE DISTORTION ANALYZER AC VM Noise meter with CCIR/ARM filter and DIN-AUDIO filter Note 1) Resistor tolerance are ± 1% ) Capacitor tolerance are ± 1% DC VM1 DC SOURCE1 C9 100 µ A GND Note : The capacitor (C9) should be connected. It's recommended to be connected close to the IC. DC SOURCE 5 V DC SOURCE3 D GND L Rev.1, Nov. 199, page 10 of 66

Functional Description Power Supply Range series are provided with four line output level, which will permit on optimum overload margin for power supply conditions. And this series are designed to operate on either single supply or split supply. Table 1 Supply Voltage Item HA1174 HA1175 HA1177 Single supply 7.0 V to 16.0 V 8.0 V to 16.0 V 9.5 V to 16.0 V 1.0 V to 16.0 V Split supply GND level ±5.0 V to 8.0 V ±5.0 V to 8.0 V ±5.0 V to 8.0 V ±6.0 V to 8.0 V V EE level ±3.5 V to ±8.0 V ±4.0 V to 8.0 V ±4.8 V to 8.0 V ±6.0 V to 8.0 V A. The lower limit of supply voltage depends on the line output reference level. The minimum value of the overload margin is specified as 1 db by Dolby Laboratories. B. In case of using digital GND terminal referring to GND level, operating voltage range varies depending on the condition at power on. On using the /174/175, use within the following ranges to avoid latch-ups. When power on in mode: ±5.0 V to ±8.0 V When power on in NR-ON mode: ±5.7 V to ±8.0 V C. In the reverse-voltage conditions such as D-GND is higher than V CC or D-GND is lower than GND, excessive current flows into the D-GND to destory this IC. To prevent such destruction, pay attention to the followings on using. Single power supply : Short-circuit the D-GND and GND directory on the board mounting this IC. Split power supply : Avoid reverse conditions of D-GND and V CC or V EE voltage, including transient-time of power ON/OFF. Reference Voltage For the single supply operation these devices provide the reference voltage of half the supply voltage that is the signal grounds. As the peculiarity of these devices, the capacitor for the ripple filter is very small about 1/100 compared with their usual value. The Reference voltage are provided for the left channel and the right channel separately. The block diagram is shown as figure 1. Rev.1, Nov. 199, page 11 of 66

V CC 47 V REF (L) L channel reference 5 MS VREF Music sensor reference R channel reference GND 49 50 40 RIP C 1 µ F 5 V REF (R) Figure 1 The Block Diagram of Reference Voltage Supply Operating Mode Control series provide fully electronic switching circuits. And each operating mode control are controlled by parallel data (DC voltage). Table Threshold Voltage (V TH ) Pin No. Low High Unit Test condition 13, 14, 15, 16, to 1.5 3.5 to 5.3 V Input Pin 17, 18, 19 k V Measure Rev.1, Nov. 199, page 1 of 66

Table 3 Switching Truth Table Pin No. Low High 13 B - NR C - NR 14 NR - OFF NR - ON 15 PB REC 16 TAPE RADIO 17 10 µ (NORMAL) 70 µ (METAL or CHROME) 18 FORWARD REVERSE 19 SER (FF or REV) REP (NORMAL SPEED) Notes: 1. Voltages shown above are determined by internal circuits of LSI when take pin 0 (DGND pin) as reference pin. On split supply use, same V TH can be offered by connecting DGND pin to GND pin. This means that it can be controlled directly by microprocessor. But power supply should be over ±5 V, notwithstanding the prescription of table 1.. Each pins are on pulled down with 100 kω internal resistor. Therefore, it will be low-level when each pins are open. 3. Over shoot level and under shoot level of input signal must be the standardized (High: 5.3 V, Low: V) 4. When connecting microcomputer or Logic-IC with series directly, there is apprehension of rush-current under some transition timming of raising voltage or falling voltage at V CC ON/OFF. On using, connect protective resistors of 10 to kω to all the control pins. It is shown is test circuit on this data sheet. And pins fixed to low level should be preferably open. 5. Pay attention not to make digital GND voltage lower than GND voltage. Rev.1, Nov. 199, page 13 of 66

Input Block Diagram and Level Diagram R34 5.1 k R35 5.1 k EQ OUT C4 µ TAI RAI : 300 mvrms ( 8. dbs) HA1174: 450 mvrms ( 4.7 dbs) HA1175: 580 mvrms (.5 dbs) HA1177: 775 mvrms (0.0 dbs) PBOUT R39 180 R38 330 k R36 1 k R37 18 k C5 µ EQ OUT-M EQ AMP NFI RIN 30 mvrms ( 8. dbs) 4.4 mvrms ( 5. dbs) INPUT AMP NR circuit RECOUT 300 mvrms ( 8. dbs) VREF 0.6 mvrms ( 6. dbs) FIN Unit R: Ω C: F The each level shown above is typical value when offering PBOUT level to PBOUT pin. (EQ AMP Gv = 40 db f = 1 khz) Figure Input Block Diagram Adjustment of Playback Dolby Level After replace R34 and R35 with a half-fix volume of 10 kω, adjust RECOUT level to be Dolby level with playback mode. Note on Connecting with Tape Head to IC This IC has no internal resistor to give the DC bias current to equalizer amp., therefore the DC bias current will give through the head. This IC provides the Vref buffer output pin for Rch and Lch separately (has two Vref terminal). In case of use that the Rch and Lch reference of head are connected commonly, please use one of Vref terminals of IC (47 pin or 5 pin) for head reference. If both 47 pin and 5 pin of IC are connected, rush current give the great damage to IC. The application circuit is shown in figure 3. Rev.1, Nov. 199, page 14 of 66

43 44 45 46 47 R/F V REF(L) 48 49 GND 50 GND 51 5 53 V REF(R) R/F 54 55 56 Figure 3 Application Circuit Rev.1, Nov. 199, page 15 of 66

The Sensitivity Adjustment of a Music Sensor Adjusting MS AMP. gain by external resistor, the sensitivity of music sensor can set up. R8 R6 R7 R5 C14 V CC DV CC µ R4 330 k C13 0.33 µ C8 4700 p TAI (L) X1 MS VREF FFI NOI MA OUT MSI MS DET R L I L L R signal addition circuit 6 db LPF 6 db 5 khz MS AMP DET MS OUT D GND Microcomputer X1 100 k D GND TAI (R) Unit R: Ω C: F Figure 4 Music Sensor Block Diagram Rev.1, Nov. 199, page 16 of 66

Gv [db] Gv1 f 1 f Normal speed Gv f 3 FF or REV f 4 10 100 1 k 10 k 5 k 100 k f [Hz] 1. Normal mode Gv1 = 0log 1 R7 [db] R8 1 f1= [Hz], f = 5 k[hz] π C14 100 k. FF or REW mode Gv = 0 log 1 R5 [db] R6 1 f3= [Hz],f4 = 5k [Hz] π C8 R6 Figure 5 Frequency Response A standard level of TAI pin is 30 mvrms and the gain for TAI to MS AMP input is 10, therefore, the other channel sensitivity of music sensor (S) is computed by the formula mentioned below. S = 0 log C 30 1 10 A [db] A = MS AMP. gain (B db) S = 7.3 B [db] C = 130 mvrms (typ.) S is 6 db up in case of the both channels. C = The sensing level of music sensor Rev.1, Nov. 199, page 17 of 66

Music Sensor Output (MS OUT) As for the internal circuit of music sensor block, music sensor out pin is connected to the collector of NPN Type directly, Output level will be high when sensing no signal. And output level will be low when sensing signal. Connection with microcomputer, design I L at 1 ma typ. I L = DV CC MSOUT Lo * R L * MSOUT Lo : Sensing signal (about 1 V) Notes: 1. Supply voltage of MS OUT pin must be less than V CC voltage.. MS V CC pin and V CC pin are required the same voltage. The Tolerances of External Components for Dolby NR-block For adequate Dolby NR tracking response, take external components shown below. R3 k ±% C1 00 p ±5% C0 00 p ±5% R31 560 ±% C18 00 p ±5% C17 µ ±10% C16 µ ±10% 37 36 35 34 33 PB OUT (L) SS1 (L) SS (L) CCR (L) HLS DET (L) 3 LLS DET (L) Series (PB 1 Chip) BIAS 3 PB OUT (R) SS1 (R) SS (R) CCR (R) HLS DET(R) R11 18 k C7 R13 C9 C10 R1 ±% 00 p 560 00 p µ k ±% ±5% C6 00 p ±5% ±% ±5% ±10% LLS DET(R) 6 7 8 9 10 11 C11 µ ±10% Unit R: Ω C: F Figure 6 Tolerances of External Components PB Equalizer for Double Speed PB equalizer can be design for double speed by using external components shown in figure 7. Application data is shown in figure 8. Rev.1, Nov. 199, page 18 of 66

4.7 µ R35 5.1 k 5 µ k VR1 R No µ Do No : Normal speed Do : Double speed * Please ajust RECOUT level to be Dolby level with volume of VR 1. EQ OUT TAI RAI PBOUT R38 330 k R39 180 R36 1 k R37 18 k C5 µ EQ OUT-M EQ AMP. NFI RIN INPUT AMP. NR circuit RECOUT VREF FIN Unit R: Ω C: F Figure 7 Application Circuit for Double Speed 60 50 G V (db) 40 30 10 µ 70 µ Normal speed 0 R =.7 k R =. k R = 1.8 k Double speed 10 0 100 1 k 10 k R = 1.3 k 100 k * OUTPUT = TAIpin Figure 8 Application data Rev.1, Nov. 199, page 19 of 66

Series Circuit For Split Supply R30 10 k R9 10 k EQOUT (L) PBOUT (L) SW RECOUT (L) ON SW1 EQOUT(L) SW3 SW4 OFF L R RAI (L) PBOUT(L) SW5 EQIR (L) EQIF(L) R33 5.1 k C1 00 p R8 18 k RECOUT(L) R7 330 k C7 µ R41 680 C6 µ R40 680 R39 180 R38 330 k R36 1 k R37 18 k R35 5.1 k C5 µ C4 R34 5.1 k C3 µ 0.47 µ C19. µ 49 48 47 46 45 44 43 4 41 40 39 38 37 36 35 34 33 3 31 30 9 8 7 6 5 4 3 GND FIN (L) VREF (L) RIN (L) NFI (L) EQ OUT-M (L) EQ OUT (L) N.C. TAI (L) RIP RAI (L) N.C. PB OUT (L) R3 k SS1 (L) C0 00 p SS (L) R31 560 CCR (L) C18 00 p HLS DET (L) C17 µ C15. µ LLS DET (L) C16 µ /4/5/7 (PB 1 Chip) REC OUT (L) R6 33 k MS VREF C8 4700 p R5 47 k FFI NOI MS GND MA OUT C14 µ R4 330 k MSI MS DET C13 0.33 µ MS V CC V CC SW15 L R SW16 EQIF(R) EQIR (R) RAI (R) GND 50 C1 µ FIN (R) 51 R1 680 VREF (R) 5 C µ RIN (R) 53 R 680 NFI (R) 54 C3 µ R3 180 EQ OUT-M (R) 55 R6 18 k R5 330 k EQ OUT (R) R7 1 k 56 N.C. 1 R8 5.1 k C4 µ TAI (R) R9 5.1 k BIAS 3 R11 18 k RAI (R) 4 C5 0.47 µ N.C. 5 C8. µ R1 k PB OUT (R) 6 C6 00 p SSI (R) 7 C7 00 p SS (R) 8 R13 560 C9 00 p CCR (R) 9 HLS DET (R) 10 C10 µ LLS DET (R) 11 C1. µ C11 µ REC OUT (R) 1 C31 µ B C/B 13 C R16 k SW7 ON/ OFF 14 C3 µ R17 k SW6 REC /PB 15 C33 µ R18 k SW5 TAPE/ RADIO 16 R19 k SW4 10µ /70µ 17 R0 k SW3 F/R 18 R1 k SW OFF ON TAP RAD FOR REV SW14 MS GV 19 R k SW1 PB REC 10 µ 70 µ SER REP D GND 0 SW13 SW1 SW11 SW10 SW9 SW8 R3 3.9 k MS OUT 1 ON OFF R10 5.1 k SW17 MSOUT RECOUT(R) PBOUT(R) SW18 AC VM1 AUDIO SG EQOUT(R) RECOUT(R) PBOUT(R) R EQOUT(R) SW19 SW0 R14 10 k R15 10 k Unit R: C: F Ω NOISE METER OSCILLO SCOPE DISTORTION ANALYZER AC VM Noise meter with CCIR/ARM filter and DIN-AUDIO filter DC VM1 DC SOURCE1 C9 100 µ (V CC ) A GND C30 100 µ DC SOURCE (V EE ) Note : In case of using digital GND terminal referring to V EE level, separate digital GND and analog GND and connect digital GND terminal to V EE. DC SOURCE 5 V DC SOURCE3 D GND L Rev.1, Nov. 199, page 0 of 66

Typical Characteristic Curves Quiescent Current vs. Supply Voltage 17 /174/175/177 Quiescent Current I CC (ma) 16 15 14 (70µ) (10µ) (10µ) (10µ) 13 6 8 10 1 14 16 18 Supply Voltage V (V) CC TAlin Input Amp. Gain vs. Frequency 18 -OFF, RECout-OFF/B/C Gain (db) 14 10 6 V CC= 9V 0 100 1 k 10 k 100 k Rev.1, Nov. 199, page 1 of 66

RAlin Input Amp. Gain vs. Frequency 18 Gain (db) 14 10 -OFF/B/C, RECout-OFF 6 V CC= 9V RECmode 0 100 1 k 10 k 100 k Rev.1, Nov. 199, page of 66

4 1 18 Encode Boost vs. Frequency (1) Vin = 60 db V CC = 7 V, 9 V, 16 V 16 V Encode Boost (db) 15 1 9 6 3 7 V, 9 V 40 db 30 db 0 db 0 10 db 3 6 100 300 1k 3k 10k 15k 0 db Encode Boost (db) 10.8 9.6 8.4 7. 6.0 4.8 3.6.4 1. 0 Encode Boost Frequency () Vin = 40 db V = 7 V, 9 V, 16 V CC 16 V 7 V, 9 V 30 db 0 db 10 db 0 db 1. 100 300 1 k 3 k 10 k 0 k Rev.1, Nov. 199, page 3 of 66

Decode Cut (db) 6 3 0 3 6 9 1 15 18 1 Decode Cut vs. Frequency (1) Vin = 0 db V = 7 V, 9 V, 16 V CC 0 db 7 V, 9 V 30 db 40 db 16 V 60 db 10 db 4 100 300 1 k 3 k 10 k 15 k 1. 0 1. Decode Cut vs. Frequency () Vin = 0 db 10 db Decode Cut (db).4 3.6 4.8 6.0 7. 7 V, 9 V 16 V 0 db 30 db 8.4 9.6 V CC = 7 V, 9 V, 16 V 40 db 10.8 100 300 1 k 3 k 10 k 0 k Rev.1, Nov. 199, page 4 of 66

Maximum Output Level Vo max (db) Maximum Output Level vs. Supply Voltage (1) 5 T.H.D. = 1 % 0 db = 300 mvrms f = 1 khz 0 15 Maximum Output Level Vo max (db) Maximum Output Level vs. Supply Voltage () 5 T.H.D. = 1 % 0 db = 300 mvrms f = 1 khz RECmode RECout 0 15 10 6 8 10 1 14 16 Supply Voltage V CC(V) 10 6 8 10 1 14 16 Supply Voltage V CC(V) Signal to Noise Ratio S/N (db) Signal to Noise Ratio vs. Supply Voltage (1) 100 f = 1 khz CCIR / ARM 90 80 Signal to Noise Ratio S/N (db) Signal to Noise Ratio vs. Supply Voltage () 90 80 70 f = 1 khz CCIR / ARM RECmode RECout 70 6 8 10 1 14 16 Supply Voltage V CC(V) 60 6 8 10 1 14 16 Supply Voltage V CC(V) Rev.1, Nov. 199, page 5 of 66

Total Harmonic Distortion vs. Supply Voltage (1) 1.0 Total Harmonic Distortion vs. Supply Voltage () 1.0 0.5 0.0 f = 10 khz 100 Hz 1 khz 6 8 10 1 14 16 Supply Voltage V CC (V) 0.5 0.0 f = 100Hz 10 khz 1 khz 6 8 10 1 14 16 Supply Voltage V CC (V) Total Harmonic Distortion vs. Supply Voltage (3) 1.0 0.5 0.0 f = 100 Hz 10 khz 1 khz Total Harmonic Distortion vs. Supply Voltage (4) 1.0 0.5 RECmode RECout 0.0 f = 10 khz 6 8 10 1 14 16 Supply Voltage V CC (V) 100 Hz, 1 khz 6 8 10 1 14 16 Supply Voltage V CC (V) Rev.1, Nov. 199, page 6 of 66

Total Harmonic Distortion vs. Supply Voltage (5) 1.0 Total Harmonic Distortion vs. Supply Voltage (6) 1.0 0.5 0.0 RECmode RECout f = 100 Hz 1 khz 10 khz 0.5 0.0 RECmode RECout f = 100 Hz 10 khz 1 khz 6 8 10 1 14 16 Supply Voltage V CC (V) 6 8 10 1 14 16 Supply Voltage V CC (V) Total Harmonic Distortion vs. Output Level (1) 5 V CC = 9 V 0 db = 300 mvrms 1.0 0.5 f = 10 khz 100 Hz 0.0 1 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) Rev.1, Nov. 199, page 7 of 66

Total Harmonic Distortion vs. Output Level () 5 1.0 0.5 V CC = 9 V 0 db = 300 mvrms f = 100 Hz 0.0 10 khz 1 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) Total Harmonic Distortion vs. Output Level (3) 5 1.0 0.5 0.0 V CC = 9 V 0 db = 300 mvrms f = 100 Hz 10 khz 1 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) Rev.1, Nov. 199, page 8 of 66

Total Harmonic Distortion vs. Output Level (4) 5 V CC = 9 V 0 db = 300 mvrms 1.0 RECmode RECout 0.5 f = 10 khz 0.0 100 Hz, 1 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) Total Harmonic Distortion vs. Output Level (5) 5 1.0 0.5 0.0 V CC = 9 V 0 db = 300 mvrms RECmode RECout f = 100 Hz 1 khz 10 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) Rev.1, Nov. 199, page 9 of 66

Total Harmonic Distortion vs. Output Level (6) 5 V CC = 9 V 0 db = 300 mvrms RECmode 1.0 RECout f = 100 Hz 0.5 0.0 1 khz 10 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) 0.0 Total Harmonic Distortion vs. Frequency (1) Vin = 10 db 10 db 0 db 100 00 500 1 k k 5 k 10 k 0 k Rev.1, Nov. 199, page 30 of 66

0.0 Total Harmonic Distortion vs. Frequency () 100 00 500 1 k k 5 k 10 k 0 k Vin = 10 db 10 db 0 db 5 1.0 0.5 0.0 Total Harmonic Distortion vs. Frequency (3) Vin = 10 db 10 db 0 db 100 00 500 1 k k 5 k 10 k 0 k Rev.1, Nov. 199, page 31 of 66

0.0 Total Harmonic Distortion vs. Frequency (4) Vin = 10 db RECmode RECout 10 db 0 db 100 00 500 1 k k 5 k 10 k 0 k 0.0 Total Harmonic Distortion vs. Frequency (5) Vin = 10 db 10 db 0 db RECmode RECout 100 00 500 1 k k 5 k 10 k 0 k Rev.1, Nov. 199, page 3 of 66

5 1.0 0.5 0.0 Total Harmonic Distortion vs. Frequency (6) RECmode RECout Vin = 10 db 10 db 0 db 100 00 500 1 k k 5 k 10 k 0 k 0 40 Crosstalk vs. Frequency (1) V CC = 9V Radio Tape Crosstalk (db) 60 80 100 10 0 50 100 00 500 1 k k 5 k 10 k 0 k Rev.1, Nov. 199, page 33 of 66

0 40 Crosstalk vs. Frequency () V CC = 9V Radio Tape RECmode RECout Crosstalk (db) 60 80 100 10 0 50 100 00 500 1 k k 5 k 10 k 0 k 0 40 Crosstalk vs. Frequency (3) V CC = 9 V L R Crosstalk (db) 60 80 100 10 0 50 100 00 500 1 k k 5 k 10 k 0 k Rev.1, Nov. 199, page 34 of 66

0 40 Crosstalk vs. Frequency (4) V CC = 9 V R L Crosstalk (db) 60 80 100 10 0 50 100 00 500 1 k k 5 k 10 k 0 k 0 40 V CC = 9 V Tape Radio Crosstalk vs. Frequency (5) Crosstalk (db) 60 80 100 10 0 50 100 00 500 1 k k 5 k 10 k 0 k Rev.1, Nov. 199, page 35 of 66

0 Crosstalk vs. Frequency (6) 40 V CC = 9 V Forward Reverse Crosstalk (db) 60 80 100 10 0 50 100 00 500 1 k k 5 k 10 k 0 k 0 40 Crosstalk vs. Frequency (7) V CC = 9 V Reverse Forward Crosstalk (db) 60 80 100 10 0 50 100 00 500 1 k k 5 k 10 k 0 k Rev.1, Nov. 199, page 36 of 66

0 0 Crosstalk vs. Frequency (8) V CC = 9 V L R Crosstalk (db) 40 60 80 100 0 50 100 00 500 1 k k 5 k 10 k 0 k 0 0 Crosstalk vs. Frequency (9) V CC = 9 V R L Crosstalk (db) 40 60 80 100 0 50 100 00 500 1 k k 5 k 10 k 0 k Rev.1, Nov. 199, page 37 of 66

Ripple Rejection Ratio R.R.R. (db) 0 0 40 60 80 Ripple Rejection Ratio vs. Frequency 100 0 50 100 00 500 1 k k 5 k 10 k 0 k 70 /174/175/177 EQ-AMP. Gain vs. Frequency 60 V CC = 9 V Gain (db) 50 40 30 10 µ 70 µ 0 0 50 100 00 500 1 k k 5 k 10 k 0 k 50 k 100 k Rev.1, Nov. 199, page 38 of 66

Maximum Output Voltage Vo max (db) 40 35 30 EQOUT Maximum Output Level vs. Supply Voltage /174/175/177 EQin EQout 0 db = 60 mvrms (EQout) f = 1 khz T.H.D. = 1% 5 6 8 10 1 14 16 Supply Voltage V CC (V) Signal to Noise Ratio S/N (db) Signal to Noise Ratio vs. Supply Voltage 65 (70µ) (10µ) 60 55 (70µ) (10µ) (70µ) (10µ) DIN-AUDIO f = 1 khz 0 db = 300 mvrms 50 6 8 10 1 14 16 Supply Voltage V CC (V) Tortal Harmonic Distortion (%) 1.0 Total Harmonic Distortion vs. Supply Voltage f = 1 khz Vin = 6 db EQin (70µ, 10µ) (10µ) (70µ) (10µ) (70µ) 6 8 10 1 14 16 Supply Voltage V CC (V) Rev.1, Nov. 199, page 39 of 66

EQOUT, PBOUT T.H.D. (%) 5 10 EQOUT, PBOUT T.H.D. vs. Output Voltage (EQin EQOUT, PBOUT) : : : : : : 1 : : 1 1 V CC = 9 V f = 1kHz EQout EQout 1 1 1 10µ 10µ 10µ 70µ 70µ 70µ 10µ 70µ 0 db = 300 mvrms () 1 0 db = 60 mvrms (EQout) 0 10 0 10 0 30 Output Voltage (db) 1 1 1 1 1 1 Total Harmonic Distortion (%) 0.5 0.0 V CC = 9 V EQin Total Harmonic Distortion vs. Frequency (10µ) (70µ) NR-ON (10µ) NR-ON (70µ) 0 50 100 00 500 1 k k 5 k 10 k 0 k Rev.1, Nov. 199, page 40 of 66

50 /174/175/177 MS-AMP. Gain vs. Frequency 40 MAOUTout MSIout Gain (db) 30 0 MAOUTout Normal FF or REV 10 MSIout 0 0 50 100 00 500 1 k k 5 k 10 k 0 k 50 k 100 k 15 /174/175/177 MS Sensing Level vs. Frequency 5 MS Sensing Level (db) 5 15 FF or REW 5 Normal 35 10 0 50 100 00 500 1 k k 5 k 10 k 0 k 50 k 100 k Rev.1, Nov. 199, page 41 of 66

Signal Sensing Time (ms) 500 00 100 50 0 Signal Sensing Time vs. Resistance /174/175/177 V CC = 9 V f = 5 khz TAI 41 MSout 1 REPmode : 0 db : 0 db 0 db : 300 mvrms MSout V CC C13 0.33 m MS DET 4 10 50 k 100 k 00 k 500 k 1 M Resistance R4 ( W) R4 Signal Sensing Time (ms) Signal Sensing Time vs. Capacitance 50 /174/175/177 V CC = 9 V f = 5 khz 0 TAI 41 MSout 1 REPmode 10 5 1.0 0.5 MSout C13 4 : 0 db : 0 db : 30 db 0 db = 300 mvrms 0.5 Capacitance C13 ( mf) R4 330 k Rev.1, Nov. 199, page 4 of 66

HA1174 6 TAlin Input Amp. Gain vs. Frequency HA1174 -OFF RECout-OFF/B/C Gain (db) 18 14 10 V CC = 9 V 6 0 100 1 k 10 k 100 k 6 RAlin Input Amp. Gain vs. Frequency HA1174 -OFF/B/C Gain (db) 18 14 RECout-OFF 10 V CC = 9 V RECmode 6 0 100 1 k 10 k 100 k Rev.1, Nov. 199, page 43 of 66

4 1 18 Encode Boost vs. Frequency (1) HA1174 Vin = 60 db V CC = 8 V, 9 V, 16 V 16 V Encode Boost (db) 15 1 9 6 3 8 V, 9 V 40 db 30 db 0 db 0 10 db 3 6 100 300 1 k 3 k 10 k 15 k 0 db Encode Boost (db) 10.8 9.6 8.4 7. 6.0 4.8 3.6.4 1. 0 Encode Boost vs. Frequency () HA1174 Vin = 40 db V = 8 V, 9 V, 16 V CC 16 V 8 V, 9 V 30 db 0 db 10 db 0 db 1. 100 300 1 k 3 k 10 k 0 k Rev.1, Nov. 199, page 44 of 66

6 3 0 3 Decode Cut vs. Frequency (1) HA1174 Vin = 0 db V = 8 V, 9 V, 16 V CC 0 db 10 db Decode Cut (db) 6 9 1 15 8 V, 9 V 16 V 30 db 40 db 18 1 60 db 4 100 300 1 k 3 k 10 k 15 k 1. 0 1. HA1174 Decode Cut vs. Frequency () Vin = 0 db 10 db Decode Cut (db).4 3.6 4.8 6.0 8 V, 9 V 16 V 0 db 30 db 7. 8.4 9.6 V CC= 8 V, 9 V, 16 V 40 db 10.8 100 300 1 k 3 k 10 k 0 k Rev.1, Nov. 199, page 45 of 66

Maximum Output Level Vo max (db) 5 0 15 Maximum Output Level vs. Supply Voltage (1) HA1174 T.H.D. = 1 % 0 db = 450 mvrms f = 1 khz,nb-off Maximum Output Level Vo max (db) 5 0 15 Maximum Output Level vs. Supply Voltage () HA1174 T.H.D. = 1 % 0 db = 300 mvrms f = 1 khz RECmode RECout,NB-OFF 10 6 8 10 1 14 16 Supply Voltage V CC (V) 10 6 8 10 1 14 16 Supply Voltage V CC (V) Signal to Noise Ratio S/N (db) Signal to Noise Ratio vs. Supply Voltage (1) 100 HA1174 f = 1 khz CCIR/ARM 90 80 Signal to Noise Ratio S/N (db) Signal to Noise Ratio vs. Supply Voltage () 90 HA1174 80 70 f = 1 khz CCIR/ARM RECmode RECout 70 6 8 10 1 14 16 Supply Voltage V CC (V) 60 6 8 10 1 14 16 Supply Voltage V CC (V) Rev.1, Nov. 199, page 46 of 66

Total Harmonic Distortion vs. Output Level (1) 5 HA1174 1.0 0.5 V CC = 9 V 0 db = 450 mvrms f = 100 Hz 10 khz 1 khz 0.0 15 10 5 0 5 10 15 0 Output Level Vout (db) Total Harmonic Distortion vs. Output Level () 5 HA1174 V CC = 9 V 0 db = 450 mvrms 1.0 0.5 f = 100 Hz 1 khz 10 khz 0.0 15 10 5 0 5 10 15 0 Output Level Vout (db) Rev.1, Nov. 199, page 47 of 66

Total Harmonic Distortion vs. Output Level (3) 5 HA1174 1.0 0.5 V CC = 9 V 0 db = 450 db f = 100 Hz 10 khz 1 khz 0.0 15 10 5 0 5 10 15 0 Output Level Vout (db) Total Harmonic Distortion vs. Output Level (4) 5 HA1174 V CC = 9 V 0 db = 300 mvrms RECmode 1.0 RECout 0.5 f = 100 Hz 10 khz 0.0 1 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) Rev.1, Nov. 199, page 48 of 66

Total Harmonic Distortion vs. Output Level (5) 5 HA1174 V CC = 9 V 0 db = 300 mvrms RECmode 1.0 RECout 0.5 f = 100 Hz 1 khz 10 khz 0.0 15 10 5 0 5 10 15 0 Output Level Vout (db) Total Harmonic Distortion vs. Output Level (6) 5 HA1174 V CC = 9 V 0 db = 300 mvrms RECmode 1.0 RECout f = 100 Hz 0.5 10 khz 1 khz 0.0 15 10 5 0 5 10 15 0 Output Level Vout (db) Rev.1, Nov. 199, page 49 of 66

0 HA1174 Ripple Rejection Ratio vs. Frequency Ripple Rejection Ratio R.R.R. (db) 0 40 60 80 100 0 50 100 00 500 1 k k 5 k 10 k 0 k HA1175 8 TAlin Input Amp. Gain vs. Frequency HA1175 -OFF 4 Gain (db) 0 16 RECout-OFF/B/C 1 V CC = 1 V 8 0 100 1 k 10 k 100 k Rev.1, Nov. 199, page 50 of 66

8 RAlin Input Amp. Gain vs. Frequency HA1175 4 -OFF/B/C Gain (db) 0 16 RECout-OFF 1 V CC = 1 V RECmode 8 0 100 1 k 10 k 100 k 4 1 18 Encode Boost vs. Frequency (1) HA1175 Vin = 60 db V CC = 9.5 V, 1 V, 16V 16 V Encode Boost (db) 15 1 9 6 3 9.5 V, 1 V 40 db 30 db 0 db 0 10 db 3 6 100 300 1k 3k 10k 15k 0 db Rev.1, Nov. 199, page 51 of 66

Encode Boost (db) 10.8 9.6 8.4 7. 6.0 4.8 3.6.4 1. 0 Encode Boost vs. Frequency () HA1175 Vin = 40 db V = 9.5 V, 1 V, 16 V CC 16 V 9.5 V, 1 V 30 db 0 db 10 db 0 db 1. 100 300 1k 3k 10k 0k 6 3 0 3 Decode Cut vs. Frequency (1) HA1175 Vin = 0 db V CC= 9.5 V, 1 V, 16 V 10 db 0 db Decode Cut (db) 6 9 1 15 16 V 9.5 V, 1V 30 db 40 db 18 60 db 1 4 100 300 1 k 3 k 10 k 15 k Rev.1, Nov. 199, page 5 of 66

1. 0 1. HA1175 Decode Cut vs. Frequency () Vin = 0 db 10 db Decode Cut (db).4 3.6 4.8 6.0 9.5 V, 1 V 16 V 0 db 30 db 7. 8.4 9.6 V CC= 9.5 V, 1 V, 16 V 40 db 10.8 100 300 1 k 3 k 10 k 0 k Maximum Output Level Vo max (db) 5 0 15 Maximum Output Level vs. Supply Voltage (1) HA1175 T.H.D. = 1 % 0 db = 580 mvrms f = 1 khz, Maximum Output Level Vo max (db) 5 0 15 Maximum Output Level vs. Supply Voltage () HA1175 T.H.D. = 1 % 0 db = 300 mvrms f = 1 khz RECmode RECout, 10 8 10 1 14 16 Supply Voltage V CC (V) 10 8 10 1 14 16 Supply Voltage V CC (V) Rev.1, Nov. 199, page 53 of 66

Signal to Noise Ratio S/N (db) 100 90 80 Signal to Noise Ratio vs. Supply Voltage (1) HA1175 f = 1 khz CCIR/ARM Signal to Noise Ratio S/N (db) 90 80 70 Signal to Noise Ratio vs. Supply Voltage () HA1175 f = 1 khz CCIR/ARM RECmode RECout 70 8 10 1 14 16 Supply Voltage V CC (V) 60 8 10 1 14 16 Supply Voltage V CC (V) 0.0 Total Harmonic Distortion vs. Output Level (1) 5 HA1175 1.0 0.5 V CC = 1 V 0 db = 580 mvrms 100 Hz f = 10 khz 1 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) Rev.1, Nov. 199, page 54 of 66

Total Harmonic Distortion vs. Output Level () 5 HA1175 V CC = 1 V 0 db = 580 mvrms 1.0 0.5 f = 100 Hz 10 khz 0.0 1 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) Total Harmonic Distortion vs. Output Level (3) 5 HA1175 V CC = 1 V 0 db = 580 mvrms 1.0 0.5 f = 100 Hz 10 khz 1 khz 0.0 15 10 5 0 5 10 15 0 Output Level Vout (db) Rev.1, Nov. 199, page 55 of 66

Total Harmonic Distortion vs. Output Level (4) 5 HA1175 V CC = 1 V 0 db = 300 mvrms RECmode 1.0 RECout 0.5 f = 100 Hz 10 khz 0.0 1 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) Total Harmonic Distortion vs. Output Level (5) 5 HA1175 1.0 0.5 V CC = 1 V 0 db = 300 mvrms RECmode RECout f = 100 Hz 1 khz 10 khz 0.0 15 10 5 0 5 10 15 0 Output Level Vout (db) Rev.1, Nov. 199, page 56 of 66

Total Harmonic Distortion vs. Output Level (6) 5 HA1175 V CC = 1 V 0 db = 300 mvrms RECmode 1.0 RECout f = 100 Hz 0.5 0.0 10 khz 1 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) 0 HA1175 Ripple Rejection Ratio vs. Frequency Ripple Rejection Ratio R.R.R. (db) 0 40 60 80 100 0 50 100 00 500 1 k k 5 k 10 k 0 k Rev.1, Nov. 199, page 57 of 66

HA1177 30 TAlin Input Amp. Gain vs. Frequency HA1177 -OFF 6 Gain (db) 18 RECout-OFF/B/C 14 V CC = 14 V 10 0 100 1 k 10 k 100 k 30 RAlin Input Amp. Gain vs. Frequency HA1177 6 -OFF/B/C Gain (db) 18 RECout-OFF 14 V CC = 14 V RECmode 10 0 100 1 k 10 k 100 k Rev.1, Nov. 199, page 58 of 66

4 1 18 Encode Boost vs. Frequency (1) HA1177 Vin = 60 db V CC = 1 V, 14 V, 16 V Encode Boost (db) 15 1 9 6 3 1 V, 14 V 16 V 40 db 30 db 0 db 0 10 db 3 6 100 0 db 300 1 k 3 k 10 k 15 k Encode Boost (db) 10.8 9.6 8.4 7. 6.0 4.8 3.6.4 1. 0 Encode Boost vs. Frequency () HA1177 Vin = 40 db V = 1 V, 14 V, 16 V CC 16 V 1 V, 14 V 30 db 0 db 10 db 0 db 1. 100 300 1 k 3 k 10 k 0 k Rev.1, Nov. 199, page 59 of 66

6 3 0 3 Decode Cut vs. Frequency (1) HA1177 Vin = 0 db V CC= 1 V, 14 V, 16 V 10 db 0 db Decode Cut (db) 6 9 1 15 1 V, 14 V 16 V 30 db 40 db 18 60 db 1 4 100 300 1 k 3 k 10 k 15 k 1. 0 1. HA1177 Decode Cut vs. Frequency () Vin = 0 db 10 db Decode Cut (db).4 3.6 4.8 6.0 7. 1 V, 14 V 16 V 0 db 30 db 8.4 9.6 V CC= 1 V, 14 V, 16 V 40 db 10.8 100 300 1 k 3 k 10 k 0 k Rev.1, Nov. 199, page 60 of 66

Maximum Output Level Vo max (db) 0 15 Maximum Output Level vs. Supply Voltage (1) HA1177 T.H.D. = 1% 0 db = 775 mvrms f = 1 khz, Maximum Output Level Vo max (db) 0 15 Maximum Output Level vs. Supply Voltage () HA1177 T.H.D. = 1% 0 db = 300 mvrms f = 1 khz RECmode RECout, 10 10 1 14 16 Supply Voltage V CC (V) 10 10 1 14 16 Supply Voltage V CC (V) Signal to Noise Ratio S/N (db) Signal to Noise Ratio vs. Supply Voltage (1) 100 HA1177 f = 1 khz CCIR/ARM 90 80 Signal to Noise Ratio S/N (db) Signal to Noise Ratio vs. Supply Voltage () 90 HA1177 80 70 f = 1 khz CCIR/ARM RECmode RECout 70 10 1 14 16 Supply Voltage V CC (V) 60 10 1 14 16 Supply Voltage V CC (V) Rev.1, Nov. 199, page 61 of 66

Total Harmonic Distortion vs. Output Level (1) 5 HA1177 1.0 0.5 0.0 V CC = 14 V 0 db = 775 mvrms f = 10 khz 1 khz, 100 Hz 15 10 5 0 5 10 15 0 Output Level Vout (db) Total Harmonic Distortion vs. Output Level () 5 HA1177 1.0 0.5 0.0 V CC = 14 V 0 db = 775 mvrms f = 100 Hz 1 khz 10 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) Rev.1, Nov. 199, page 6 of 66

Total Harmonic Distortion vs. Output Level (3) 5 HA1177 V CC = 14 V 0 db = 775 mvrms 1.0 0.5 f = 100 Hz 0.0 1 khz 10 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) Total Harmonic Distortion vs. Output Level (4) 5 HA1177 1.0 0.5 0.0 V CC = 14 V 0 db = 300 mvrms RECmode RECout f = 100 Hz 10 khz 1 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) Rev.1, Nov. 199, page 63 of 66

Total Harmonic Distortion vs. Output Level (5) 5 HA1177 1.0 0.5 0.0 V CC = 14 V 0 db = 300 mvrms RECmode RECout f = 1 khz 100 Hz 10 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) Total Harmonic Distortion vs. Output Level (6) 5 HA1177 V CC = 14 V 0 db = 300 mvrms RECmode 1.0 RECout 0.5 f = 100 Hz 0.0 1 khz 10 khz 15 10 5 0 5 10 15 0 Output Level Vout (db) Rev.1, Nov. 199, page 64 of 66

0 HA1177 Ripple Rejection Ratio vs. Frequency Ripple Rejection Ratio R.R.R. (db) 0 40 60 80 100 0 50 100 00 500 1 k k 5 k 10 k 0 k Rev.1, Nov. 199, page 65 of 66

Disclaimer 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi s or any third party s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party s rights, including intellectual property rights, in connection with use of the information contained in this document.. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi s sales office for any questions regarding this document or Hitachi semiconductor products. Sales Offices Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., -6-, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 370-111 Fax: (03) 370-5109 URL NorthAmerica : http://semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia : http://sicapac.hitachi-asia.com Japan : http://www.hitachi.co.jp/sicd/indx.htm For further information write to: Hitachi Semiconductor Hitachi Europe GmbH (America) Inc. Electronic Components Group 179 East Tasman Drive, Dornacher Straße 3 San Jose,CA 95134 D-856 Feldkirchen, Munich Tel: <1> (408) 433-1990 Germany Fax: <1>(408) 433-03 Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 9 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (168) 585000 Fax: <44> (168) 585160 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #0-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-()-718-3666 Fax : <886>-()-718-8180 Telex : 3 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <85>-()-735-918 Fax : <85>-()-730-081 URL : http://www.hitachi.com.hk Copyright Hitachi, Ltd., 000. All rights reserved. Printed in Japan. Colophon.0 Rev.1, Nov. 199, page 66 of 66