Power Converters. Applications and Analysis Using PSIM Index of Exercises PSIM Prof. Herman E. Fernández H

Similar documents
POWER ISIPO 29 ISIPO 27

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota

POWER ELECTRONICS. Alpha. Science International Ltd. S.C. Tripathy. Oxford, U.K.

11. Define the term pinch off voltage of MOSFET. (May/June 2012)

Fundamentals of Power Electronics

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

Lecture 19 - Single-phase square-wave inverter

B.Tech Academic Projects EEE (Simulation)

ELG3336: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives!

POWER ELECTRONICS PO POST GRAD POS UATE 2010 AC Ch AC o Ch p o per Prepare Prep d are by: d Dr. Gamal Gam SOwilam SOwila 11 December 2016 ١

Chapter 1: Introduction

CONTENTS. Chapter 1. Introduction to Power Conversion 1. Basso_FM.qxd 11/20/07 8:39 PM Page v. Foreword xiii Preface xv Nomenclature

Grid Interconnection of Wind Energy System at Distribution Level Using Intelligence Controller

A BRUSHLESS DC MOTOR DRIVE WITH POWER FACTOR CORRECTION USING ISOLATED ZETA CONVERTER

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams.

Active Power Factor Correction for AC-DC Converter with PWM Inverter for UPS System

ABSTRACT I. INTRODUCTION

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION

Literature Review. Chapter 2

Simulation of Solar Powered PMBLDC Motor Drive

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS

COOPERATIVE PATENT CLASSIFICATION

Implementation and Design of Advanced DC/AC Inverter for Renewable Energy

A NEW SINGLE STAGE THREE LEVEL ISOLATED PFC CONVERTER FOR LOW POWER APPLICATIONS

Demonstration. Agenda

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

CHAPTER 1 INTRODUCTION

National Infotech. Electrical Drive Trainers. Developed By: : Authorized Dealer : Embedded System Solutions

tyuiopasdfghjklzxcvbnmqwerty opasdfghjklzxcvbnmqwertyuiop +90 (535) asdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdf

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications

CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER

A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form

Power Management for Computer Systems. Prof. C Wang

A Single Stage CCM Zeta Micro inverter for Solar Photovoltaic AC Module. Abstract

Power Electronics (BEG335EC )

A Three Phase Power Conversion Based on Single Phase and PV System Using Cockcraft-Walton Voltage

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLY Mamallapuram chennai

A Novel Cascaded Multilevel Inverter Using A Single DC Source

Speed control of power factor corrected converter fed BLDC motor

IMPORTANCE OF VSC IN HVDC

VERY HIGH VOLTAGE BOOST CONVERTER BASED ON BOOT STRAP CAPACITORS AND BOOST INDUCTORS USED FOR PHOTOVOLTAIC APPLICATION USING MPPT

Study on DC-DC Converters for a Pfc BLDC Motor Drive

ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives!

Frequently Asked Questions (FAQs) MV1000 Drive

In association with International Journal Scientific Research in Science and Technology

A Control Scheme for an AC-DC Single-Stage Buck-Boost PFC Converter with Improved Output Ripple Reduction

DOWNLOAD PDF SINGLE PHASE INVERTER DESIGN

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

HIGH PERFORMANCE CONTROL OF AC DRIVES WITH MATLAB/SIMULINK MODELS

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS

Single-Stage Power Electronic Converters with Combined Voltage Step-Up/Step-Down Capability

EEL 646 POWER ELECTRONICS II. Issa Batarseh. January 13, 2015


Ch.8 INVERTER. 8.1 Introduction. 8.2 The Full-Bridge Converter. 8.3 The Square-Wave Inverter. 8.4 Fourier Series Analysis

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

SIMULATION OF HIGH BOOST CONVERTER FOR CONTINUOUS AND DISCONTINUOUS MODE OF OPERATION WITH COUPLED INDUCTOR

MODELING AND SIMULATON OF THREE STAGE INTERLEAVED BOOST CONVERTER BASED WIND ENERGY CONVERSION SYSTEM

Levels of Inverter by Using Solar Array Generation System

Name of chapter & details

Power Electronics (Sample Questions) Module-1

To Study The MATLAB Simulation Of A Single Phase STATCOM And Transmission Line

CONVERTERS IN POWER VOLTAGE-SOURCED SYSTEMS. Modeling, Control, and Applications IEEE UNIVERSITATSBIBLIOTHEK HANNOVER. Amirnaser Yazdani.

P. Sivakumar* 1 and V. Rajasekaran 2

Real Implementation of a Single Sensor based PFC with Novel Converter Fed BLDC Motor Drive

Design of Single Phase Pure Sine Wave Inverter for Photovoltaic Application

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

Electrical And Electronics Engg

A New Three-Phase Interleaved Isolated Boost Converter With Solar Cell Application. K. Srinadh

Chapter 4. UMD with SRM-Based VSD System 4.1 Introduction

CHAPTER 3 H BRIDGE BASED DVR SYSTEM

Digital Control IC for Interleaved PFCs

International Journal of Advance Engineering and Research Development

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore

ANALYSIS AND DESIGN OF CONTINUOUS INPUT CURRENT MULTIPHASE INTERLEAVED BUCK CONVERTER

Experiment DC-DC converter

EE 486 Power Electronics Final Exam Coverage Prof. Ali Mehrizi-Sani

An Interleaved High-Power Fly back Inverter for Photovoltaic Applications

Regulator 2.dwg: a simplified linear voltage regulator. This is a multi-sheet template:

Three Phase Five Level Inverter with SPWM fed from Hybrid Renewable Energy Based Induction Motor Drive

LeMeniz Infotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry Call: , ,

PERFORMANCE ANALYSIS OF SOLAR POWER GENERATION SYSTEM WITH A SEVEN-LEVEL INVERTER SUDHEER KUMAR Y, PG STUDENT CHANDRA KIRAN S, ASSISTANT PROFESSOR

Power Electronics. Contents

CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM

A COMPARITIVE STUDY OF THREE LEVEL INVERTER USING VARIOUS TOPOLOGIES

User Guide Introduction. IRMCS3043 System Overview/Guide. International Rectifier s imotion Team. Table of Contents

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online):

POWER- SWITCHING CONVERTERS Medium and High Power

PF, THD. I. INTRODUCTION

Control of buck-boost chopper type AC voltage regulator

Closed Loop Control of Boost Converter for a Grid Connected Photovoltaic System

Grid Connected Photovoltaic Micro Inverter System using Repetitive Current Control and MPPT for Full and Half Bridge Converters

International Journal of Engineering Science Invention Research & Development; Vol. II Issue VIII February e-issn:

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM

I. INTRODUCTION. 10

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER

MATLAB/SIMULINK MODULES FOR MODELING AND SIMULATION OF POWER ELECTRONIC CONVERTERS AND ELECTRIC DRIVES

Solar fed Induction Motor Drive with TIBC Converter and Voltage Multiplier Circuit

Transcription:

Power Converters. Applications and Analysis Using PSIM Index of Exercises PSIM 10.0.6 Prof. Herman E. Fernández H

Chapter II: PSIM description Keywords: low pass filter analysis, transient, AC sweep and parametric tests PSIM exercises: 4 Transient analysis of a low pass filter Ejercicio2_1.psimsch Fig.2.25 Transient analysis with noise signal Ejercicio2_2.psimsch Fig.2.26 AC Sweep Ejercicio2_3.psimsch Fig.2.27 Parametric analysis Ejercicio2_4.psimsch Fig.2.29, Fig.2.30 Example: Transient analysis of a low pass filter with added noise signal AC sweep of a low pass filter

Chapter III: Diodes and Thyristors Keywords: uncontrolled rectifier, DIAC TRIAC arrays, phase control, circuit to determine thyristor state, pulse transformer, AC/AC and AC/DC PWM converters with GTO, driver circuits and GTO discrete model. PSIM exercises: 19 3.1 Single phase rectifier with RLE load. Discontinuous current mode (DCM). Ejercicio3_1.psimsch Fig.3.3 3.2 Single phase rectifier with RLE load. Continuous current mode (CCM). Ejercicio3_2.psimsch Fig.3.4 3.3 Half wave controlled rectifier with resistive load. Using Alpha Controller. Ejercicio3_3.psimsch Fig.3.7 3.4 Half wave controlled rectifier with RL load. Determination of current extinction angle (β). Ejercicio3_4.psimsch Fig.3.8, Fig.3.9 3.5 DIAC voltage current characteristic. Ejercicio3_5.psimsch Fig.3.15, Fig.3.16 3.6 DIAC TRIAC circuit based on an Alpha Controller. Ejercicio3_6.psimsch Fig.3.17, Fig.3.18 3.7 DIAC TRIAC circuit based on a Gating Block. Ejercicio3_7.psimsch Fig.3.19 3.8 DIAC TRIAC circuit. First option. Ejercicio3_8.psimsch Fig.3.21, Fig.3.22 3.9 DIAC TRIAC circuit. Parametric analysis. Ejercicio3_9.psimsch Fig.3.23 3.10 DIAC TRIAC circuit. Second option. Ejercicio3_10.psimsch Fig.3.24 3.11 AC/AC and AC/DC PWM converters implemented with GTO. Ejercicio3_11.psimsch Fig.3.28

Optical electronic to determine the state of a thyristor (SCR): 3.12 Operating thyristor. Ejercicio3_12.psimsch Fig.3.34 3.13 Short circuited thyristor (Failure state). Ejercicio3_13.psimsch Fig.3.35 3.14 Open circuited thyristor (Failure state). Ejercicio3_14.psimsch Fig.3.36 3.15 Voltage time characteristic determination of a pulse transformer. Ejercicio3_15.psimsch Fig.3.38 3.16 Saturation effect of a pulse transformer. Ejercicio3_16.psimsch Fig.3.39 3.17 Thyristor driver circuit design using RC network. Ejercicio3_17.psimsch Fig.3.42 3.18 Thyristor driver circuit design based in pulse modulation. Ejercicio3_18.psimsch Fig.3.43 3.19 GTO modelling. Ejercicio3_19.psimsch Fig.3.44

Example: 3.19 GTO modelling

Chapter IV: Power Transistors Keywords: PBJT, MOSFET, IGBT and three phase switch. Driver stage, losses evaluation of power devices. Basic applications. PSIM exercises: 10 4.1 PBJT driver unit. Optical isolated, pulses amplifier and simple power stage. Ejercicio4_1.psimsch Fig.4.8, Fig.4.9 4.2 Open loop servomotor. Ejercicio4_2.psimsch Fig.4.10 4.3 Open loop servomotor. Constant torque load. Ejercicio4_3.psimsch Fig.4.11 4.4 MOSFET gate driver with short circuit protection. Resistive load. Ejercicio4_4.psimsch Fig.4.18 4.5 MOSFET gate driver with short circuit protection. RL load. Ejercicio4_5.psimsch Fig.4.19 4.6 DC machine soft starter based on IGBT. Ejercicio4_6.psimsch Fig.4.28 4.7 IGBT gate driver with short circuit protection. Ejercicio4_7.psimsch Fig.4.29 4.8 DC/DC converter. Commutation and conduction losses evaluation. Thermal considerations. Ejercicio4_8.psimsch Fig.4.30, Fig.4.31, Fig.4.32 4.9 DC/AC converter. Commutation and conduction losses evaluation. Thermal considerations. Ejercicio4_9.psimsch Fig.4.33, Fig.4.34 4.10 AC starter of induction machine using three phase switch. Ejercicio4_10.psimsch Fig.4.35, Fig.4.36

Example: 4.5 MOSFET Gate Driver (MGD) with short circuit protection. RL load

Chapter V: DC/DC converters Keywords: Step up, Step down, Buck Boost, Fly Back, Push pull and H bridge. PWM (unipolar and bipolar modes), Feedforward PWM, One Cycle controller, and frequency variation. Open loop and feedback control: current controller and voltage regulation. UC3825, UC3844. Basic applications: Switch Mode Power Supply (SMPS), DC drive, and UPS. Discontinuous mode current (DCM). PSIM exercises: 17 5.1 Step down DC/DC (Buck converter). Open loop configuration. PWM control. Ejercicio5_1.psimsch Fig.5.12 5.2 Step up DC/DC (Boost converter). PWM control and voltage regulation. Ejercicio5_2.psimsch Fig.5.13 5.3 Buck converter based on a UC3825 Controller. Ejercicio5_3.psimsch Fig.5.14, Fig.5.15 5.4 Buck converter based on a UC3825 Controller. Short circuit condition. Ejercicio5_4.psimsch Fig.5.16, Fig.5.17 5.5 Buck converter based on a UC3825 Controller. Discontinuous current measure. Ejercicio5_5.psimsch Fig.5.18 5.6 Simple DC drive based on a Step down converter. Open loop condition. Ejercicio5_6.psimsch Fig.5.19 5.7 Step up converter. Ejercicio5_7.psimsch Fig.5.22 5.8 Feed Forward PWM (FF PWM) controller. Ejercicio5_8.psimsch Fig.5.23, Fig.5.24 5.9 Current controlled Step up converter (discrete array). Ejercicio5_9.psimsch Fig.5.25 5.10 Current controlled Step up converter using UC3842. Ejercicio5_10.psimsch Fig.5.26, Fig.5.27 5.11 Class C converter (one quadrant operation). Ejercicio5_11.psimsch Fig.5.33, Fig.5.34

5.12 Class C converter (two quadrants operation). Ejercicio5_12.psimsch Fig.5.35 5.13 H Bridge configuration. Full quadrant operation. Bipolar PWM. DC motor drive. Ejercicio5_13.psimsch Fig.5.38 5.14 H Bridge configuration. Full quadrant operation. Unipolar PWM. DC motor drive. Ejercicio5_14.psimsch Fig.5.39 5.15 Buck Boost converter. Voltage regulation based on PI controller. Ejercicio5_15.psimsch Fig.5.41 5.16 Closed loop Flyback converter. Ejercicio5_16.psimsch Fig.5.43, Fig.5.44 5.17 DC/DC Half bridge isolated configuration. Ejercicio5_17.psimsch Fig.5.46

Example: 5.4 Current control and voltage regulation using a UC3825

Chapter VI: Pulses generator and synchronism circuits for AC/DC and AC/AC converters Keywords: zero crossing detector, phase control circuit, phase control single phase and threephase converters. VCO. SRF PLL and SRF PLL for three phase converters, frequency response for SRF PLL, PLL three phase synchronization, cosine controller, integral cycle and PWM controllers. PSIM exercises: 20 6.1 Zero crossing detector. Two topologies. Ejercicio6_1.psimsch Fig.6.3 6.2 Synchronization network using opto isolator circuit. Ejercicio6_2.psimsch Fig.6.4 6.3 Phase control circuit. Ramp method. Ejercicio6_3.psimsch Fig.6.5 6.4 Phase control circuit. Negative slope ramp. Ejercicio6_4.psimsch Fig.6.6 6.5 Firing pulses using counter method to frequency variable. Ejercicio6_5.psimsch Fig.6.7, Fig.6.8 6.6 Firing pulses using counter method with digital reference. Ejercicio6_6.psimsch Fig.6.9 6.7 Firing pulses generator for three phase half wave controlled rectifier. Ejercicio6_7.psimsch Fig.6.12, Fig.6.13, Fig.6.14 6.8 Firing pulses generator for three phase full wave controlled rectifier. Ejercicio6_8.psimsch Fig.6.16, fig.6.17 6.9 Pulses generator using a VCO. Ejercicio6_9.psimsch Fig.6.19 6.10 Pulses generator using a monostable circuit. Ejercicio6_10.psimsch Fig.6.20 6.11 Single phase synchronization circuit using a SRF PLL (Synchronous Reference Frame Phase Locked Loop). Ejercicio6_11.psimsch Fig.6.24, Fig.6.25

6.12 Single phase synchronization circuit using a SRF PLL (Synchronous Reference Frame Phase Locked Loop) based on Park Transformation. Ejercicio6_12.psimsch Fig.6.26 6.13 Pulses generator for three phase converter under single phase SRF PLL. Ejercicio6_13.psimsch Fig.6.27, Fig.6.28 6.14 Frequency response analysis for a SRF PLL. Ejercicio6_14.psimsch Fig.6.29 6.15 Three phase synchronism using SRF PLL. Ejercicio6_15.psimsch Fig.6.30 6.16 Cosine control scheme. Function f(ωt)=1+cos(ωt). Ejercicio6_16.psimsch Fig.6.34 6.17 Cosine control scheme. Function f(ωt)=cos(ωt). Ejercicio6_17.psimsch Fig.6.35 6.18 Integral cycle control. Ejercicio6_18.psimsch Fig.6.37 6.19 SPWM pulses generator for AC/DC converter. Ejercicio6_19.psimsch Fig.6.38 6.20 SPWM pulses generator for three phase converter. Ejercicio6_20.psimsch Fig.6.39

Example: 6.4 Phase control circuit. Negative slope ramp

Chapter VII: Controlled Rectifiers Keywords: single phase configuration. Half wave and fully controlled three phase converters. Harmonics analysis. Cosine control scheme. Basic applications: DC drive and battery charger. Serial converter connection. Six phase rectifier. Line inductor effect. Rectifier evaluation connecting inductive, RLE and constant current loads. Power Factor Controller (PFC). Applying the SmartCtrl tool to set parameters of a PFC. Hysteresis current controlled PFC. PWM rectifiers. Vienna configuration. PSIM exercises: 24 7.1 Single phase rectifier connected to current constant load. Ejercicio7_1.psimsch Fig.7.3, Fig.7.4 7.2 Single phase half wave converter connected to RL load. Ejercicio7_2.psimsch Fig.7.5, Fig.7.6 7.3 Single phase half wave converter connected to a current constant load. Ejercicio7_3.psimsch Fig.7.8 7.4 Single phase half wave converter based on cosine control method. Ejercicio7_4.psimsch Fig.7.9, Fig.7.10 7.5 Asymmetrical single phase half wave rectifier. Ejercicio7_5.psimsch Fig.7.11 7.6 DC drive implemented with an asymmetrical single phase half wave rectifier. Ejercicio7_6.psimsch Fig.7.12 7.7 Single phase fully controlled rectifier. Ejercicio7_7.psimsch Fig.7.14 7.8 Single phase fully controlled rectifier under cosine control strategy. Ejercicio7_8.psimsch Fig.7.15, Fig.7.16 7.9 DC drive implemented with a thyristors module. Cosine control. Ejercicio7_9.psimsch Fig.7.17 7.10 Three phase half wave converter. Ejercicio7_10.psimsch Fig.7.19

7.11 Three phase half wave converter with freewheeling diode. Ejercicio7_11.psimsch Fig.7.22, fig.7.23 7.12 Three phase fully controlled rectifier. Cosine control scheme. Constant current load. Twoquadrant operation. Ejercicio7_12.psimsch Fig.7.28, Fig.7.29 7.13 Battery charger under three phase fully controlled rectifier. Ejercicio7_13.psimsch Fig.7.30 7.14 DC drive implemented with a three phase fully wave rectifier. Ejercicio7_14.psimsch Fig.7.31 7.15 Serial connection of three phase rectifiers. Ejercicio7_15.psimsch Fig.7.32, Fig.7.33 7.16 Six phase rectifier. Ejercicio7_16.psimsch Fig.7.34, Fig.7.35 7.17 Line inductor effect. Single phase rectifier. Ejercicio7_17.psimsch Fig.7.37 7.18 Line inductor effect. Three phase rectifier. Ejercicio7_18.psimsch Fig.7.38 7.19 PFC based on a UC3854. Ejercicio7_19.psimsch Fig.7.44, Fig.7.45 7.20 Applying the SmartCtrl tool to set parameters of a PFC. Ejercicio7_20.psimsch Fig.7.46 7.21 Hysteresis current controlled PFC. Ejercicio7_21.psimsch Fig.7.48, Fig.7.49 7.22 Simple configuration of a PWM Rectifier. Ejercicio7_22.psimsch Fig.7.52, Fig.7.53, Fig.7.54 7.23 Vienna Rectifier. Ejercicio7_23.psimsch Fig.7.55

7.24 PWM rectifier with power factor control. Ejercicio7_24.psimsch Fig.7.56, Fig.7.57 Example: 7.11 Three phase half wave converter with freewheeling diode

Chapter VIII: AC/AC converters Keywords: single phase. Half wave and fully controlled three phase converters. Star and Delta configurations. Static Var Compensator. Special topologies. Control methods: phase control, mark space, PWM, SPWM, one cycle control and integral cycle control. Frequency multiplier. Matrix converter. PSIM exercises: 24 8.1 Single phase half wave AC/AC converter. Ejercicio8_1.psimsch Fig.8.2, Fig.8.3 8.2 Single phase fully controlled AC/AC converter. Resistive load. Harmonics analysis. Ejercicio8_2.psimsch Fig.8.6, Fig.8.7 8.3 Single phase fully controlled AC/AC converter. Inductive load. Harmonics analysis. Ejercicio8_3.psimsch Fig.8.9, Fig.8.10 8.4 Single phase fully controlled AC/AC converter using integral cycle control. Harmonics analysis. Ejercicio8_4.psimsch Fig.8.12, Fig.8.13 8.5 Three phase fully controlled AC converter. Multimode operation. Resistive load. Ejercicio8_5.psimsch Fig.8.16, Fig.8.17 8.6 Three phase fully controlled AC converter. Multimode operation. Inductive load. Ejercicio8_6.psimsch Fig.8.18 8.7 Three phase half controlled AC converter. Multimode operation. Resistive load. Ejercicio8_7.psimsch Fig.8.22 8.8 Three phase half controlled AC converter. Multimode operation. Inductive load. Ejercicio8_8.psimsch Fig.8.23, Fig.8.24 8.9 Thyristors delta configuration. Resistive load. Ejercicio8_9.psimsch Fig.8.27, Fig.8.28 8.10 Thyristors delta configuration. Inductive load. Ejercicio8_10.psimsch Fig.8.29 8.11 Operation principle of a Static Var Compensator. Ejercicio8_11.psimsch Fig.8.30, Fig.8.31

8.12 Asymmetrical array. Three phase converter with two phase control. Ejercicio8_12.psimsch Fig.8.32 8.13 Asymmetrical array. Three phase converter with one phase control. Ejercicio8_13.psimsch Fig.8.33 8.14 Asymmetrical array. Each phase controlled with load in delta configuration. Ejercicio8_14.psimsch Fig.8.34 8.15 Asymmetrical array. Three phase converter with thyristors connected in delta configuration. Serial connection of the three phase load with AC grid. Ejercicio8_15.psimsch Fig.8.35 8.16 Single phase AC converter using mark space control. Ejercicio8_16.psimsch Fig.8.37, Fig.8.38 8.17 Single phase AC converter. Pulses generator under SPWM. Ejercicio8_17.psimsch Fig.8.39 8.18 Single phase AC converter. One cycle controller. Ejercicio8_18.psimsch Fig.8.40 8.19 Single phase AC converter. Dynamic evaluation with one cycle controller. Ejercicio8_19.psimsch Fig.8.41 8.20 PWM cycle integral control. Ejercicio8_20.psimsch Fig.8.42 8.21 Frequency multiplier. Ejercicio8_21.psimsch Fig.8.43 8.22 Three phase to single phase cycloconverter. Ejercicio8_22.psimsch Fig.8.45, Fig.8.46 8.23 Matrix converter of simple configuration. Ejercicio8_23.psimsch Fig.8.51 8.24 Reduced parts matrix converter. Ejercicio8_24.psimsch Fig.8.52, Fig.8.53

Example: 8.6 Three phase fully controlled AC converter. Multimode operation. Inductive load

Chapter IX: DC/AC converters Keywords: square wave half bridge, H bridge configuration, conduction control equals to π and 2π/3. Single pulse, uniform pulse width modulation, bipolar SPWM, and unipolar SPWM. SPWM three phase inverter, HIPWM, Selective Harmonic Elimination (three cases), MSPWM, SVPWM. Sinusoidal inverter (filter LC). Reflection effect in AC drives. Hysteresis controller. Three level inverter, FC MLI, push pull inverter using UC3825, delta controller, inverter connected to grid, inverter connected to resonant load, and Current Source Inverter. PSIM exercises: 29 9.1 Half bridge single phase converter. Ejercicio9_1.psimsch Fig.9.9 9.2 Full bridge single phase configuration. Ejercicio9_2.psimsch Fig.9.12 9.3 Three phase inverter. Conduction equals π. Ejercicio9_3.psimsch Fig.9.15, Fig.9.16 9.4 Three phase inverter. Conduction equals 2π/3. Ejercicio9_4.psimsch Fig.9.18 9.5 Single pulse or Uniform PWM generator. Ejercicio9_5.psimsch Fig.9.20, Fig.9.23 9.6 Full bridge under multiple pulses PWM generator. Ejercicio9_6.psimsch Fig.9.25, Fig.9.26 9.7 Full bridge inverter under Bipolar Synchronous Sinusoidal Pulse Width Modulator (SSPWM). Ejercicio9_7.psimsch Fig.9.31, Fig.9.32 9.8 Full bridge inverter based on Unipolar SSPWM. Ejercicio9_8.psimsch Fig.9.34 9.9 Three phase inverter based on SPWM. Ejercicio9_9.psimsch Fig.9.36 9.10 Three phase inverter under Harmonic Injection Pulse Width Modulation (HIPWM). Ejercicio9_10.psimsch Fig.9.38, Fig.9.39

9.11 Three phase inverter under Selective Harmonic Elimination TLN1. Ejercicio9_11.psimsch Fig.9.42, Fig.9.43 9.12 Single phase inverter under Selective Harmonic Elimination SLN1. Ejercicio9_12.psimsch Fig.9.44, Fig.9.45 9.13 Single phase inverter under Selective Harmonic Elimination SLL. Ejercicio9_13.psimsch Fig.9.46 9.14 Single phase inverter using Modified Sinusoidal PWM (MSPWM). Ejercicio9_14.psimsch Fig.9.48 9.15 Three phase inverter under Space Vector PWM. Ejercicio9_15.psimsch Fig.9.51, Fig.9.52 9.16 Filter design procedure applied to a single phase inverter under SPWM. Ejercicio9_16.psimsch Fig.9.62, Fig.9.63, Fig.9.64, Fig.9.65 9.17 Reflection effect analysis in three phase converter under SPWM. Ejercicio9_17.psimsch Fig.9.66 9.18 LC filter configuration to reduce reflection effect in a three phase converter under SPWM. Ejercicio9_18.psimsch Fig.9.68 9.19 LCC filter configuration to reduce reflection effect in a three phase converter under SPWM. Ejercicio9_19.psimsch Fig.9.69 9.20 Hysteresis controller applied to a single phase inverter. Ejercicio9_20.psimsch Fig.9.71 9.21 Sample Hold Hysteresis controller applied to a single phase inverter. Ejercicio9_21.psimsch Fig.9.72 9.22 Diodes Clamping Multiple Level Inverter (DC MLI) under SPWM. Ejercicio9_22.psimsch Fig.9.76, Fig.9.77 9.23 Flying Capacitor MLI inverter under SPWM. Ejercicio9_23.psimsch Fig.9.78

9.24 Push pull inverter. Ejercicio9_24.psimsch Fig.9.80 9.25 Delta modulator applied to single phase inverter. Ejercicio9_25.psimsch Fig.9.82 9.26 Single phase inverter connected to AC grid (Distributed Generation). Ejercicio9_26.psimsch Fig.9.84, Fig.9.85 9.27 Single phase inverter connected to AC grid. Power factor control. Ejercicio9_27.psimsch Fig.9.86 9.28 Series loaded (RLC) resonant converter. Ejercicio9_28.psimsch Fig.9.87 9.29 Current Source Inverter under SPWM. Ejercicio9_29.psimsch Fig.9.89, Fig.9.90

Example: 9.11 Three phase inverter under Selective Harmonic Elimination TLN1

Chapter X: Power Electronic Systems: analysis and simulations Keywords: open loop DC drive, DC drive using UC3842, close loop DC drives (two cases), traction system. Fan applications (two cases). Vector Control. Drives: SRM, BDCM, and PMDC. Lead acid model (VRLA). Current control and voltage regulation. Li ion battery test, super capacitor simplified model, battery charger for VRLA, SMPS with UC3844, backup cycle UPS, AC/DC current controlled. PSIM exercises: 23 10.1 Open loop DC drive. Ejercicio10_1.psimsch Fig.10.4 10.2 Open loop DC drive under load demand. Ejercicio10_2.psimsch Fig.10.5 10.3 Current controlled DC drive based on UC3842. Ejercicio10_3.psimsch Fig.10.6 10.4 Closed loop DC drive. Option I. Ejercicio10_4.psimsch Fig.10.7 10.5 Closed loop DC drive. Option II. Ejercicio10_5.psimsch Fig.10.8 10.6 DC drive applied to a traction system. Ejercicio10_6.psimsch Fig.10.10, Fig.10.11, Fig.10.12 10.7 Hard starter of an industrial fan. Ejercicio10_7.psimsch Fig.10.16, Fig.10.17 10.8 Scalar Control AC drive. Induction machine mechanically coupled to industrial fan. Ejercicio10_8.psimsch Fig.10.18, Fig.10.19 10.9 Vector Control AC drive. Ejercicio10_9.psimsch Fig.10.26 10.10 Synchronous Reluctance Machine (SRM) drive. Ejercicio10_10.psimsch Fig.10.31 10.11 Permanent Magnet Synchronous Machine (PMSM) drive. Ejercicio10_11.psimsch Fig.10.32, Fig.10.33

10.12 Brushless Direct Current Machine (BDCM or BLDC) drive. Ejercicio10_12.psimsch Fig.10.34 10.13 Generic model of lead acid battery. Ejercicio10_13.psimsch Fig.10.37, Fig.10.38 10.14 Battery charger: constant current mode and limited voltage control. Ejercicio10_14.psimsch Fig.10.39 10.15 Constant current charge of the Lithium Ion battery. Ejercicio10_15.psimsch Fig.10.40 10.16 Constant current discharge of the Lithium Ion battery. Ejercicio10_16.psimsch Fig.10.40 10.17 Simplified model of a ultracapacitor. Ejercicio10_17.psimsch Fig.10.41 10.18 Simplified model of multiple cell ultracapacitor. Ejercicio10_18.psimsch Fig.10.42 10.19 Battery charger based on an averaged DC/DC converter. Constant current mode and floatation condition. Ejercicio10_19.psimsch Fig.10.45, Fig.10.46, Fig.10.47 10.20 Switch Mode Power Supply (SMPS) based on a UC3844. Ejercicio10_20.psimsch Fig.10.50 10.21 Uninterruptible Power Supply (UPS). Back up mode. Ejercicio10_21.psimsch Fig.10.56 10.22 Uninterruptible Power Supply (UPS). Back up mode. Voltage regulation. Ejercicio10_22.psimsch Fig.10.57 10.23 Welding machine based on a current controlled three phase rectifier. Ejercicio10_23.psimsch Fig.10.59

Example: 10.5 Closed loop DC drive

Chapter XI: Renewable energies: Photovoltaic and wind turbine systems. Fuel Cells Keywords: Wind turbines: BDCM, PMSG, and DFIG. Solar cell model and parametric analysis. MPPT: simple circuit, P&O, HC, and Inc Cond. Solar battery charger and solar water pump. PEMFC model, PEMFC step up DC/DC converter, PEMFC DC/DC DC/AC, distributed generation system using PEMFC, SOFC model (100kW), SOFC DC/DC DC/AC drive. PSIM exercises: 17 11.1 Wind turbine based on a BDCM (Brushless DC Machine) and storage bank. Ejercicio11.1.psimsch Fig.11.19 11.2 Wind turbine based on a PMSG (Permanent Magnet Synchronous Generator). Ejercicio11.2.psimsch Fig.11.20, Fig.11.21 11.3 Wind turbine based on a PMSG. Setting I ds=0. Ejercicio11.3.psimsch Fig.11.22 11.4 Wind turbine based on a Double Fed Induction Machine (DFIG). Ejercicio11.4.psimsch Fig.11.23, Fig.11.24 11.5 Functional model of a photovoltaic cell. BP 3175. Ejercicio11.5.psimsch Fig.11.44, Fig.11.45 11.6 Physical model of a photovoltaic cell. Solarex MSX60. Parametric analysis under irradiation variable. Ejercicio11.6.psimsch Fig.11.46, Fig.11.47 11.7 Simple configuration of a MPPT (Maximum Power Point Tracking) circuit. Ejercicio11.7.psimsch Fig.11.48 11.8 Perturb and Observation MPPT method. Ejercicio11.8.psimsch Fig.11.50, Fig.11.51 11.9 Incremental Conductance MPPT method. Ejercicio11.9.psimsch Fig.11.52 11.10 Solar battery charger. Ejercicio11.10.psimsch Fig.11.53 11.11 Solar pumping system. Ejercicio11.11.psimsch Fig.11.54, Fig.11.55

11.12 Proton Exchange Membrane Fuel Cell (PEMFC). Ejercicio11.12.psimsch Fig.11.61, Fig.11.62 11.13 PEMFC connected to boost converter. Ejercicio11.13.psimsch Fig.11.63, Fig.11.64 11.14 AC generation using a PEMFC. Ejercicio11.14.psimsch Fig.11.65 11.15 Distributed generation under a PEMFC. Ejercicio11.15.psimsch Fig.11.66 11.16 Solid Oxide Fuel Cell (SOFC). Ejercicio11.16.psimsch Fig.11.69, Fig.11.70, Fig.11.71 11.17 AC drive based on a SOFC. Ejercicio11.17.psimsch Fig.11.72

Example: 11.11 Solar pumping system

Appendix Exercises: 11 (PSIM, PSCAD and PSpice) A.1 SmartCtrl applied to design the regulation stage of a Buck Converter. EjercicioA_1.psimsch A.2 HID (High Intensity Discharge Lamp) modelling. EjercicioA_2.psimsch A.3 Synchronism circuit design based on PSCAD. A.4 Phase control circuit based on PSCAD. A.5 Three phase pulses generator using PSCAD. A.6 DC drive designed using an IGBT step down converter. PSCAD tool. A.7 Pulses generator applied to fully controlled three phase rectifier. PSCAD tool. A.8 Generation mode of a DC machine. A.9 Pulses amplifier. PSpice tool. A.10 Ramp generator. PSpice tool. A.11 AC Delta Controller. PSpice tool.

Example: A.1 SmartCtrl applied to design the regulation stage of a Buck Converter. //SmartCtrl parameters //Outer Regulator parameters R2 = 2.77781k Ohm C2 = 2.65267u F Vref = 2.5 V Vp = 3 V R11 = 10k Ohm //Outer Sensor parameters Ra = 9.5k Ohm Rb = 500 Ohm //Power Stage parameters R = 10 Ohms RC = 50m Ohms C = 612u F

IC_C = 50 V RL = 1n Ohms L = 5m H IC_L = 5 A Vin = 100 V //Modulator parameters Vpp = 2 V fsw = 2k Hz Dramp = 800m Vv = 1 V //Other parameters fdc = 15 Hz <<<<<<<<<<<<<<<< INPUT DATA >>>>>>>>>>>>>>>> INPUT DATA Single loop Frequency range (Hz) : (1, 999 k) Cross frequency (Hz) = 15 Phase margin ( ) = 122 Plant Buck (voltage mode controlled) R (Ohms) = 10 L (H) = 5 m RL(Ohms) = 1 n C (F) = 612 u RC(Ohms) = 50 m Vin (V) = 100 Vo (V) = 50 Fsw (Hz) = 2 k Steady state dc operating point Mode = Continuous Duty cycle= 0.5 Vcomp(V) = 2.25 IL (A) = 5 ILmax(A) = 6.25 ILmin(A) = 3.75 Io (A) = 5 Vo (V) = 50 Sensor Voltage divider Vref/Vo = 0.05 Regulator PI Gmod = 0.4 R11(ohms) = 10000 Vp(V) = 3 Vv(V) = 1

tr(sec) = 0.0004 Vref(V) = 2.5 Steady state dc operating point IC_C2(V) = 250m <<<<<<<<<<<<<<<< RESULTS >>>>>>>>>>>>>>>>>>> RESULTS Regulator (Analog): Kp = 277.781 m Kint = 7.36863 m R2 (Ohms) = 2.77781 k C2 ( F ) = 2.65267 u fz ( Hz ) = 21.599 fi ( Hz ) = 5.99979 b2 ( s^2) = 0 b1 ( s ) = 0.00736863 b0 = 1 a3 ( s^3) = 0 a2 ( s^2) = 0 a1 ( s ) = 0.0265267 a0 = 0 Sensor: Ra (Ohms) = 9.5 k Rb (Ohms) = 500 Pa (Watts) = 237.5 m Pb (Watts) = 12.5 m Loop performance parameters: PhF ( Hz ) = out of frequency range under study GM ( db ) =... Atte( db ) = 37.146