DESCRIPTION 50 V 50 V 50 V CP1 CP2 VCP VBB VBB. SLEEPn OUT1A OUT1B SENSE1 PHASE1 I01 A5989 I11 PHASE2 I02 I12 OUT2A OUT2B SENSE2

Similar documents
Last Time Buy. Deadline for receipt of LAST TIME BUY orders: June 30, 2019

AMT Quad DMOS Full-Bridge PWM Motor Driver FEATURES AND BENEFITS DESCRIPTION

A3995. DMOS Dual Full Bridge PWM Motor Driver

Description. 0.1 μf. 0.1 μf 50 V 50 V 50 V CP1 CP2 VCP VBB VBB VDD OUT1A OUT1B SENSE1 PHASE1 I01 A3989 I11 PHASE2 I02 I12 OUT2A OUT2B SENSE2

Description 50 V 50 V CP1 CP2 VCP VBB VBB VDD OUT1A OUT1B SENSE1 PHASE1 I01 A3989 I11 PHASE2 I02 I12 OUT2A OUT2B SENSE2

A3988. Quad DMOS Full Bridge PWM Motor Driver. Features and Benefits. Description. Packages

A3988. Quad DMOS Full Bridge PWM Motor Driver. Packages

A4950. Full-Bridge DMOS PWM Motor Driver. Description

A4986 DMOS Dual Full-Bridge PWM Motor Driver With Overcurrent Protection

AMT Dual DMOS Full-Bridge Motor Driver PACKAGE: AMT49702 AMT49702

A3984. DMOS Microstepping Driver with Translator

A5976. Microstepping DMOS Driver with Translator

A5977. Microstepping DMOS Driver with Translator

A4954 Dual Full-Bridge DMOS PWM Motor Driver

A3987. DMOS Microstepping Driver with Translator

A3982. DMOS Stepper Motor Driver with Translator

A5985 DMOS Microstepping Driver with Translator and Overcurrent Protection

A5957. Full-Bridge PWM Gate Driver PACKAGE:

A3916. Dual DMOS Full-Bridge Motor Driver. PACKAGEs: A3916 A3916

A4988 DMOS Microstepping Driver with Translator and Overcurrent Protection

A3949. DMOS Full-Bridge Motor Driver. Features and Benefits Single supply operation Very small outline package Low R DS(ON)

A3950. DMOS Full-Bridge Motor Driver

Pin-out Diagram VBB1 HOME SLEEP DIR ENABLE OUT1A OUT1B PFD RC1 AGND REF RC2 VDD OUT2A MS2 MS1 CP2 CP1 VCP PGND VREG STEP OUT2B RESET SR SENSE2

A4941. Three-Phase Sensorless Fan Driver

A3959. DMOS Full-Bridge PWM Motor Driver

A3977. Microstepping DMOS Driver with Translator

Not for New Design. For existing customer transition, and for new customers or new applications,

Discontinued Product

A Phase Sinusoidal Motor Controller. Description

A3909. Dual Full Bridge Motor Driver. Description. Features and Benefits. Packages: Functional Block Diagram

A4952 and A4953. Full-Bridge DMOS PWM Motor Drivers. Description

A4970. Dual Full-Bridge PWM Motor Driver

A4984 DMOS Microstepping Driver with Translator And Overcurrent Protection

A3901. Dual Full Bridge Low Voltage Motor Driver

A4985 DMOS Microstepping Driver with Translator and Overcurrent Protection

Full-Bridge PWM Motor Driver

Discontinued Product

16-lead QFN with exposed themal pad and wettable flank (suffix EU, option -P) 16-lead TSSOP with exposed themal pad (suffix LP) VCP

Discontinued Product

A4955. Full-Bridge PWM Gate Driver PACKAGES:

UDN2987x-6 DABIC-5 8-Channel Source Driver with Overcurrent Protection

Not for New Design. Date of status change: November 17, 2011

PHASE BRUSHLESS DC MOTOR CONTROLLER/DRIVER FEATURES

A6862. Automotive 3-Phase Isolator MOSFET Driver

Discontinued Product

Discontinued Product

DESCRIPTION. Functional Block Diagram A4915 VBB. Charge Pump Regulator VREG. Bootstrap Monitor CA CB CC GHA GHB GHC SA SB SC C BOOTA.

DUAL FULL-BRIDGE PWM MOTOR DRIVER

PRODUCT DESCRIPTION A NEW SERIAL-CONTROLLED MOTOR-DRIVER IC. by Thomas Truax and Robert Stoddard

Discontinued Product

A8499. High Voltage Step-Down Regulator

A8431. White LED Driver Constant Current Step-up Converter

A6861. Automotive 3-Phase Isolator MOSFET Driver

FULL-BRIDGE PWM MOTOR DRIVER

UDN2987x-6. DABIC-5 8-Channel Source Driver with Overcurrent Protection

FEATURES ABSOLUTE MAXIMUM RATINGS. Data Sheet e. Sleep (Low Current Consumption)

Not for New Design. For existing customer transition, and for new customers or new applications, refer to the A4989.

A V OUT, 50 ma Automotive Linear Regulator with 50 V Load Dump and Short-to-Battery Protection

MP V, 3.2A, H-Bridge Motor Driver

MP V - 21V, 0.8A, H-Bridge Motor Driver in a TSOT23-6

DESCRIPTION. Typical Application V BAT. Switching Regulator Output V SW 5 V. R kω. Linear Regulator Output V LIN 3.3 V 250 ma. R4 5.

Protected Quad Power Driver

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: October 29, 2010

A3921. Automotive Full Bridge MOSFET Driver

MP V-to-15V, 700mA, Bipolar Stepper-Motor Driver with Integrated MOSFETs

MP6501A 8V to 35V, 2.5A Stepper Motor Driver with Integrated MOSFETs

Discontinued Product

A6B Bit Serial-Input DMOS Power Driver

A1448. Package: 6-contact MLP/DFN 1.5 mm 2 mm 0.40 mm maximum overall height (EW package) Functional Block Diagram.

A Channel Constant-Current Latched LED Driver with Open LED Detection and Dot Correction

Description. Typical Application. CIN μf Efficiency % VOUT 3.3 V / 3 A ESR COUT.

A6850. Dual Channel Switch Interface IC. Features and Benefits 4.75 to 26.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback

DISCONTINUED PRODUCT FOR REFERENCE ONLY.

Freescale Semiconductor, I Simplified Application Diagram 5.0 V 5.0 V PWMMODE DIR PWM/ENABLE CLOCK DATA STROBE OSC GND

DUAL STEPPER MOTOR DRIVER

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: August 30, Recommended Substitutions: A3941KLPTR-T

A4490. Triple Output Step-Down Switching Regulator

Discontinued Product

A Channel Constant-Current LED Driver. Features and Benefits. Description. Packages: Typical Application

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: April 30, 2011

DISCONTINUED PRODUCT FOR REFERENCE ONLY

A6818 DABiC-IV 32-Bit Serial Input Latched Source Driver

MP V-to-18V, 1.2A, Bipolar Stepper Motor Driver with Integrated MOSFETs

FAN2013 2A Low-Voltage, Current-Mode Synchronous PWM Buck Regulator

A1171. Micropower Ultrasensitive Hall Effect Switch

DISCONTINUED PRODUCT FOR REFERENCE ONLY. See A3967 or A3977 for new design. BiMOS II UNIPOLAR STEPPER-MOTOR TRANSLATOR/DRIVER FEATURES

A3213 and A3214. Micropower Ultra-Sensitive Hall-Effect Switches. Packages:

Discontinued Product

Discontinued Product

L6205 DMOS DUAL FULL BRIDGE DRIVER

A6850. Dual Channel Switch Interface IC. Features and Benefits 4.75 to 26.5 V operation Low V IN -to-v OUT voltage drop 1 / 10 current sense feedback

A3290 and A3291 Chopper Stabilized, Precision Hall Effect Latches for Consumer and Industrial Applications

ARS ASIL-Compliant Wheel Speed Sensor IC. PACKAGE: 2-pin SIP (suffix UB) Functional Block Diagram VCC GND

NJM3777 DUAL STEPPER MOTOR DRIVER NJM3777E3(SOP24)

MP6910A CCM/DCM Flyback Ideal Diode with Integrated 100V MOSFET for up to 2.5A Output

STSPIN820. Advanced 256 microsteps integrated motor driver with step-clock and direction interface. Applications. Features.

MP6901 Fast Turn-off Intelligent Controller

MP5090 Low I Q, Dual-Channel, 3A/2A Load Switch

MP6909 Fast Turn-Off Intelligent Rectifier

A3932. Three-Phase Power MOSFET Controller

Transcription:

FEATURES AND BENEFITS 4 V output rating 3.2 A DC motor driver 1.6 A bipolar stepper driver Synchronous rectification Internal undervoltage lockout (UVLO) Thermal shutdown circuitry Crossover-current protection Very thin profile QFN package Overcurrent protection Low-power sleep mode 3.3 and 5 V compatible logic supply PACKAGE: 36-pin QFN with exposed thermal pad.9 mm nominal height (suffix EV) DESCRIPTION The A5989 is designed to operate at voltages up to 4 V while driving one bipolar stepper motor at currents up to 1.6 A, and one DC motor at currents up to 3.2 A. The A5989 includes a fixed off-time pulse-width modulation (PWM) regulator for current control. The stepper motor driver features dual 2-bit nonlinear DACs (digital-to-analog converters) that enable control in full, half, and quarter steps. The DC motor is controlled using standard PHASE and ENABLE signals. Fast or slow current decay is selected via the MODE pin. The PWM current regulator uses the Allegro patented mixed decay mode for reduced audible motor noise, increased step accuracy, and reduced power dissipation. Internal synchronous rectification control circuitry is provided to improve power dissipation during PWM operation. Protection features include thermal shutdown with hysteresis, undervoltage lockout (UVLO), crossover-current and shortcircuit protection. Special power-up sequencing is not required. The A5989 is supplied in a leadless 6 mm 6 mm.9 mm, 36-pin QFN package with exposed power tab for enhanced thermal performance. The package is lead (Pb) free, with 1% matte-tin leadframe plating. Not to scale.1 µf.1 µf CP1 CP2 VCP VBB VBB SLEEPn OUT1A 1 µf.22 µf OUT1B PHASE1 I1 A5989 SENSE1 Microcontroller or Controller Logic I11 PHASE2 I2 I12 OUT2A OUT2B SENSE2 PHASE3 ENABLE MODE VREF1 VREF2 VREF3 Figure 1:Typical Application Circuit A5989-DS, Rev. 2 MCO-346 November 29, 217

SELECTION GUIDE Part Number A5989GEVTR-T Packing 15 pieces per reel ABSOLUTE MAXIMUM RATINGS Characteristic Symbol Notes Rating Units Load Supply Voltage V BB.5 to 4 V Output Current [1] I OUT Stepper motor driver, continuous 1.6 A DC motor driver, continuous 3.2 A Logic Input Voltage Range V IN.3 to 7 V SENSEx Pin Voltage V SENSEx.5 V Pulsed t w < 1 µs 2.5 V VREFx Pin Voltage V REFx 2.5 V Operating Temperature Range T A Range G 4 to 15 C Junction Temperature T J (max) 15 C Storage Temperature Range T stg 55 to 15 C [1] May be limited by duty cycle, ambient temperature, and heat sinking. Under any set of conditions, do not exceed the specified current rating or a Junction Temperature of 15 C. THERMAL CHARACTERISTICS: May require derating at maximum conditions Characteristic Symbol Test Conditions Min. Units Package Thermal Resistance R θja EV package, 4-layer PCB based on JEDEC standard JESD51-5 27 C/W Power Dissipation versus Ambient Temperature 55 5 45 4 Power Dissipation, PD (mw) 35 3 25 2 15 1 5 EV Package 4-layer PCB (R θja = 27 ºC/W) 25 5 75 1 125 15 175 Temperature ( C) 2

FUTIONAL BLOCK DIAGRAM.1 µf.1 µf 1 µf.22 µf To V BB2 VCP VBB SLEEPn DMOS Full Bridge 1 OSC CHARGE PUMP V CP OUT1A PHASE1 OUT1B I1 I11 PHASE2 I2 I12 GATE DRIVE DMOS Full Bridge 2 SENSE1 Sense1 3 + - PWM Latch BLANKING OUT2A VREF2 Sense 2 + - PWM Latch BLANKING V CP OUT2B Sense 2 Sense 3 SENSE2 + - PWM Latch BLANKING GATE DRIVE DMOS Full Bridge 3 CP1 CP2 VBB VBB1 Control Logic Stepper Motor VBB1 R S1 VREF1 3 PHASE3 ENABLE MODE Control Logic DC Motor R S2 VREF3 Sense 3 3 R S3 3

ELECTRICAL CHARACTERISTICS [1] : Valid at T A = 25 C, V BB = 4 V, unless otherwise noted Characteristics Symbol Test Conditions Min. Typ. [2] Max. Units Load Supply Voltage Range V BB Operating 8 4 V Output On-Resistance (DC Motor Driver) R DS(on)DC Source driver, I OUT = 1.2 A, T J = 25 C 25 3 mω Sink driver, I OUT = 1.2 A, T J = 25 C 24 3 mω Output On-Resistance (Stepper Motor Driver) R DS(on)st Source driver, I OUT = 1.2 A, T J = 25 C 5 6 mω Sink driver, I OUT = 1.2 A, T J = 25 C 48 6 mω V f, Outputs I OUT = 1.2 A 1.2 V Output Leakage I DSS Outputs, V OUT = to V BB 2 2 µa I OUT = ma, outputs on, f PWM = 5 khz, duty cycle = 5% 23 ma VBB Supply Current I BB Outputs off 12.7 15 ma Sleep mode 1 < 1 1 µa Output Driver Slew Rate SR OUT 1% to 9% 5 1 15 ns Control Logic Logic Input Voltage V IN(1) 2 V V IN().8 V Logic Input Current I IN V IN = to 5 V 2 < 1 2 µa Input Hysteresis V hys 15 3 5 mv Sleep Rising Threshold V SLEEPn(r) 2.5 2.7 2.95 V Sleep Falling Threshold V SLEEPn(f) 2.4 V Sleep Hysteresis V SLEEPn(hys) 25 325 45 mv Sleep Input Current I SLEEPn 1 15 µa PWM change to source on 55 7 1 ns Propagation Delay Times t pd PWM change to source off 35 45 ns PWM change to sink on 55 7 1 ns PWM change to sink off 35 45 ns Crossover Delay t CD 25 425 1 ns Blank Time (DC Motor Driver) t BLANKdc 2.5 3.2 4 µs Blank Time (Stepper Motor Driver) t BLANKst.7 1 1.3 µs VREFx Pin Input Voltage Range V REFx Operating 1.5 V VREFx Pin Reference Input Current I REF V REF = 1.5 V ±1 μa Current Trip-Level Error [3] V ERR V REF = 1.5 V, phase current = 67% 5 5 % V REF = 1.5 V, phase current = 1% 5 5 % V REF = 1.5 V, phase current = 33% 15 15 % Continued on the next page... 4

ELECTRICAL CHARACTERISTICS [1] (continued): Valid at T A = 25 C, V BB = 4 V, unless otherwise noted Characteristics Symbol Test Conditions Min. Typ. [2] Max. Units Protection Circuits VBB UVLO Threshold V UV(VBB) V BB rising 7.3 7.6 7.9 V VBB Hysteresis V UV(VBB)hys 4 5 6 mv Overcurrent Protection Threshold I OVP(STEP) Stepper driver 1.6 A I OVP(DC) DC driver 3.2 A Thermal Shutdown Temperature T JTSD 155 165 175 C Thermal Shutdown Hysteresis T JTSDhys 15 C [1] For input and output current specifications, negative current is defined as coming out of (sourcing) the specified device pin. [2] Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions. Performance may vary for individual units, within the specified maximum and minimum limits. [3] V ERR = [(V REF / 3) V SENSE ] / (V REF / 3). DC Control Logic PHASE ENABLE MODE 3 V S > V REF OUTA OUTB Function 1 1 1 false H L Forward (slow decay SR) 1 1 false H L Forward (fast decay SR) 1 1 false L H Reverse (slow decay SR) 1 false L H Reverse (fast decay SR) X 1 X L L Brake (slow decay SR) 1 X L H Fast decay SR* X H L Fast decay SR* X 1 1 true L L OCL chop / slow decay SR 1 1 true L H OCL chop / fast decay SR* 1 true H L OCL chop / fast decay SR* * To prevent reversal of current during fast decay SR the outputs will go to the high-impedance state as the current gets near zero. 5

FUTIONAL DESCRIPTION Device Operation The A5989 is designed to operate one DC motor and one bipolar stepper motor. The currents in each of the full bridges, all N-channel DMOS, are regulated with fixed off-time pulse-widthmodulated (PWM) control circuitry. The peak current in each full bridge is set by the value of an external current sense resistor, R Sx, and a reference voltage, V REFx. Internal PWM Current Control Each full-bridge is controlled by a fixed off-time PWM current control circuit that limits the load current to a user-specified value, I TRIP. Initially, a diagonal pair of source and sink DMOS outputs are enabled and current flows through the motor winding and R Sx. When the voltage across the current sense resistor equals the voltage on the VREFx pin, the current sense comparator resets the PWM latch, which turns off the source driver. The maximum value of current limiting is set by the selection of R S and the voltage at the VREF input with a transconductance function approximated by: I TripMax = V REF / (3 R S ) The stepper motor outputs will define each current step as a percentage of the maximum current, I TripMax. The actual current at each step I Trip is approximated by: I Trip = (% I TripMax / 1) I TripMax where % I TripMax is given in the Step Sequencing table. Note: It is critical to ensure that the maximum rating of ±5 mv on each SENSEx pin is not exceeded. Fixed Off-Time The internal PWM current control circuitry uses a one-shot circuit to control the time the drivers remain off. The one-shot off-time, t off, is internally set to 3 µs. Blanking This function blanks the output of the current sense comparator when the outputs are switched by the internal current control circuitry. The comparator output is blanked to prevent false detections of overcurrent conditions, due to reverse recovery currents of the clamp diodes, or to switching transients related to the capacitance of the load. DC motors require more blank time than stepper motors. The stepper driver blank time, t BLANKst, is approximately 1 μs. The DC driver blank time, t BLANKdc, is approximately 3 μs. Control Logic Stepper motor communication is implemented via industry standard I1, I, and PHASE interface. This communication logic allows for full-, half-, and quarter-step modes. Each bridge also has an independent V REF input so higher resolution step modes can be programmed by dynamically changing the voltage on the corresponding VREFx pin. The DC motor is controlled using standard PHASE, ENABLE communication. Fast or slow current decay during the off-time is selected via the MODE pin. Charge Pump (CP1 and CP2) The charge pump is used to generate a gate supply greater than V BB in order to drive the source-side DMOS gates. A.1 μf ceramic capacitor should be connected between CP1 and CP2 for pumping purposes. A.1 μf ceramic capacitor is required between VCP and VBBx to act as a reservoir to operate the highside DMOS devices. Sleep Mode To minimize power consumption when not in use, the A5989 can be put into Sleep Mode by bringing the SLEEPn pin low. Sleep Mode disables much of the internal circuitry, including the charge pump. Overcurrent Protection An overcurrent monitor protects the A5989 from damage due to output shorts. If a short is detected, the A5989 latches the fault and disables the outputs. The latched fault can only be cleared by cycling the power to VBB or by putting the device in Sleep Mode. During OCP events, Absolute Maximum Ratings may be exceeded for a short period of time before outputs are latched off. Shutdown In the event of a fault (excessive junction temperature, or low voltage on VCP), the outputs of the device are disabled until the fault condition is removed. At power-up, the undervoltage lockout (UVLO) circuit disables the drivers. Synchronous Rectification When a PWM off cycle is triggered by an internal fixed off-time cycle, load current will recirculate. The A5989 synchronous rectification feature will turn on the appropriate MOSFETs during the current decay. This effectively shorts the body diode with the low R DS(on) driver. This significantly lowers power dissipation. When a zero current level is detected, synchronous rectification is turned off to prevent reversal of the load current. 6

Mixed Decay Operation The stepper driver operates in mixed decay mode. Referring to Figure 2, as the trip point is reached, the device goes into fast decay mode for 3.1% of the fixed off-time period. After this fast decay portion, t FD, the device switches to slow decay mode for the remainder of the off-time. The DC driver decay mode is determined by the MODE pin. During transitions from fast decay to slow decay, the drivers are forced off for approximately 6 ns. This feature is added to prevent shoot-through in the bridge. As shown in Figure 2, during this dead time portion, synchronous rectification is not active, and the device operates in fast decay and slow decay only. MODE Control input MODE is used to toggle between fast decay mode and slow decay mode for the DC driver. A logic high puts the device in slow decay mode. Synchronous rectification is always enabled when ENABLE is low. Braking Driving the device in slow decay mode via the MODE pin and applying an ENABLE chop command implements the Braking function. Because it is possible to drive current in both directions through the DMOS switches, this configuration effectively shorts the motor-generated BEMF as long as the ENABLE chop mode is asserted. The maximum current can be approximated by V BEMF /R L. Care should be taken to ensure that the maximum ratings of the device are not exceeded in worst-case braking situations: high speed and high inertia loads. V PHASE + I OUT See Enlargement A Enlargement A Fixed Off-Time 3 µs 9 µs 21 µs I Trip I OUT FD SR SD SR FD DT SD DT SD DT Figure 2: Mixed Decay Mode Operation 7

STEP SEQUEING DIAGRAMS 1. 1. 66.7 66.7 Phase 1 (%) Phase 1 (%) 66.7 66.7 1. 1. 1. 1. 66.7 66.7 Phase 2 (%) Phase 2 (%) 66.7 66.7 1. 1. Full step 2 phase Modified full step 2 phase Half step 2 phase Modified half step 2 phase Figure 3: Step Sequencing for Full-Step Increments Figure 4: Step Sequencing for Half-Step Increments 8

1. 66.7 33.3 Phase 1 (%) 33.3 66.7 1. 1. 66.7 33.3 Phase 2 (%) 33.3 66.7 1. Figure 5: Decay Modes for Quarter-Step Increments Step Sequencing Settings Full 1/2 1/4 Phase 1 (%I TripMax ) Ix I1x PHASE Phase 2 (%I TripMax ) Ix I1x PHASE 1 1 H H X 1 L L 2 33 L H 1 1 L L 1 2 3 1/66 * L/H * L 1 1/66 * L/H * L 4 1 L L 1 33 L H 3 5 1 L L 1 H H X 6 1 L L 1 33 L H 1 2 4 7 1/66 * L/H * L 1 1/66 * L/H * L 1 8 33 L H 1 1 L L 1 5 9 H H X 1 L L 1 1 33 L H 1 L L 1 3 6 11 1/66 * L/H * L 1/66 * L/H * L 1 12 1 L L 33 L H 1 7 13 1 L L H H X 14 1 L L 33 L H 4 8 15 1/66 * L/H * L 1/66 * L/H * L 16 33 L H 1 L L * Denotes modified step mode 9

LOGIC TIMING DIAGRAM, DC DRIVER ENB PH MODE V BB OUTA V V BB OUTB V I OUT A A 1 2 3 4 5 6 7 8 9 V BB V BB 1 5 OutA OutB OutA 6 7 OutB 3 2 4 8 9 A Charge Pump and VREG Power-up Delay ( 2 µs) 1

APPLICATIONS INFORMATION Motor Configurations For applications that require either dual DC or dual stepper motors, Allegro offers the A5988 and A5995. Both devices are offered in a 36 pin QFN package. Refer to the Allegro website for datasheets and further information for the devices. Layout The printed circuit board should use a heavy groundplane. For optimum electrical and thermal performance, the A5989 must be soldered directly onto the board. On the underside of the A5989 package is an exposed pad, which provides a path for enhanced thermal dissipation. The thermal pad should be soldered directly to an exposed surface on the PCB. Thermal vias are used to transfer heat to other layers of the PCB. Grounding In order to minimize the effects of ground bounce and offset issues, it is important to have a low-impedance single-point ground, known as a star ground, located very close to the device. By making the connection between the exposed thermal pad and the groundplane directly under the A5989, that area becomes an ideal location for a star ground point. A low-impedance ground will prevent ground bounce during high-current operation and ensure that the supply voltage remains stable at the input terminal. The recommended PCB layout shown in the diagram below, illustrates how to create a star ground under the device, to serve both as low-impedance ground point and thermal path. The two input capacitors should be placed in parallel, and as close to the device supply pins as possible. The ceramic capacitor should be closer to the pins than the bulk capacitor. This is necessary because the ceramic capacitor will be responsible for delivering the high-frequency current components. Sense Pins The sense resistors, RSx, should have a very low-impedance path to ground, because they must carry a large current while supporting very accurate voltage measurements by the current sense comparators. Long ground traces will cause additional voltage drops, adversely affecting the ability of the comparators to accurately measure the current in the windings. As shown in the layout below, the SENSEx pins have very short traces to the RSx resistors and very thick, low-impedance traces directly to the star ground underneath the device. If possible, there should be no other components on the sense circuits. Note: When selecting a value for the sense resistors, be sure not to exceed the maximum voltage on the SENSEx pins of ±5 mv. VBB V BB CVCP CCP CVCP CIN3 OUT1A OUT1B RS1 CCP U1 RS3 CIN3 RS1 CIN1 1 ENABLE I2 I1 CP2 CP1 VCP OUT1A SENSE1 A5989 OUT1B PAD VBB OUT2B I11 I12 MODE VBB RS3 CIN2 OUT2B OUT2A CIN1 RS2 CIN2 RS2 SENSE2 OUT2A PHASE3 SLEEPn VREF1 VREF2 VREF3 PHASE2 PHASE1 Figure 6: Printed circuit board layout with typical application circuit, shown at right. The copper area directly under the A5989 (U1) is soldered to the exposed thermal pad on the underside of the device. The thermal vias serve also as electrical vias, connecting it to the ground plane on the other side of the PCB, so the two copper areas together form the star ground. 11

Pinout Diagram Terminal List Table Number Name Description MODE VBB 1 No Connect 2 OUT1A DMOS Full Bridge 1 Output A 3 SENSE1 Sense Resistor Terminal for Bridge 1 I12 I11 P VCP CP1 CP2 I1 I2 ENABLE 27 26 25 24 23 22 21 2 19 28 29 3 31 32 33 34 35 36 PAD 18 17 16 15 14 13 12 11 1 1 2 3 4 5 6 7 8 9 PHASE1 PHASE2 VREF3 VREF2 VREF1 SLEEPn PHASE3 4 OUT1B DMOS Full Bridge 1 Output B 5 VBB Load Supply Voltage 6 OUT2B DMOS Full Bridge 2 Output B 7 SENSE2 Sense Resistor Terminal for Bridge 2 8 OUT2A DMOS Full Bridge 2 Output A 9 No Connect 1 PHASE3 Control Input 11 SLEEPn Active-Low Sleep Mode Input 12 VREF1 Analog Input OUT1A SENSE1 OUT1B VBB OUT2B SENSE2 OUT2A 13 VREF2 Analog Input 14 VREF3 Analog Input 15 No Connect 16 P Power Ground 17 PHASE2 Control Input 18 PHASE1 Control Input 19 No Connect 2 DMOS Full Bridge 3 Output A 21 Sense Resistor Terminal for Bridge 3 22 DMOS Full Bridge 3 Output B 23 VBB Load Supply Voltage 24 DMOS Full Bridge 3 Output A 25 Sense Resistor Terminal for Bridge 3 26 DMOS Full Bridge 3 Output B 27 MODE Control Input 28 I12 Control Input 29 I11 Control Input 3 Ground 31 VCP Reservoir Capacitor Terminal 32 CP1 Charge Pump Capacitor Terminal 33 CP2 Charge Pump Capacitor Terminal 34 I1 Control Input 35 I2 Control Input 36 ENABLE Control Input PAD Exposed pad for enhanced thermal performance. Should be soldered to the PCB 12

PACKAGE OUTLINE DRAWING 1 2 36 A 6. ±.15.3 1.15.5 36 1 2 6. ±.15 4.15 5.8 D 37X.8 C SEATING PLANE C 4.15 5.8.25 +.5.7.5.9 ±.1.55 ±.2 B A All dimensions nominal, not for tooling use (reference JEDEC MO-22VJJD-3, except pin count) Dimensions in millimeters Exact case and lead configuration at supplier discretion within limits shown Terminal #1 mark area 2 1 36 4.15 4.15 B Exposed thermal pad (reference only, terminal #1 identifier appearance at supplier discretion) C Reference land pattern layout (reference IPC7351 QFN5P6X6X1-37V1M); All pads a minimum of.2 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerances; when mounting on a multilayer PCB, thermal vias at the exposed thermal pad land can improve thermal dissipation (reference EIA/JEDEC Standard JESD51-5) D Coplanarity includes exposed thermal pad and terminals EV Package, 36-Pin QFN with Exposed Thermal Pad 13

Revision History Number Date Description June 2, 216 Initial release 1 July 29, 216 Updated Selection Guide table 2 November 29, 217 Updated Step Sequences Settings table (page 9) Copyright 217, reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current. Allegro s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro s product can reasonably be expected to cause bodily harm. The information included herein is believed to be accurate and reliable. However, assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use. For the latest version of this document, visit our website: www.allegromicro.com 14