The Case for Oversampling

Similar documents
Summary Last Lecture

Analog-to-Digital Converters

Summary Last Lecture

EE247 Lecture 26. This lecture is taped on Wed. Nov. 28 th due to conflict of regular class hours with a meeting

EE247 Lecture 26. EE247 Lecture 26

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K.

EE247 Lecture 24. EE247 Lecture 24

EE247 Lecture 27. EE247 Lecture 27

EE247 Lecture 26. EE247 Lecture 26

EE247 Lecture 26. EE247 Lecture 26

Tones. EECS 247 Lecture 21: Oversampled ADC Implementation 2002 B. Boser 1. 1/512 1/16-1/64 b1. 1/10 1 1/4 1/4 1/8 k1z -1 1-z -1 I1. k2z -1.

EE247 Lecture 25. Oversampled ADCs (continued)

BandPass Sigma-Delta Modulator for wideband IF signals

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC

INF4420. ΔΣ data converters. Jørgen Andreas Michaelsen Spring 2012

ESE 531: Digital Signal Processing

CHAPTER. delta-sigma modulators 1.0

Lecture #6: Analog-to-Digital Converter

ESE 531: Digital Signal Processing

ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter

Oversampling Converters

Lecture Outline. ESE 531: Digital Signal Processing. Anti-Aliasing Filter with ADC ADC. Oversampled ADC. Oversampled ADC

Lecture 390 Oversampling ADCs Part I (3/29/10) Page 390-1

! Multi-Rate Filter Banks (con t) ! Data Converters. " Anti-aliasing " ADC. " Practical DAC. ! Noise Shaping

System on a Chip. Prof. Dr. Michael Kraft

Chapter 2: Digitization of Sound

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1

Oversampling Data Converters Tuesday, March 15th, 9:15 11:40

Cascaded Noise-Shaping Modulators for Oversampled Data Conversion

EE247 Midterm Exam Statistics

ECEN 610 Mixed-Signal Interfaces

Lecture 10, ANIK. Data converters 2

Design of Bandpass Delta-Sigma Modulators: Avoiding Common Mistakes

System-on-Chip. Oversampling and Low-Order ΔΣ Modulators. Overview. Principle of oversampling. Speed vs. accuracy of ADCs. Principle of oversampling

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering.

Pipeline vs. Sigma Delta ADC for Communications Applications

Analog to Digital Conversion

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

Data Converters. Oversampling and Low-Order ΔΣ Modulators. Overview. Speed vs. accuracy of ADCs. Principle of oversampling. Principle of oversampling

NOISE IN SC CIRCUITS

Understanding Delta-Sigma Data Converters

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45

Second-Order Sigma-Delta Modulator in Standard CMOS Technology

Design Examples. MEAD March Richard Schreier. ANALOG DEVICES R. SCHREIER ANALOG DEVICES, INC.

INTRODUCTION TO DELTA-SIGMA ADCS

A 2.5 V 109 db DR ADC for Audio Application

Design and Implementation of a Sigma Delta ADC By: Moslem Rashidi, March 2009

Appendix A Comparison of ADC Architectures

Telecommunication Electronics

Electronic Noise. Analog Dynamic Range

6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers

ADVANCES in VLSI technology result in manufacturing

SIGMA-DELTA CONVERTER

Choosing the Best ADC Architecture for Your Application Part 3:

EE247 Lecture 11. Switched-Capacitor Filters (continued) Effect of non-idealities Bilinear switched-capacitor filters Filter design summary

A 98dB 3.3V 28mW-per-channel multibit audio DAC in a standard 0.35µm CMOS technology

Cascaded Noise Shaping for Oversampling A/D and D/A Conversion Bruce A. Wooley Stanford University

Analog-to-Digital Converter Survey & Analysis. Bob Walden. (310) Update: July 16,1999

Analog and Telecommunication Electronics

Enhancing Analog Signal Generation by Digital Channel Using Pulse-Width Modulation

Quick View. Analog input time. Oversampling & pulse density modulation fs (sampling rate) >> fn (Nyquist rate)

Multirate DSP, part 3: ADC oversampling

Outline. Discrete time signals. Impulse sampling z-transform Frequency response Stability INF4420. Jørgen Andreas Michaelsen Spring / 37 2 / 37

Improved SNR Integrator Design with Feedback Compensation for Modulator

EE247 Lecture 9. Sampling Sine Waves Frequency Spectrum

Data Converter Topics. Suggested Reference Texts

THE USE of multibit quantizers in oversampling analogto-digital

EE247 Lecture 11. Switched-Capacitor Filters (continued) Effect of non-idealities Bilinear switched-capacitor filters Filter design summary

Electronics A/D and D/A converters

Chapter 2 Analysis of Quantization Noise Reduction Techniques for Fractional-N PLL

CONTINUOUS-TIME (CT) ΔΣ modulators have gained

AN ABSTRACT OF THE THESIS OF. Title: Effects and Compensation of the Analog Integrator Nonidealities in Dual- GAL- C. Temes

Advanced AD/DA converters. ΔΣ DACs. Overview. Motivations. System overview. Why ΔΣ DACs

INF4420 Switched capacitor circuits Outline

EE247 Lecture 11. Example: Switched-capacitor filters in CODEC integrated circuits. Switched-capacitor filter design summary

EE247 Lecture 11. EECS 247 Lecture 11: Intro. to Data Converters & Performance Metrics 2009 H. K. Page 1. Typical Sampling Process C.T. S.D. D.T.

Design Of Multirate Linear Phase Decimation Filters For Oversampling Adcs

EE 230 Lecture 39. Data Converters. Time and Amplitude Quantization

A VERY HIGH SPEED BANDPASS CONTINUOUS TIME SIGMA DELTA MODULATOR FOR RF RECEIVER FRONT END A/D CONVERSION K. PRAVEEN JAYAKAR THOMAS

EE247 Lecture 27 Today:

A K-Delta-1-Sigma Modulator for Wideband Analog-to-Digital Conversion

One-Bit Delta Sigma D/A Conversion Part I: Theory

INF4420. Switched capacitor circuits. Spring Jørgen Andreas Michaelsen

Chapter 2 DDSM and Applications

The Baker ADC An Overview Kaijun Li, Vishal Saxena, and Jake Baker

Cyber-Physical Systems ADC / DAC

A/D Conversion and Filtering for Ultra Low Power Radios. Dejan Radjen Yasser Sherazi. Advanced Digital IC Design. Contents. Why is this important?

National Instruments Flex II ADC Technology The Flexible Resolution Technology inside the NI PXI-5922 Digitizer

How to turn an ADC into a DAC: A 110dB THD, 18mW DAC using sampling of the output and feedback to reduce distortion

Gábor C. Temes. School of Electrical Engineering and Computer Science Oregon State University. 1/25

RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE

Summary of Last Lecture

Analog and Telecommunication Electronics

Data Conversion Techniques (DAT115)

Basic Concepts and Architectures

Chapter 2 Basics of Sigma-Delta Modulation

An Overview of the Decimation process and its VLSI implementation

LOW SAMPLING RATE OPERATION FOR BURR-BROWN

Active Filter Design Techniques

10 bit Delta Sigma D/A Converter with Increased S/N ratio Using Compact Adder Circuits

Transcription:

EE47 Lecture 4 Oversampled ADCs Why oversampling? Pulse-count modulation Sigma-delta modulation 1-Bit quantization Quantization error (noise) spectrum SQNR analysis Limit cycle oscillations nd order ΣΔ modulator Dynamic range Practical implementation Effect of various nonidealities on the ΣΔ performance EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 1 The Case for Oversampling Nyquist sampling: Signal f s B Freq narrow transition AA-Filter f s >B +δ Sampler Nyquist ADC DSP Oversampling: Signal f s >> f N?? B Freq wide transition AA-Filter f s Mf N Sampler Oversampled ADC DSP Nyquist rate f N B Oversampling rate M f s /f N >> 1 EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page

Nyquist v.s. Oversampled Converters Antialiasing X(f) Input Signal f B frequency Nyquist Sampling f B f s f S ~f B Anti-aliasing Filter f s Oversampling frequency f B f S >> f B f s frequency EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 3 Oversampling Benefits No stringent requirements imposed on analog building blocks Takes advantage of the availability of low cost, low power digital filtering Relaxed transition band requirements for analog anti-aliasing filters Reduced baseband quantization noise power Allows trading speed for resolution EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 4

ADC Converters Baseband Noise For a quantizer with step size Δ and sampling rate f s : Quantization noise power distributed uniformly across Nyquist bandwidth ( f s /) N e (f) N B -f B f s / -f s / f B Power spectral density: e Δ 1 N(f) e fs 1 fs Noise is aliased into the Nyquist band f s / to f s / EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 5 Oversampled Converters Baseband Noise fb fb Δ 1 SB N e( f )df df fb fb 1 fs N e (f) Δ fb 1 f N B s where for fb f s/ Δ SB0 -f s / -f B f B f s / 1 fb SB0 SB SB0 f s M fs where M oversampling ratio f B EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 6

Oversampled Converters Baseband Noise fb SB0 SB SB0 f s M fs where M oversampling ratio fb X increase in M 3dB reduction in S B ½ bit increase in resolution/octave oversampling To increase the improvement in resolution: Embed quantizer in a feedback loop Predictive (delta modulation) Noise shaping (sigma delta modulation) EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 7 Pulse-Count Modulation V in (kt) Nyquist ADC 0 1 t/t V in (kt) Oversampled ADC, M 8 0 1 t/t Mean of pulse-count signal approximates analog input! EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 8

Pulse-Count Spectrum Magnitude f Signal: low frequencies, f < B << f s Quantization error: high frequency, B f s / Separate with low-pass filter! EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 9 Oversampled ADC Predictive Coding v IN + _ ADC D OUT Predictor Quantize the difference signal rather than the signal itself Smaller input to ADC Buy dynamic range Only works if combined with oversampling 1-Bit digital output Digital filter computes average N-Bit output EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 10

Oversampled ADC Signal B Freq wide transition Analog AA-Filter f s Mf N Sampler E.g. Pulse-Count Modulator Modulator 1-Bit Digital f s1 M f N Decimator narrow transition Digital AA-Filter N-Bit Digital f s f N + δ DSP Decimator: Digital (low-pass) filter Removes quantization error for f > B Provides most anti-alias filtering Narrow transition band, high-order 1-Bit input, N-Bit output (essentially computes average ) EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 11 Modulator Objectives: Convert analog input to 1-Bit pulse density stream Move quantization error to high frequencies f >>B Operates at high frequency f s >> f N M 8 56 (typical).104 Since modulator operated at high frequencies need to keep circuitry simple ΣΔ ΔΣ Modulator EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 1

Sigma- Delta Modulators Analog 1-Bit ΣΔ modulators convert a continuous time analog input v IN into a 1-Bit sequence d OUT f s v IN + _ H(z) d OUT DAC Loop filter 1b Quantizer (comparator) EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 13 Sigma-Delta Modulators The loop filter H can be either switched-capacitor or continuous time Switched-capacitor filters are easier to implement + frequency characteristics scale with clock rate Continuous time filters provide anti-aliasing protection Loop filter can also be realized with passive LC s at very high frequencies f s v IN + _ H(z) d OUT DAC EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 14

Oversampling A/D Conversion f s f s /M Input Signal Bandwidth Bf s /M Oversampling Modulator 1-bit @ f s Decimation Filter n-bit @ f s /M f s sampling rate M oversampling ratio Analog front-end oversampled noise-shaping modulator Converts original signal to a 1-bit digital output at the high rate of (MXB) Digital back-end digital filter Removes out-of-band quantization noise Provides anti-aliasing to allow re-sampling @ lower sampling rate EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 15 1 st Order ΣΔ Modulator In a 1 st order modulator, simplest loop filter an integrator H(z) z -1 1 z -1 v IN + _ d OUT DAC EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 16

1 st Order ΣΔ Modulator Switched-capacitor implementation φ 1 φ φ V i - + d OUT 1,0 +Δ/ -Δ/ EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 17 1 st Order ΔΣ Modulator v IN + -Δ/ v IN +Δ/ _ dout -Δ/ or +Δ/ DAC Properties of the first-order modulator: Analog input range is equal to the DAC reference The average value of d OUT must equal the average value of v IN +1 s (or 1 s) density in d OUT is an inherently monotonic function of v IN linearity is not dependent on component matching Alternative multi-bit DAC (and ADCs) solutions reduce the quantization error but loose this inherent monotonicity & relaxed matching requirements EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 18

1 st Order ΣΔ Modulator Analog input -Δ/ V in +Δ/ Tally of quantization error 1 X Q 1-Bit quantizer 3 Y Sine Wave z -1-1 1-z Integrator Comparator 1-Bit digital output stream, -1, +1 Instantaneous quantization error Implicit 1-Bit DAC +Δ/, -Δ/ (Δ ) M chosen to be 8 (low) to ease observability EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 19 1 st Order Modulator Signals 1.5 1 1st Order Sigma-Delta X Q Y X analog input Q tally of q-error Y digital/dac output Amplitude 0.5 0 Mean of Y approximates X -0.5-1 T 1/f s 1/ (M f N ) -1.5 0 10 0 30 40 50 60 Time [ t/t ] EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 0

ΣΔ Modulator Characteristics Quantization noise and thermal noise (KT/C) distributed over f s / to +f s / Total noise within signal bandwidth reduced by 1/M Very high SQNR achievable (> 0 Bits!) Inherently linear for 1-Bit DAC To first order, quantization error independent of component matching Limited to moderate & low speed EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 1 Output Spectrum Amplitude [ dbwn ] 30 0 10 0-10 -0-30 -40 Input -50 0 0.1 0. 0.3 0.4 0.5 Frequency [ f /f s ] Definitely not white! Skewed towards higher frequencies Notice the distinct tones dbwn (db White Noise) scale sets the 0dB line at the noise per bin of a random -1, +1 sequence EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page

Quantization Noise Analysis Integrator Quantization Error e(kt) x(kt) Σ H( z) z 1 1 + z Σ Quantizer Model y(kt) Sigma-Delta modulators are nonlinear systems with memory difficult to analyze directly Representing the quantizer as an additive noise source linearizes the system EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 3 Signal Transfer Function z H( z) 1 + z ω0 H( jω ) jω x(kt) Σ - Integrator H(z) y(kt) Signal transfer function low pass function: 1 HSig ( jω ) 1 + s ω0 Y( z) H( z) HSig ( z) z X( z) 1 + H( z) Delay Magnitude f 0 Frequency EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 4

v i Σ - ω 0 jω Noise Transfer Function Qualitative Analysis v n v o v eq v i Σ - v f n f 0 ω0 jω v o f f 0 eq vn v f f 0 eq vn v Σ v i - ω0 jω v o f 0 Frequency Input referred-noise zero @ DC (s-plane) EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 5 STF and NTF Integrator Quantization Error e(kt) x(kt) Σ z H( z) 1 + z Σ Quantizer Model y(kt) Signal transfer function: Y( z) H( z) STF z X( z) 1 + H( z) Delay Noise transfer function: Y ( z) 1 NTF 1 z E( z) 1+ H ( z) Differentiator EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 6

Noise Transfer Function Y( z) 1 NTF 1 z Ez ( ) 1 + Hz ( ) jωt / jωt / jωt / jωt jωt / e e NTF( jω) (1 e )e ( ω ) ( ω ) e jsin T / jωt / jπ / e e sin T / j( ωt π) / sin ( ωt /) e where T 1/ fs Thus: ( ω ) ( π ) NTF( f ) sin T / sin f / f s N ( f ) NTF( f ) N ( f ) y e EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 7 First Order ΣΔ Modulator Noise Transfer Characteristics Noise Shaping Function Low-pass Digital Filter N ( f ) NTF( f) N ( f ) y ( π f f ) 4sin / First-Order Noise Shaping s e f B f N Frequency f s / Key Point: Most of quantization noise pushed out of frequency band of interest EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 8

First Order ΣΔ Modulator Simulated Noise Transfer Characteristic Amplitude [ dbwn ] 30 0 10 0-10 -0-30 Signal Simulated output spectrum Computed NTF ( π ) N ( f) 4 sin f / f y s -40-50 0 0.1 0. 0.3 0.4 0.5 Frequency [f/f s ] EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 9 Quantizer Error For quantizers with many bits e Δ ( kt) 1 Let s use the same expression for the 1-Bit case Use simulation to verify validity Experience: Often sufficiently accurate to be useful, with enough exceptions to be very careful EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 30

First Order ΣΔ Modulator In-Band Quantization Noise ( ) ( ) ( π ) fs M fs M NTF z 1 z s NTF f 4sin f / f for M >> 1 Y B B Q ( ) ( ) S S f NTF z df 1 Δ f 1 s z e ( sinπ ft ) π jft df S Y π 1 Δ M 3 3 1 EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 31 Dynamic Range peak signal power S X DR 10log 10log peak noise power SY S S S S X Y X Y 1 Δ sinusoidal input, STF 1 π 1 Δ 3 3 M 1 9 3 M π 9 3 9 DR 10log M 10log + 30log M π π M DR 16 33 db 3 4 db 104 87 db DR 3.4dB ++ 30log M X increase in M 9dB (1.5-Bit) increase in dynamic range EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 3

Oversampling and Noise Shaping ΣΔ modulators have interesting characteristics Unity gain for input signal V IN Large in-band attenuation of quantization noise injected at quantizer input Performance significantly better than 1-Bit noise performance possible for frequencies << f s Increase in oversampling (M f s /f N >> 1) improves SQNR considerably 1 st order ΣΔ: DR increases 9dB for each doubling of M To first order, SQNR independent of circuit complexity and accuracy Analysis assumes that the quantizer noise is white Not true in practice, especially for low-order modulators Practical modulators suffer from other noise sources also (e.g. thermal noise) EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 33 DC Input Amplitude [ dbwn ] 30 0 10 0-10 -0-30 -40-50 0 0.1 0. 0.3 0.4 0.5 Frequency [ f /f s ] DC input A 1/11 Doesn t look like spectrum of DC at all Tones frequency shaped the same as quantization noise More prominent at higher frequencies Seems like periodic quantization noise EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 34

Output 0. 0 Limit Cycle First order sigma-delta, DC input 0.6 0.4-0. -0.4 0 10 0 30 40 50 Time [t/t] DC input 1/11 Periodic sequence: 1 +1 +1 3-1 4 +1 5-1 6 +1 7-1 8 +1 9-1 10 +1 11-1 EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 35 Limit Cycle Noise Shaping Function Ideal Low-pass Digital Filter In-band spurious tone with f ~ DC input First-Order Noise Shaping f B f N Frequency f s / Problem: quantization noise is periodic Solution: Use dithering: randomizes quantization noise - Thermal noise acts as dither Second order loop EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 36

1 st Order ΣΔ Modulator ( ) 1 1 Y( z) z X( z) + 1 z E( z) EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 37 nd Order ΣΔ Modulator Two integrators 1st integrator non-delaying Feedback from output to both integrators Tones less prominent compared to 1st order EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 38

nd Order ΣΔ Modulator ( ) Recursive drivation: Y X + E E + E n n n n n ( ) Using the delay operator z : Y( z) z X( z) + 1 z E( z) EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 39 nd Order ΣΔ Modulator In-Band Quantization Noise ( ) ( 1 z ) ( f ) 4 z H( z) 1 z G 1 NTF z NTF ( π ) sin f / f for M >> 1 B Y Q( ) ( ) z e B S S f NTF z df f s f s M M 1 Δ f 1 4 1 Δ 5 π 5 M 1 s s 4 ( sinπ ft) π jft 4 df EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 40

Quantization Noise nd Order ΣΔ Modulator Noise Shaping Function Ideal Low-pass Digital Filter nd -Order Noise Shaping First-Order Noise Shaping f B Frequency f s / EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 41 nd Order ΣΔ Modulator Dynamic Range peak signal power S X DR 10log 10log peak noise power SY S S S S X Y X Y 1 Δ sinusoidal input, STF 1 4 π 1 Δ 5 5 M 1 15 5 M 4 π 15 5 15 DR 10log M 10log + 50log M 4 4 π π M DR 16 49 db 3 64 db 104 139 db DR 11.1dB + + 50log M X increase in M 15dB (.5-bit) increase in DR EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 4

Digital audio application Signal bandwidth 0kHz Resolution 16-bit nd Order ΣΔ Modulator Example 16 bit 98 db Dynamic Range M DR 11.1dB ++ 50log M min 153 M 56 8 to allow some margin & also for ease of digital filter implementation Sampling rate (x0khz + 5kHz)M 1MHz EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 43 Higher Order ΣΔ Modulator Dynamic Range ( ) L 1 Y( z) z X( z) + 1 z E( z), L ΣΔ order S S S S X Y X Y Δ L 1 sinusoidal input, STF 1 π 1 L M 3 ( L + 1) M L π + 1 L+ 1 1 L+ 1 ( L + ) 3 1 DR 10log M L π DR L+ 1 3 ( L + 1) 10log +( L ) π L Δ + 1 10 logm X increase in M (6L+3)dB or (L+0.5)-bit increase in DR EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 44

ΣΔ Modulator Dynamic Range As a Function of Modulator Order L3 L L1 Potential stability issues for L > EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 45 Tones in 1 st Order & nd Order ΣΔ Modulator Higher oversampling ratio lower tones nd order much lower tones compared to 1 st Xincrease in M decreases the tones by 6dB for 1 st order loop and 1dB for nd order loop 1dB 6dB 1 st Order ΣΔ Modulator nd Order ΣΔ Modulator Ref: B. P. Brandt, et al., "Second-order sigma-delta modulation for digital-audio signal acquisition," IEEE Journal of Solid-State Circuits, vol. 6, pp. 618-67, April 1991. R. Gray, Spectral analysis of quantization noise in a single-loop sigma delta modulator with dc input, IEEE Trans. Commun., vol. 37, pp. 588 599, June 1989. EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 46

nd Order ΣΔ Modulator Switched-Capacitor Implementation IN Dout EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 47 Switched-Capacitor Implementation nd Order ΣΔ Phase 1 Sample inputs Compare output of nd integrator At the end of phase1, S3 opens prior to S1 opening EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 48

Switched-Capacitor Implementation nd Order ΣΔ Phase Enable feedback from output to input of both integrators Integrate Reset comparator At the end of phase S4 opens before S EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 49 ΣΔ Implementation Practical Design Considerations Internal nodes scaling & clipping Finite opamp gain & linearity Capacitor ratio errors KT/C noise Opamp noise Power dissipation considerations EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 50

Switched-Capacitor Implementation nd Order ΣΔ Nodes Scaled for Maximum Dynamic Range Modification (gain of ½ in front of integrators) reduce & optimize required signal range at the integrator outputs ~ 1.7x input fullscale (Δ) Ref: B.E. Boser and B.A. Wooley, The Design of Sigma-Delta Modulation A/D Converters, IEEE J. Solid-State Circuits, vol. 3, no. 6, pp. 198-1308, Dec. 1988. EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 51 nd Order ΣΔ Modulator Switched-Capacitor Implementation The ½ loss in front of each integrator implemented by choice of: C C 1 EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 5

nd Order ΣΔ Effect of Integrator Maximum Signal Handling Capability on SNR Effect of 1 st Integrator maximum signal handling capability on converter SNR Ref: B.E. Boser and B.A. Wooley, The Design of Sigma-Delta Modulation A/D Converters, IEEE J. Solid-State Circuits, vol. 3, no. 6, pp. 198-1308, Dec. 1988. EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 53 nd Order ΣΔ Effect of Integrator Maximum Signal Handling Capability on SNR Effect of nd Integrator maximum signal handling capability on SNR Ref: B.E. Boser and B.A. Wooley, The Design of Sigma-Delta Modulation A/D Converters, IEEE J. Solid-State Circuits, vol. 3, no. 6, pp. 198-1308, Dec. 1988. EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 54

nd Order ΣΔ Effect of Integrator Finite DC Gain V i φ 1 φ Cs - a + CI V o ( ) H z ( ) H z ideal Finit DC Gain Cs z 1 CI 1 z a z Cs 1+ a + Cs CI CI 1+ a 1 z Cs 1+ a + CI EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 55 nd Order ΣΔ Effect of Integrator Finite DC Gain log H ( s) a Ideal Integ. (ainfinite) Max signal level ω P1 0 a ω 0 a Integrator magnitude response f 0 /a Low integrator DC gain Increase in total in-band noise Can be shown: If a > M (oversampling ratio) Insignificant degradation in SNR Normally DC gain designed to be >> M in order to suppress nonlinearities EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 56

nd Order ΣΔ Effect of Integrator Finite DC Gain M / a Example: a M 0.4dB degradation in SNR Ref: B.E. Boser and B.A. Wooley, The Design of Sigma-Delta Modulation A/D Converters, IEEE J. Solid-State Circuits, vol. 3, no. 6, pp. 198-1308, Dec. 1988. EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 57 nd Order ΣΔ Effect of Integrator Overall Integrator Gain Inaccuracy Gain of ½ in front of integrators determined by ratio of C1/C Effect of inaccuracy in ratio of C1/C inspected by simulation EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 58

nd Order ΣΔ Effect of Integrator Overall Gain Inaccuracy Simulation show gain can vary by 0% w/o loss in performance Confirms insensitivity of ΣΔ to component variations Note that for gain >0.65 system becomes unstable & SNR drops rapidly EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 59 nd Order ΣΔ Effect of Integrator Nonlinearities u(kt) Ideal Integrator Delay v(kt) v(kt+ T) u(kt) + v(kt) With non-linearity added: 3 v(kt + T ) u(kt ) + α u( kt ) + α 3 u( kt )... 3 + v(kt ) + β v( kt ) + β 3 v( kt ) +... Ref: B.E. Boser and B.A. Wooley, The Design of Sigma-Delta Modulation A/D Converters, IEEE J. Solid-State Circuits, vol. 3, no. 6, pp. 198-1308, Dec. 1988 EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 60

nd Order ΣΔ Effect of Integrator Nonlinearities α β 0.01, 0.0, 0.05, 0.1% Simulation for single-ended topology Even order nonlinearities can be significantly attenuated by using differential circuit topologies Ref: B.E. Boser and B.A. Wooley, The Design of Sigma-Delta Modulation A/D Converters, IEEE J. Solid-State Circuits, vol. 3, no. 6, pp. 198-1308, Dec. 1988. EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 61 nd Order ΣΔ Effect of Integrator Nonlinearities α 3 β 3 0.05, 0.,1% 6dB 1Bit Simulation for single-ended topology Odd order nonlinearities (3 rd in this case) Ref: B.E. Boser and B.A. Wooley, The Design of Sigma-Delta Modulation A/D Converters, IEEE J. Solid-State Circuits, vol. 3, no. 6, pp. 198-1308, Dec. 1988. EECS 47 Lecture 4: Oversampling Data Converters 005 H. K. Page 6