Enhancing Power Quality in Transmission System Using Fc-Tcr

Similar documents
Implementing Re-Active Power Compensation Technique in Long Transmission System (750 Km) By Using Shunt Facts Control Device with Mat Lab Simlink Tool

Design, Modeling and Simulation of Fuzzy Controlled SVC for Transmission Line

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 03, 2015 ISSN (online):

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS

Voltage-Current and Harmonic Characteristic Analysis of Different FC-TCR Based SVC

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System

APPLICATION OF INVERTER BASED SHUNT DEVICE FOR VOLTAGE SAG MITIGATION DUE TO STARTING OF AN INDUCTION MOTOR LOAD

Arvind Pahade and Nitin Saxena Department of Electrical Engineering, Jabalpur Engineering College, Jabalpur, (MP), India

Address for Correspondence

I. INTRODUCTION IJSRST Volume 3 Issue 2 Print ISSN: Online ISSN: X

Improvement of Power Quality Using a Hybrid Interline UPQC

Volume I Issue VI 2012 September-2012 ISSN

CHAPTER 4 MULTI-LEVEL INVERTER BASED DVR SYSTEM

VOLTAGE SAG COMPENSATION USING UNIFIED POWER FLOWER CONTROLLER IN MV POWER SYSTEM USING FUZZY CONTROLLER

Application of Fuzzy Logic Controller in Shunt Active Power Filter

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & MANAGEMENT

Chapter 10: Compensation of Power Transmission Systems

D-STATCOM FOR VOLTAGE SAG, VOLTAGE SWELL MITIGATION USING MATLAB SIMULINK

OVERVIEW OF SVC AND STATCOM FOR INSTANTANEOUS POWER CONTROL AND POWER FACTOR IMPROVEMENT

STATCOM WITH POD CONTROLLER FOR REACTIVE POWER COMPENSATION Vijai Jairaj 1, Vishnu.J 2 and Sreenath.N.R 3

Voltage Improvement Using SHUNT FACTs Devices: STATCOM

Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

Static Synchronous Compensator (STATCOM) for the improvement of the Electrical System performance with Non Linear load 1

Analysis and modeling of thyristor controlled series capacitor for the reduction of voltage sag Manisha Chadar

Analysis the Modeling and Control of Integrated STATCOM System to Improve Power System

Power Factor Improvement Using Thyristor Switched Capacitor Using Microcontroller Kacholiya Saurabh 1, Phapale Sudhir 2, Satpute Yuvraj 3, Kale.S.

A Thyristor Controlled Three Winding Transformer as a Static Var Compensator

Multilevel Inverter Based Statcom For Power System Load Balancing System

IMPROVING POWER QUALITY AND ENHANCING THE LIFE OF POWER EQUIPMENT, IN RAILWAY TSSs

Stability Enhancement for Transmission Lines using Static Synchronous Series Compensator

Long lasting transients in power filter circuits

Voltage Control and Power System Stability Enhancement using UPFC

Interline Power Flow Controller: Review Paper

II. RESEARCH METHODOLOGY

To Study The MATLAB Simulation Of A Single Phase STATCOM And Transmission Line

Power Factor Improvement Using Static VAR Compensator

Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition

Transient stability improvement by using shunt FACT device (STATCOM) with Reference Voltage Compensation (RVC) control scheme

I. INTRODUCTION. Keywords:- FACTS, TCSC, TCPAR,UPFC,ORPD

Application of Distribution Static Synchronous Compensator in Electrical Distribution System

A Review on Simulation and Implementation of Thyristor controlled reactor and Shunt Hybrid Power Filter

Modelling of Dynamic Voltage Restorer for Mitigation of Voltage Sag and Swell Using Phase Locked Loop

Enhancement of Voltage Stability & reactive Power Control of Distribution System Using Facts Devices

Brief Study on TSCS, SSSC, SVC Facts Device

Design and Simulation of DVR Used For Voltage Sag Mitigation at Distribution Side

Mitigation of Voltage Sag and Swell using Distribution Static Synchronous Compensator (DSTATCOM)

ANFIS based 48-Pulse STATCOM Controller for Enhancement of Power System Stability

Improvement in Power Quality of Distribution System Using STATCOM

Poornima G P. IJECS Volume 3 Issue 6 June, 2014 Page No Page 6453

A Modified Control Method For A Dual Unified Power Quality Conditioner

Design of Fast Real Time Controller for the Dynamic Voltage Restorer Based on Instantaneous Power Theory

HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER. Rajesh Kr. Ahuja

FUZZY LOGIC CONTROL BASED DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT IN DISTRIBUTION SYSTEM

A NOVEL APPROACH ON INSTANTANEOUS POWER CONTROL OF D-STATCOM WITH CONSIDERATION OF POWER FACTOR CORRECTION

Comparison of FACTS Devices for Power System Stability Enhancement

Compensation of Distribution Feeder Loading With Power Factor Correction by Using D-STATCOM

Improvement of Power Quality in Distribution System using D-STATCOM With PI and PID Controller

Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT

Adaptive ANN based STATCOM and DVR for optimal integration of wind energy with grid using permanent magnet synchronous generator

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

Performance Improvement of Power System Using Static Synchronous Compensator (STATCOM) Priya Naikwad, Mayuri Kalmegh, Poonam Bhonge

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India)

Harmonics Elimination Using Shunt Active Filter

SRI VIDYA COLLEGE OF ENGG AND TECH

FUZZY CONTROLLED DSTATCOM FOR HARMONIC COMPENSATION

Performance of DVR & Distribution STATCOM in Power Systems

Power Quality and the Need for Compensation

Modeling of Statcom. P.M. Sarma and Dr. S.V. Jaya Ram Kumar. Department of Electrical & Electronics Engineering GRIET, Hyderabad, India

POWER QUALITY ENHANCEMENT IN ARC FURNACE ENVIRONMENT Nupur Laxman Mali,

IMPROVING EFFICIENCY OF ACTIVE POWER FILTER FOR RENEWABLE POWER GENERATION SYSTEMS BY USING PREDICTIVE CONTROL METHOD AND FUZZY LOGIC CONTROL METHOD

Simulation Study of a Monopole HVDC Transmission System Feeding a Very Weak AC Network with Firefly Algorithm Based Optimal PI Controller

Comparative Analysis of Multiple-pulse VSC-Based STATCOM s for Voltage-Dip Mitigation

Modeling and Simulation of STATCOM

CHAPTER 7 CONCLUSIONS AND FUTURE SCOPE

PUBLICATIONS OF PROBLEMS & APPLICATION IN ENGINEERING RESEARCH - PAPER CSEA2012 ISSN: ; e-issn:

Transient Stability Enhancement with Application of FACTS Devices

Reduction In Total Harmonic Distortion Using Active Power Filters

Fuzzy Logic Based Control of Static Var Compensator

ELEMENTS OF FACTS CONTROLLERS

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side

Power Quality enhancement of a distribution line with DSTATCOM

Design and Simulation of Passive Filter

Abstract: PWM Inverters need an internal current feedback loop to maintain desired

Control of buck-boost chopper type AC voltage regulator

SIMULATION OF D-STATCOM AND DVR IN POWER SYSTEMS

Modeling & Simulation of PMSM Drives with Fuzzy Logic Controller

Increasing Dynamic Stability of the Network Using Unified Power Flow Controller (UPFC)

Determination of Optimal Account and Location of Series Compensation and SVS for an AC Transmission System

INVESTIGATION OF HARMONIC DETECTION TECHNIQUES FOR SHUNT ACTIVE POWER FILTER

Power Quality Improvement in Distribution System Using D-STATCOM

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 08, 2015 ISSN (online):

FACTS devices in Distributed Generation

Reduction of Voltage Imbalance in a Two Feeder Distribution System Using Iupqc

Intelligence Controller for STATCOM Using Cascaded Multilevel Inverter

Power Control Scheme of D-Statcom

Comparison and Simulation of Open Loop System and Closed Loop System Based UPFC used for Power Quality Improvement

Reactive Power and AC Voltage Control of LCC HVDC System with Digitally Tunable Controllable Capacitors

Transcription:

International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Enhancing Power Quality in Transmission System Using Fc-Tcr Abhishek Kumar Pashine 1, Satyadharma Bharti 2 Electrical Engineering Department, Rungta College of Engineering and Technology, Bhilai., India Abstract: FACTS methodology is totally based on power electronics devices which are used to increase the transmission capability. To make the power system flexible, FACTS technology is used to attain entire control of power system i.e. transmission, distribution and generation. This paper is mainly concerned about the significance of Fixed Capacitor Thyristor Control Reactor (FC-TCR) acquiring automatic power and steady state voltage stability with the help of fuzzy logic controller. In transmission systems, the fuzzy rules are set to generate the required firing angle of FC-TCR to maintain a flat profile of steady state voltage and stability. The fundamental model is simulated in MATLAB along with the fuzzy logic control strategy. The results obtained are trust worthy and it can be used for controlling the voltage and reactive power in any electrical transmission system. Keywords: Facts, Fc-Tcr, Flc. I. INTRODUCTION Electrical energy is the superior form of energy out of all energy forms in the world. It is easily controllable and transformable into various others forms (light, heat etc.) of energy. The basic control objectives of a power system are system voltage control, frequency control and protection. A power system is said to be well designed if it provides improve quality of reliable supply. It is said to be of good quality when the voltage levels are maintained within the reasonable limits [1]. In this thesis the first generation FACTS controller SVC type FC-TCR is considered with the fuzzy controller. The transmission line distributed parameters throughout the line, on at no loads or at no load become predominant and consequently the line applied charging VAR. In order to sustain the both side terminal voltage at the load bus bar adequate, reactive reserves are needed. FACTS devices like SVC can maintain voltage or absorb the reactive power at load end bus or at load end bus in transmission line, which helps in attaining economy in power transfer and distribution. The fuzzy control strategy has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory [1]. Fuzzy control is based on fuzzy logic and is a logical system which is much closer in spirit to human thinking and nature language than traditional logical system. The fuzzy logic controller (FLC) provides a means for converting a linguistic control strategy based on an expert knowledge into an automatic control strategy. Based on observed results for receiving side voltage variations for various values of load inductance, resistance and capacitance a fuzzy logic controller is designed which controls the triggering angle of FC-TCR in order to automatically maintain the receiving end voltage constant [4]. II. OPERATING PRINCIPLE OF FC-TCR A basic type VAR generator arrangement using a fixed (permanently connected) capacitor with a Thrustercontrolled reactor (FC-TCR) is shown in fig 1. The current in reactor is varied by firing delay angle control. The fixed capacitor in practice is generally substituted, wholly or partially, by a filter network that has the necessary capacitive impedance at the fundamental frequency to provide the reactive power required, but it generates low impedance at selected frequencies to shunt the dominant harmonics [1]. IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss. 3 Mar. 2014 14

Fig.1 FC-TCR type VAR generator The FC-TCR type VAR generator may be considered essentially to consist of a variable reactor and a fixed capacitor, with characteristics of overall VAR demand versus VAR output shown in fig 2. Fig.2 VAR demand versus VAR output characteristics As seen the capacitive VAR generation of the fixed capacitor is opposed by the variable VAR absorption of the Thruster controlled reactor, to provide the entire VAR output required. At capacitive VAR output, when (α=90) the Thruster Controlled Reactor is off. To reduce the capacitive output, the current in the reactor is raised by decreasing delay angle α. When VAR output is zero, the capacitive and inductive currents become equal and thus capacitive and inductive current cancel out. With a further decrease of angle (assuming that the rating of the capacitor is lesser than that of reactor), the capacitive current becomes lower than the inductive current, resulting in a net inductive VAR output. At (zero) delay angle, the Thruster Controlled Reactor conducts current over the full180 time duration, resulting in maximum inductive VAR output that is equal to the difference between the VARs generated by capacitance and those absorbed by the fully conducting reactor. The control of Thruster controlled reactor in the FC-TCR Type VAR generator needs to provide following basic functions [3]. Synchronous timing Reactive current to triggering angle converter Computation of required fundamental reactor current Thruster firing pulse generation The first function is synchronous timing which is generally provided by a phase locked loop circuit that runs in synchronism with the ac system voltage and generates appropriate pulses with respect to the peak of that voltage. The second function is the reactive current to firing angle conversion. This can be a real time circuit implementation of the mathematical relationship between the amplitude of the fundamental TCR current versus delay angle alpha relationship. The another is a digital look up table for the normalized fundamental TCR current versus alpha function which is read at t regular intervals starting from α=0 until the requested value is found, at which instant a firing angle the delay angle corresponding to the required fundamental TCR current. The actual firing instant is then determined by a timing circuit measuring alpha from the peak of the voltage. The current in the reactor is varied by the method of triggering delay angle control. A filter network that has the mandatory capacitive impedance at the frequency to generate the reactive power required generally substitutes the fixed capacitor in practice, wholly or partially, but it generates low IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss. 3 Mar. 2014 15

impedance at selected frequencies to shunt the dominant harmonics produced by the TCR [7]. Fig.3 V-I characteristics In Fig 3 the voltage defines the V-I operating area of the FC-TCR VAR and current rating of the major power components. In the dynamic V-I Characteristics of FC-TCR along with the Load lines showed in the Fig.4. The load characteristics are assumed to be straight lines for Dynamic studies as easily seen that the voltage is improved with compensation when compared without compensation. III. PROPOSED FUZZY LOGIC CONTROLLER Fuzzy logic is an advanced control approach with great potential for real time applications and fuzzy inference system in MATLAB Fuzzy logic toolbox. Load voltage and load current are taken as input to fuzzy system. For a closed loop control, error and change in error input can be selected as current or voltage according to control type. To acquire the linearity triangular membership function is taken with fifty percent overlap [2]. The output of fuzzy controller taken as the control signal and the pulse generator provides synchronous firing pulses to thrusters as shown in fig 5. Fig.4 Dynamic V-I characteristics The Fuzzy Logic control technique is a rule based technique, where a set of rules presents a control decision mechanism to correct the effect of definite causes coming from power system. In fuzzy logic, the seven linguistic variables expressed by fuzzy sets defined on their respective universes of discourse. Table-I shows the proposed membership function rules of FC-TCR controller. The rules chosen for this table are totally based on practical experience of experts and engineers and MATLAB simulation results observed from the behavior of the system around its stable equilibrium points [4]. IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss. 3 Mar. 2014 16

Fig.5 Proposed Fuzzy Logic Controller TABLE I. Rules for the fuzzy logic controller IV. FIRING ANGLE GENERATION The control circuits discussed so far were discrete in nature. But present days specially develop ICs like IC TCA 785 can replace all the discrete circuitry. This IC can be used for triggering the SCR as well as TRIAC in different applications. It can be used in applications such as single phase semiconductor or full converters etc. That facilities like multiple pulse triggering, pulse width adjustment, variation in the firing angle etc. The same IC can be used for triggering the three 2 phase line commutated converter as well a n d for this three IC s are used. Fig.6 shows the fundamental diagram of firing scheme for Thruster with TCA785. The synchronizing signals should be generated by using step down transformers. Fig 6 shows Firing Scheme with TCA 785 IC for SCRs. This IC 785 having output current of 250 ma and a fuzzy logic trainer kit with two input variables and having seven linguistic sets is used. This can generate 7 X 7 rules. Fig.6 Fundamental diagram of firing scheme for Thruster with TCA785 IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss. 3 Mar. 2014 17

V. CONTROL STRUCTURE FOR FC-TCR The control system consists of: A measurement system measuring the positive-sequence and negative sequence voltage control. A voltage regulator that manipulates the voltage error (difference between the reference voltage and the measured voltage) to determine the FC-TCR susceptance needed to maintain the system voltage constant. Fuzzy logic is a computing based or rule based controller with set of rules which represents control decision mechanism to correct the effect of certain cause coming from power system [5]. A distribution unit that regulate eventually FC-TCR must be switched in and out, and calculate the firing angle of TCRs. A synchronizing system synchronizes the secondary voltages and a pulse generator that send appropriate pulses to the thruster [5]. VI. HARDWARE IMPLEMENTATION The TCR (Thruster Controlled Reactor) block consists of two thrusters in an anti-parallel connection. This setup is connected to a reactor of a fixed value. By changing the firing angles the effective value of inductance is also changed, thus the reactive power absorbed by the reactor is changed which leads to a change in the receiving end voltage. The transmission line used in the network is λ/8 transmission line. A model is used for representing the transmission line. There are four sections for long transmission line. Fig.8 shows the long transmission line representation. The firing pulses are generated by the block firing circuit which gives the firing angle α for one cycle and 180 α during the negative cycle. The inputs to this block are the receiving end voltage of the line and a control value (firing angle). The fuzzy toolbox in the MATLAB is used to design the fuzzy controller. The designing of the fuzzy controller is done on the basis of the rules given before. The load current is taken as an input for the fuzzy controller. The firing angle is obtained as the output [7]. Fig.7 Single phase equivalent circuit with fuzzy control structure of FC-TCR Fig.8 Transmission line representation IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss. 3 Mar. 2014 18

VII. RESULTS The transmission system without any compensation was not fulfilling the required condition of maintaining the voltage within the reasonable limits. At low loads, the receiving end voltage is greater than the sending end voltage as the reactive power produced is greater than absorbed. Fig. 9 shows the voltage before compensation at load 400Ω and fig.10 shows instantaneous voltage after compensation at load 400Ω. Fig11 and 12 shows the RMS voltage before and after compensation at load 400Ω. VIII. CONCLUSION This paper deals with a fuzzy control scheme for FC-TCR and it can be concluded that the use of fuzzy controlled FC-TCR compensating device with firing angle control is effective, continuous and it is a simplest way of controlling the power and voltage of transmission line. It is observed that FC-TCR device was able to compensate both over and under voltages. Compensating voltages are shown in wave forms. The use of fuzzy logic has facilitated the closed loop control of system, by designing a set of rules, which decides the firing angle given to FC- T C R to attain the required voltage. With MATLAB simulations and actual testing it is observed that SVC type FC-TCR provides an effective reactive power control irrespective of load variation Fig. 9 Voltage waveforms before compensation at load R= 400Ω Fig. 10 Voltage waveforms after compensation at load R= 400Ω Fig. 11 Voltage waveforms before compensation at load R= 400Ω IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss. 3 Mar. 2014 19

Fig. 12 RMS Voltage waveforms before compensation at load R= 400Ω REFERENCES [1] J. J. Peserba, How FACTS Controllers Benefits AC Transmission Systems, IEEE Power Engineering Society General Meeting, 2004, 1257-1262. [2] Shilpy Agarwal and Vijay Bhuria, Shunt Active Power Filter for Harmonic Mitigation by Using Fuzzy Logic Controller, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2013, 1950-1954. [3] D. Devraj and N. Karpagam, Fuzzy Logic Control of Static VAR Compensator for Power System Damping, International Journal of Electrical and Electronics Engineering, 2009, 625-631. [4] Avneesh Kumar Vishwakarma and Dhaneswari Sahu, Efficient Transmission Line Voltage Regulation Using Fuzzyfied Soft Static VAR Compensator, International Journal of Latest Trends in Engineering and Technology (IJLTET), 2013, 50-57. [5] Javid Akhtar and P. M. Shamsudheen, Power Quality Improvement using Fuzzy Logic Control Static VAR Compensator in Power System Networks, ISOR Journal of engineering, 2012, 01-08. [6] T. X. Wang, S. S. Choi and E.K.K. Sng, Series Compensation Method to Mitigate Harmonics and Voltage Sags and Swells, IET Generation Transmission Distribution, 2007, 96-103. [7] D.Harikrishna, R.S.Dhekekar and N.V.Srikanth, A Novel Approach to Small Signal Stability Enhancement using Fuzzy Logic Controller of SVC, IEEE Transactions on Power Systems, 2000, 1360-1366. [8] Mark Ndubuka Nwohu, Voltage Stability Improvement Using Static Var Compensator in Power Systems,Federal university of Technology Nigeria, 2009, 167-172. [9] Sakshi Bangia, Maneesha Garg and P. R. Sharma, Simulation of Fuzzy Logic Based Shunt Hybrid Active Filter for Power Quality Improvement, I. J. Intelligent Systems and Applications MECS, 2013, 96-104. IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss. 3 Mar. 2014 20