NMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. NMOS Inverter Lab

Similar documents
MOS Inverters Dr. Lynn Fuller Webpage:

Differential Amplifier with Current Source Bias and Active Load

EEEE 381 Electronics I

Introduction to LTSPICE Dr. Lynn Fuller Electrical and Microelectronic Engineering

Introduction to Modeling MOSFETS in SPICE

EEEE 381 Electronics I

Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas

Team Galt Real Microsystems

Team Galt Real Microsystems

Introduction to the Long Channel MOSFET. Dr. Lynn Fuller

Lossy and Lossless Current-mode Integrators using CMOS Current Mirrors

A MOS VLSI Comparator

Burak Baylav, Dr. Dhireesha Kudithipudi Dr. Lynn Fuller

Mentor Graphics OPAMP Simulation Tutorial --Xingguo Xiong

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics

DIGITAL VLSI LAB ASSIGNMENT 1

SPICE Simulation Program with Integrated Circuit Emphasis

MOSFET Biasing Supplement for Laboratory Experiment 5 EE348L. Spring 2005

INTRODUCTION TO CIRCUIT SIMULATION USING SPICE

Gunning Transceiver Logic Interface Bus Design Project

problem grade total

EE 330 Homework 5 Fall 2016 (Due Friday Sept 23)

MOS TRANSISTOR THEORY

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section

Laboratory Experiment 5 EE348L. Spring 2005

Static Random Access Memory - SRAM Dr. Lynn Fuller Webpage:

The basic inverter circuit or common-source amplifier using a resistive load is shown in Figure 1. source s

Study of Differential Amplifier using CMOS

ECEN3250 Lab 9 CMOS Logic Inverter

Introduction to Electronic Devices

Design and Simulation of RF CMOS Oscillators in Advanced Design System (ADS)

ELEC 2210 EXPERIMENT 12 NMOS Logic

Differential Difference Current Conveyor Based Cascadable Voltage Mode First Order All Pass Filters

Modeling MOS Transistors. Prof. MacDonald

DIGITAL CIRCUIT SIMULATION USING HSPICE

A NEW DIFFERENTIAL CONFIGURATION SUITABLE FOR REALIZATION OF HIGH CMRR, ALL-PASS/NOTCH FILTERS

LECTURE 4 SPICE MODELING OF MOSFETS

BJT IC Design ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. BJT IC Design. Dr. Lynn Fuller Webpage:

CMOS voltage controlled floating resistor

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha

CMOS High Frequency/Low Voltage Fult-Wave Rectifier

Lecture 16. Complementary metal oxide semiconductor (CMOS) CMOS 1-1

SPICE MODELING OF MOSFETS. Objectives for Lecture 4*

Lab 5: MOSFET I-V Characteristics

Laboratory Experiment 6 EE348L. Spring 2005

Lab 6: MOSFET AMPLIFIER

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

MEMS Signal Conditioning Circuits Dr. Lynn Fuller Electrical and Microelectronic Engineering

A COMPARATIVE ANALYSIS OF 180 NM PROCESS CMOS INVERTER

PMOS Testing at. Rochester Institute of Technology. Dr. Lynn Fuller

Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage:

Lecture 4. The CMOS Inverter. DC Transfer Curve: Load line. DC Operation: Voltage Transfer Characteristic. Noise in Digital Integrated Circuits

EE 320 L LABORATORY 9: MOSFET TRANSISTOR CHARACTERIZATIONS. by Ming Zhu UNIVERSITY OF NEVADA, LAS VEGAS 1. OBJECTIVE 2. COMPONENTS & EQUIPMENT

Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

ECE2274 Pre-Lab for MOSFET logic LTspice NAND Gate, NOR Gate, and CMOS Inverter

EXPERIMENT 2. NMOS AND BJT INVERTING CIRCUITS

EE 230 Lab Lab 9. Prior to Lab

Advanced MOSFET Basics. Dr. Lynn Fuller

High Voltage and MEMS Process Integration

HW#3 Solution. Dr. Parker. Spring 2014

Field Effect Transistors

Accurate active-feedback CM OS cascode current mirror with improved output swing

Power Conditioning Electronics Dr. Lynn Fuller Webpage:

PSPICE tutorial: MOSFETs

HW#3 Solution. Dr. Parker. Fall 2015

Place answers on the supplied BUBBLE SHEET only nothing written here will be graded.

ENEE 307 Laboratory#2 (n-mosfet, p-mosfet, and a single n-mosfet amplifier in the common source configuration)

Basic Analog Electronic Circuits Dr. Lynn Fuller

ENEE307 Lab 7 MOS Transistors 2: Small Signal Amplifiers and Digital Circuits

Appendix 5 Model card parameters for built-in components

CMOS Implementation of Lossy Integrator using Current Mirrors Rishu Jain 1, Manveen Singh Chadha 2 1, 2

HW#3 Solution. Dr. Parker. Fall 2014

Lecture 12 - Digital Circuits (I) The inverter. October 20, 2005

Lecture 11 Digital Circuits (I) THE INVERTER

CPE/EE 427, CPE 527 VLSI Design I CMOS Inverter. CMOS Inverter: A First Look

Field Effect Transistors (FET s) University of Connecticut 136

Ota-C Based Proportional-Integral-Derivative (PID) Controller and Calculating Optimum Parameter Tolerances

EECS 270A PROJECT Design of an Operational Amplifier with a Bandgap Reference. University of California Irvine

1.0 Folded-Cascode OTA

Advanced MOSFET Basics. Dr. Lynn Fuller

ECE 546 Lecture 12 Integrated Circuits

EECE 2413 Electronics Laboratory

Novel MOS-C oscillators using the current feedback op-amp

Experiment 5: CMOS FET Chopper Stabilized Amplifier 9/27/06

A CMOS Analog Front-End Circuit for MEMS Based Temperature Sensor

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad

Lecture 11 Circuits numériques (I) L'inverseur

EE 330 Laboratory 7 MOSFET Device Experimental Characterization and Basic Applications Spring 2017

Lecture 4. MOS transistor theory

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN

55:041 Electronic Circuits

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and

Electronic Circuit Casebook. Dr. Lynn Fuller

3. COMPARING STRUCTURE OF SINGLE GATE AND DOUBLE GATE MOSFET WITH DESIGN AND CURVE

EXPERIMENT 4 CMOS Inverter and Logic Gates

Lecture 7. July 24, Detecting light (converting light to electrical signal)

MOSFET Amplifier Design

NEW ALL-PASS FILTER CIRCUIT COMPENSATING FOR C-CDBA NON-IDEALITIES

Basic Fabrication Steps

Fundamentos de Electrónica Lab Guide

Transcription:

ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING NMOS Inverter Lab Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee/ 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Email: Lynn.Fuller@rit.edu MicroE webpage: http://www.microe.rit.edu 10-30-14 NMOS_Inv_Lab.ppt Page 1

INTRODUCTION In this lab we will investigate the NMOS Inverter with different loads. Including: 1. Resistor Load = 1K 2. Resistor Load = 10K 3. Enhancement NMOS Load with Substrate connected to the Ground, and Gate connected to the Drain 4. Enhancement NMOS Load with Substrate connected to the Source, and Gate connected to the Drain 5. Enhancement NMOS Load with Substrate connected to Ground and Gate connected to V++ The VTC will be found using SPICE and the noise margins found from the points where the derivative of the VTC is -1, these simulations are done with arbitrary L and W s given in the lab document. Not L and W s of the ALD1103 chip. Page 2

VARIOUS NMOS INVERTERS VIN R +V DD I D R=1K & 10K VO NMOS-M1 VIN +VDD M1 VO M2 VIN V++ +VDD M1 VO M2 RESISTOR LOAD NMOS ENHANCEMENT LOAD NMOS ENHANCEMENT LOAD V++ GATE BIAS Also, NMOS Enhancement Load with M1 substrate connected to Ground or with M1 substrate connected to the M1 Source Page 3

SPICE CALCULATIONS FOR NOISE MARGINS RL = 10K VIL = 1.0 VIH = 2.91 VOH = 10.0 VOL = 0.91 D0 = VIL VOL =1.0-0.91= 0.08 D1=VOH-VIH= =10-2.91=7.09 Max Gain = -7.2 1 2 Page 4

LTSPICE - INVERTER VTC FOR DIFFERENT RL R=1K 10k 5K Page 5

LTSPICE INVERTER VTC FOR DIFFERENT W W = 10µm 40µm 20µm Page 6

VIN VTC NMOS INVERTER- NMOS ENHANCEMENT LOAD +V M1 VO M2 NMOS ENHANCEMENT LOAD I M1 Vt + V - Vt 0 +V M2 is the switch and M1 is the load. The load limits the current when M2 is on. The load could be a resistor but an NMOS transistor with gate connected to the drain is smaller in size and also limits current. See the I-V characteristics. In the first quadrant the transistor approximates the resistor. However, Vout high is below VDD by the threshold voltage of M1 Cox = Cox/Area = o r/xox I 1/R V +V 0 VOUT M2 Off Vt Page 7 M2 & M1 Saturation M2 Linear VIN I D = µw Cox (Vg-Vt) 2 2L Saturation

DERIVATION OF GAIN EXPRESSION VIN +VDD M1 VO M2 Assume Vout = Vin and both transistors are in saturation for the steep part of the VTC. The current in M1 is equal to the current in M2 is equal. Also assume Vt is the same for both transistors. I 2 = I 1 uw 2 Cox /2L 2 (V G -V t ) 2 = uw 1 Cox /2L 1 (V G -V t ) 2 W 2 /L 2 (V G -V t ) 2 = W 1 /L 1 (V G -V t ) 2 But, V G2 is VIN and V G1 = VO +Vt (W 2 /L 2 ) (V IN -V t ) 2 = (W 1 /L 1) (VO +Vt -V t ) 2 Gain = d VO/d V IN Gain = W2/L2 W1/L1 Page 8

VTC NMOS INVERTER- NMOS ENHANCEMENT LOAD Gain = W2/L2 W1/L1 G=2.2 G=9.5 G=5.5 Note: increasing L of the load is equivalent to increasing R of a resistor load, Vout high is Vdd Vt M1, Gain is shown. Page 9

VTC NMOS INVERTER- NMOS ENHANCEMENT LOAD AND V++ GATE BIAS Gain = W2/L2 W1/L1 G=2.2 G=9.5 G=5.5 Note: increasing Rochester Institute of L Technology of the load is equivalent to increasing R of a resistor load, Vout high is Vdd, Gain is shown. Page 10

SUMMARY This laboratory is mostly a SPICE investigation of various NMOS inverter realizations. The VTC is found for given L s and W s. Values are found for noise margin calculations. Appropriate SPICE models are used for the transistor sizes used in the simulations. The build part of the laboratory is limited to the L and W of the transistors provided inside the ALD1103 chip. These sizes are L=10u and W=880u. Calculation of the Gain of the inverter with NMOS load gives a gain of 1 which is not sufficient for a good VTC. However, we can observe the VoH for the different NMOS load inverter realizations. The resistor load inverter works okay. Page 11

REFERENCES 1. Sedra and Smith, 5.1-5.4 2. Device Electronics for Integrated Circuits, 2nd Edition, Kamins and Muller, John Wiley and Sons, 1986. 3. The Bipolar Junction Transistor, 2nd Edition, Gerald Neudeck, Addison-Wesley, 1989. Page 12

SPICE MODELS FOR MOSFETS *SPICE MODELS FOR RIT DEVICES - DR. LYNN FULLER 4-10-2014 *LOCATION DR.FULLER'S WEBPAGE - http://people.rit.edu/lffeee/cmos.htm * *Used in Electronics II for CD4007 inverter chip *Note: Properties L=1u W=200u.MODEL RIT4007N7 NMOS (LEVEL=7 +VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=1.5E-8 XJ=1.84E-7 NCH=1.45E17 NSUB=5.33E16 XT=8.66E-8 +VTH0=1.0 U0= 600 WINT=2.0E-7 LINT=1E-7 +NGATE=5E20 RSH=1082 JS=3.23E-8 JSW=3.23E-8 CJ=6.8E-4 MJ=0.5 PB=0.95 +CJSW=1.26E-10 MJSW=0.5 PBSW=0.95 PCLM=5 +CGSO=3.4E-10 CGDO=3.4E-10 CGBO=5.75E-10) * *Used in Electronics II for CD4007 inverter chip *Note: Properties L=1u W=200u.MODEL RIT4007P7 PMOS (LEVEL=7 +VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=1.5E-8 XJ=2.26E-7 NCH=7.12E16 NSUB=3.16E16 XT=8.66E-8 +VTH0=-1.0 U0= 376.72 WINT=2.0E-7 LINT=2.26E-7 +NGATE=5E20 RSH=1347 JS=3.51E-8 JSW=3.51E-8 CJ=5.28E-4 MJ=0.5 PB=0.94 +CJSW=1.19E-10 MJSW=0.5 PBSW=0.94 +CGSO=4.5E-10 CGDO=4.5E-10 CGBO=5.75E-10) Page 13

SPICE MODELS FOR MOSFETS *Used for ALD1103 chips *Note: Properties L=10u W=880u.MODEL RITALDN3 NMOS (LEVEL=3 +TPG=1 TOX=6.00E-8 LD=2.08E-6 WD=4.00E-7 +U0= 1215 VTO=0.73 THETA=0.222 RS=0.74 RD=0.74 DELTA=2.5 +NSUB=1.57E16 XJ=1.3E-6 VMAX=4.38E6 ETA=0.913 KAPPA=0.074 NFS=3E11 +CGSO=5.99E-10 CGDO=5.99E-10 CGBO=4.31E-10 PB=0.90 XQC=0.4) * *Used for ALD1103 chips *Note: Properties L=10u W=880u.MODEL RITALDP3 PMOS (LEVEL=3 +TPG=1 TOX=6.00E-8 LD=2.08E-6 WD=4.00E-7 +U0=550 VTO=-0.73 THETA=0.222 RS=0.74 RD=0.74 DELTA=2.5 +NSUB=1.57E16 XJ=1.3E-6 VMAX=4.38E6 ETA=0.913 KAPPA=0.074 NFS=3E11 +CGSO=5.99E-10 CGDO=5.99E-10 CGBO=4.31E-10 PB=0.90 XQC=0.4) Page 14

SPICE MODELS FOR MOSFETS *4-4-2013 LTSPICE uses Level=8 *For RIT Sub-CMOS 150 process with L=2u.MODEL RITSUBN8 NMOS (LEVEL=8 +VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=1.5E-8 XJ=1.84E-7 NCH=1.45E17 NSUB=5.33E16 XT=8.66E-8 +VTH0=1.0 U0= 600 WINT=2.0E-7 LINT=1E-7 +NGATE=5E20 RSH=1082 JS=3.23E-8 JSW=3.23E-8 CJ=6.8E-4 MJ=0.5 PB=0.95 +CJSW=1.26E-10 MJSW=0.5 PBSW=0.95 PCLM=5 +CGSO=3.4E-10 CGDO=3.4E-10 CGBO=5.75E-10) * *4-4-2013 LTSPICE uses Level=8 *For RIT Sub-CMOS 150 process with L=2u.MODEL RITSUBP8 PMOS (LEVEL=8 +VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=1.5E-8 XJ=2.26E-7 NCH=7.12E16 NSUB=3.16E16 XT=8.66E-8 +VTH0=-1.0 U0= 376.72 WINT=2.0E-7 LINT=2.26E-7 +NGATE=5E20 RSH=1347 JS=3.51E-8 JSW=3.51E-8 CJ=5.28E-4 MJ=0.5 PB=0.94 +CJSW=1.19E-10 MJSW=0.5 PBSW=0.94 +CGSO=4.5E-10 CGDO=4.5E-10 CGBO=5.75E-10) Page 15

SPICE MODELS FOR MOSFETS * From Sub-Micron CMOS Manufacturing Classes in MicroE ~ 1um Technology.MODEL RITSUBN7 NMOS (LEVEL=7 +VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=1.5E-8 XJ=1.84E-7 NCH=1.45E17 NSUB=5.33E16 XT=8.66E-8 +VTH0=1.0 U0= 600 WINT=2.0E-7 LINT=1E-7 +NGATE=5E20 RSH=1082 JS=3.23E-8 JSW=3.23E-8 CJ=6.8E-4 MJ=0.5 PB=0.95 +CJSW=1.26E-10 MJSW=0.5 PBSW=0.95 PCLM=5 +CGSO=3.4E-10 CGDO=3.4E-10 CGBO=5.75E-10) * *From Sub-Micron CMOS Manufacturing Classes in MicroE ~ 1um Technology.MODEL RITSUBP7 PMOS (LEVEL=7 +VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=1.5E-8 XJ=2.26E-7 NCH=7.12E16 NSUB=3.16E16 XT=8.66E-8 +VTH0=-1.0 U0= 376.72 WINT=2.0E-7 LINT=2.26E-7 +NGATE=5E20 RSH=1347 JS=3.51E-8 JSW=3.51E-8 CJ=5.28E-4 MJ=0.5 PB=0.94 +CJSW=1.19E-10 MJSW=0.5 PBSW=0.94 +CGSO=4.5E-10 CGDO=4.5E-10 CGBO=5.75E-10) Page 16

SPICE MODELS FOR MOSFETS *4-4-2013 LTSPICE uses Level=8 * From Electronics II EEEE482 FOR ~100nm Technology.model EECMOSN NMOS (LEVEL=8 +VERSION=3.1 CAPMOD=2 MOBMOD=1 +TOX=5E-9 XJ=1.84E-7 NCH=1E17 NSUB=5E16 XT=5E-8 +VTH0=0.4 U0= 200 WINT=1E-8 LINT=1E-8 +NGATE=5E20 RSH=1000 JS=3.23E-8 JSW=3.23E-8 CJ=6.8E-4 MJ=0.5 PB=0.95 +CJSW=1.26E-10 MJSW=0.5 PBSW=0.95 PCLM=5 +CGSO=3.4E-10 CGDO=3.4E-10 CGBO=5.75E-10) * *4-4-2013 LTSPICE uses Level=8 * From Electronics II EEEE482 FOR ~100nm Technology.model EECMOSP PMOS (LEVEL=8 +TOX=5E-9 XJ=0.05E-6 NCH=1E17 NSUB=5E16 XT=5E-8 +VTH0=-0.4 U0= 100 WINT=1E-8 LINT=1E-8 +NGATE=5E20 RSH=1000 JS=3.51E-8 JSW=3.51E-8 CJ=5.28E-4 MJ=0.5 PB=0.94 +CJSW=1.19E-10 MJSW=0.5 PBSW=0.94 PCLM=5 +CGSO=4.5E-10 CGDO=4.5E-10 CGBO=5.75E-10) * Page 17