A Modified Control Method For A Dual Unified Power Quality Conditioner

Similar documents
A Control Scheme for Dual Unified Power Quality Conditioner to Improve Power Quality

A Novel Controlled Technique for a Dual Unified Power Quality Conditioner

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System

Design and Simulation of Dual Unified Power Quality Conditioner with Fuzzy Logic Controller for Power Quality Improvement

Mitigation of Voltage Sag/Swell Using UPQC

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method

Downloaded from

Improvement of Power Quality Using a Hybrid Interline UPQC

Compensation for Voltage and Current in Multifeeder System Using MC-UPQC

Reduction of Voltage Imbalance in a Two Feeder Distribution System Using Iupqc

Power Quality Improvement by Simultaneous Controlling of Active and Reactive Powers in UPQC-S

LOAD REACTIVE POWER COMPENSATION BY USING SERIES INVERTER OF UPQC

Mitigation of Power system Disturbance by Using MC-UPQC with PI, ANN & FUZZY Controller Technique

Multiconverter Unified Power-Quality Conditioning System: MC-UPQC T.Charan Singh, L.Kishore, T.Sripal Reddy

UPQC for Improvement Power Quality.

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION

Grid-Voltage Regulation Controller: IUPQC

This is a refereed journal and all articles are professionally screened and reviewed. Electromechanical Active Filter as a Novel Custom Power device

IMPROVEMENT OF POWER QUALITY USING CUSTOM POWER DEVICES

UPQC-S: A Novel Concept of Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Utilizing Series Inverter of UPQC

2020 P a g e. Figure.2: Line diagram of series active power filter.

Power Quality improvement of a three phase four wire system using UPQC

Mitigating Voltage Sag Using Dynamic Voltage Restorer

Analysis & Function of Unified Power Quality Conditioner for Power Quality Improvement of Distributed Network

UPQC for Power Quality Improvement in DG Integrated Smart Grid Network: a Review

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Enhancement of Power Quality Using Advanced Series Active Power Filters

Improvement of Power Quality Using Hybrid Active Power Filter in Three- Phase Three- Wire System Applied to Induction Drive

Modeling and Analysis of a Nonlinear Adaptive Filter Control for Interline Unified Power Quality Conditioner

Modified three phase Unified Power Quality Conditioner with capacitor midpoint topology

Control of Power Flow with Multi Bus Three-Feeder Distribution System using GUPQC

A Versatile Control Scheme for UPQC for Power Quality Improvement using fuzzy controller

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side

Performance Analysis of MC-UPQC Using Artificial Intelligence

WITH THE advent of advanced power-electronics technologies,

Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating

A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC

Power Quality Enhancement and Mitigation of Voltage Sag using DPFC

Improvement of Power Quality using Unified Power Quality Conditioner with Distributed Generation

Unified Power Quality Conditioner (UPQC) in Alleviation of Power Quality Issues

ISSN Vol.07,Issue.21, December-2015, Pages:

Acknowledgements Introduction p. 1 Electric Power Quality p. 3 Impacts of Power Quality Problems on End Users p. 4 Power Quality Standards p.

International Journal of Research (IJR) e-issn: , p- ISSN: X Volume 2, Issue 09, September 2015

UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEM FOR ENHANCING POWER QUALITY

A Voltage Controlled D-STATCOM for Power Quality Improvement with DVR

IMPROVING EFFICIENCY OF ACTIVE POWER FILTER FOR RENEWABLE POWER GENERATION SYSTEMS BY USING PREDICTIVE CONTROL METHOD AND FUZZY LOGIC CONTROL METHOD

Design and Simulation of Active Power and Power Angle Control of UPQC to Mitigate Voltage Sag/Swell and Load Reactive Power Compensation

FUZZY LOGIC CONTROLLER BASED UPQC FOR POWER QUALITY MITIGATION IN GRID CONNECTED WIND ENERGY CONVERSION SYSTEM

CHAPTER 5 DESIGN OF DSTATCOM CONTROLLER FOR COMPENSATING UNBALANCES

Design and Control of Interline Unified Power Quality Conditioner for Power Quality Disturbances

Harmonics Reduction and Power Quality Improvement by using Multilevel DPFC

ISSN Vol.03,Issue.11, December-2015, Pages:

Performance of DVR under various Fault conditions in Electrical Distribution System

ANALYSIS OF SYNCHRONOUS-REFERENCE-FRAME-BASED CONTROL METHOD FOR UPQC UNDER UNBALANCED AND DISTORTED LOAD CONDITIONS Salava Nagaraju* 1

Application of Fuzzy Logic Controller in Shunt Active Power Filter

UPQC CONTROL BASED ON MO-ADALINE APPROACH

Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive Active Filtering Method Suresh Reddy D 1 Chidananda G Yajaman 2

p. 1 p. 6 p. 22 p. 46 p. 58

Dynamic Modeling and Simulation of Unified Power Quality Conditioner

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Design of Hybrid Active Filter for Power Quality Improvement of Electrical Distribution System Using Fuzzy Logic Controller

Design Strategy for Optimum Rating Selection of Interline D-STATCOM

MODELING AND SIMULATION OF UNIFIED POWER QUALITY CONDITIONER FOR POWER QUALITY IMPROVEMENT

Improvement of Power Quality Using a Hybrid UPQC with Distributed Generator

Mitigation of Voltage Sag and Swell Using Distributed Power Flow Controller

A Power Control Scheme for UPQC for Power Quality Improvement

SUPER CONDUCTING MAGNETIC ENERGY SYSTEM WITH DVR FOR VOLTAGE QUALITY IMPROVEMENT USING PSO BASED SIMPLE ABC FRAME THEORY

Interline Power Quality Conditioner for Power Quality Improvement

Cascaded Two Level Electrical Converter-Based Multilevel STATCOM for High Power Utilization

P.CHAITHANYAKUMAR, T.VARAPRASAD/

Kalman Filter Based Unified Power Quality Conditioner for Output Regulation

Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition

A Multilevel Diode Clamped SVPWM Based Interline Dynamic Voltage Restorer with Sag & Swell Limiting Function

Power Quality Improvement By Using DSTATCOM Controller

Mitigation of Voltage Sag, Swell and Load Hamonics by the Combined Opertation of Series APF and Solar System

FUZZY LOGIC CONTROL BASED DYNAMIC VOLTAGE RESTORER FOR POWER QUALITY IMPROVEMENT IN DISTRIBUTION SYSTEM

Mitigation of Current Harmonics with Combined p-q and Id-IqControl Strategies for Fuzzy Controller Based 3Phase 4Wire Shunt Active Filter

ENHANCEMENT IN WORKING PERFORMANCE OF CUSTOM POWER DEVICE USING DIFFERENT CONTROLLING METHODS

Control Strategy for a cross phase connected and a conventional UPQC

Development and Simulation of Dynamic Voltage Restorer for Voltage SAG Mitigation using Matrix Converter

Power-Quality Improvement with a Voltage-Controlled DSTATCOM

Power Quality Improvement by Inter line UPQC with Fuzzy Control TechniqueBY

MITIGATION OF VOLTAGE SAG AND SWELL FOR POWER QUALITY IMPROVEMENT USING DISTRIBUTED POWER FLOW CONTROLLER

Enhancement of Power Quality based on Unified Power Quality Conditioner (UPQC) K.S.Srikanth, Shaik. Musthak Ahmed, Y.Srinivasa Rao

A DYNAMIC VOLTAGE RESTORER (DVR) BASED MITIGATION SCHEME FOR VOLTAGE SAG AND SWELL

MODELING AND CONTROLLING OF AC VOLTAGE STABILIZER USING SERIES ACTIVE POWER FILTER

A CONTROL TECHNIQUE FOR INSTANT MITIGATION OF VOLTAGE SAG/SWELL BY DYNAMIC VOLTAGE RESTORER

SHUNT COMPENSATOR USED FOR POWER QUALITY IMPROVEMENT

ICCCES Application of D-STATCOM for load compensation with non-stiff sources

Power Quality Improvement And Mitigation Of Voltage Sag And Current Swell Using Distributed Power Flow Controller

Design of Unified Power Quality Conditioner (UPQC) Connected To Three Phase Four Wire System

DESIGN OF A HYBRID ACTIVE FILTER FOR HARMONICS SUPPRESSION WITH VARIABLE CONDUCTANCE IN INDUSTRIAL POWER SYSTEMS USING FUZZY

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS

Implementation of UPQC for Voltage Sag Mitigation

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India)

Power Quality Improvement using Hysteresis Voltage Control of DVR

A VOLTAGE SAG/SWELL ALONG WITH LOAD REACTIVE POWER COMPENSATION BY USING SERIES INVERTER of UPQC-S

Performance Analysis of UPQC for Non-Linear Load by Using MATLAB

Synchronous Reference Frame Control Algorithm Based Four -Leg Inverter DSTATCOM For Power Quality Improvement

Transcription:

International Journal of Electrical Engineering. ISSN 0974-2158 Volume 8, Number 3 (2015), pp. 239-251 International Research Publication House http://www.irphouse.com A Modified Control Method For A Dual Unified Power Quality Conditioner K. Harinath Reddy 1 Assistant Professor Dept. Of EEE/A. I. T. S B. Murali Mohan 2 Assistant Professor Dept. Of EEE/A. I. T. S Kadapa 516001, A. P., INDIA. muralimohanaits1@gmail. com V. Aruneswari 3 PG Scholar Dept. Of EEE/A. I. T. S Abstract This paper presents a modified control method for a dual three phase unified power quality conditioner (iupqc). The iupqc consists of two active filters. One is series active filters (SAF) and another one is parallel active filter (PAF). The SAF is used for voltage sag/swell compensation and PAF is used to eliminate current harmonics and unbalances. The two active filters are controlled by using sinusoidal references but in conventional UPQC two active filters are controlled by using non sinusoidal references. Therefore the iupqc uses PWM and fuzzy logic control technologies. Fuzzy logic controller is based on fuzzy sets and fuzzy rules with their membership functions of inputs and outputs. Key words: Active Filters, iupqc, voltage interruption, Fuzzy logic control. I. Introduction With the invention of power electronic devices like thyristors, GTO`s (Gate Turn Off Thyristors) and many devices, control of electric power is simple and easy. But the power electronic devices have their non linearity characteristics, cause harmonic and draw excessive currents. The harmonics, excessive currents cause for low system efficiency. In addition to this power system is subjected to various disturbances like voltage sags and swells etc.

240 K. Harinath Reddy et al By using Unified power Quality Conditioner (UPQC) [1]-[10] it can supply regulated voltage for the loads, balanced and low harmonic distortion. The UPQC consists of series and shunt active power filters. Shunt active filters also provides harmonic isolation between supply system and load. The series active filter regulates the incoming voltage quality. In the conventional UPQC both series active filters and shunt active filters are controlled by using non sinusoidal references. PAF usually acts as non sinusoidal current source used to reduce harmonic currents of the load. SAF acts non sinusoidal voltage source used to mitigate voltage disturbances. Non sinusoidal references mean combination of both fundamental and harmonic references. The extraction of harmonic contents requires complex calculations. Therefore there are so many methods to extract harmonics, but it is more complexity of reference generation [10]. Some works gives control methods for both series and shunt active filters for generation of sinusoidal references without need of harmonic extraction, in order to decrease the complexity of the reference generation for the UPQC. This conditioner consists of two voltage source convertors. In order to generate sinusoidal reference SAF consists of three current loops and two voltage loops. PAF consists of three voltage loops. In this way both grid current and load voltage are sinusoidal and therefore their references are also sinusoidal. The main purpose of this paper is to propose a modified control method for a dual three phase topology of a Unified Power Quality Conditioner (iupqc) [5] used in utility grid connection. ABC reference frame, classical control theory is used in this control method. II. Dual Unified Power Quality Conditioner Combined series and shunt active filters are known as unified power quality conditioner. These are designed to compensate voltage disturbances and to reduce current harmonics. In conventional UPQC the series active filter used as voltage source that compensates voltage interruption, sag and swell. The parallel active filer used as current source which compensates load current. Series active filter is connected in series to the line through a transformer while parallel active filter is directly connected to the load as shown in fig1. The draw backs of unified power quality conditioner are - More complex current and voltage reference generation. - The leakage impedance of the transformer affects the injected voltage. - complex calculations are required in order to extract harmonics. To reduce the above draw backs a modified control method is used for Unified Power Quality Conditioner. The conventional UPQC is same as dual Unified Power Quality conditioner the only difference is way of controlled. The main aim of series active filter is to synchronise the current with grid voltage. The aim parallel active filter is to synchronise the load voltage with grid voltage. In this way the iupqc [5] uses sinusoidal references for filters.

A Modified Control Method For A Dual Unified Power Quality Conditioner 241 The shunt active filter of iupqc is used as sinusoidal voltage source which provides effective synchronization of sinusoidal load voltage and grid voltage. Series active filter is used as sinusoidal current source which provides effective synchronization of input current with grid voltage. SAF transformer produces the voltages, which is same as the difference between grid voltage and load voltage. The iupqc is shown in fig2. Fig. 1. Conventional UPQC Fig. 2. Dual UPQC The SAF acts as high impedance path for harmonic currents. So it compensates harmonics and unbalances of the voltage. The PAF acts as low impedance path for load currents. So it compensates unbalances and harmonics of the grid current. The power and design specifications are shown in table. The power circuit of iupqc is made up of two four wire three phase converters connected back to back and their filters are shown in fig3.

242 K. Harinath Reddy et al TABLE I Design Specifications of the iupqc Input line to line Voltage Output nominal power DC link voltage Utility grid frequency Switching frequency of series and PAFs Transformer ratio n=1 TABLE II Specifications of the power modules Leakage inductance of the SAF coupling transformers Transformer ratio of the SAF coupling Transformers n=1 SAF connection inductance PAF connection inductance DC Link Capacitance In SAF in three phases three single phase transformers are used. The parallel active filters are directly connected to the load. III. Control Methods The iupqc mainly consists of series and parallel active filer controllers. The series active filter has current loop in order to deliver a sinusoidal grid current and synchronised with grid voltage. The parallel filter consist voltage loop in order to allow a synchronised, regulated voltage to the load. These control loops are working independently in each filter. The series active filter has two another voltage loops in order to control the dc link voltage. Here voltage loop determines the current amplitude reference for the current loop. Therefore series active filter control uses an input current and DC link voltage feedback. The parallel active filter control uses voltage feedback. The sinusoidal references are generated by using digital signal processor (DSP). The synchronisation of input current and grid voltage are obtained through Phase Locked Loop (PLL). The control structure is in ABC reference frame. Since the power calculation and harmonic extraction are not needed. 1. SAF CONTROL The control block diagram of the SAF is shown in fig 3. This consists of three identical current loops and two voltage loops. Each current loop is to control the input current. One voltage loop is to control DC link voltage and another voltage loop is to keep the voltage on the DC link capacitors balanced.

A Modified Control Method For A Dual Unified Power Quality Conditioner 243 Fig. 3. Control block diagram of SAF The amplitude current reference for current controller is determined from the voltage control loop, because the voltage control loop has low frequency response. When load increases the controllers will supply the additional power. So the active power consumption from dc storage. This makes dc link voltage imbalance. The voltage unbalanced loop generates the average dc reference voltage and maintain the two capacitor voltage equal. Fig. 4: Single Phase equivalent circuit of SAF. To control the dc link voltage fuzzy logic and pole controllers are used. All the controls have phase margin between 30 o and 90 o. The current control consists of three identical loops, except for 120 o phase displacement from each other. When voltage imbalance occur the unbalanced voltage control loop changes current reference, to equalise the capacitor voltages.

244 K. Harinath Reddy et al The voltage loop transfer function is represented as The Unbalance Voltage loop transfer function is represented as The Current loop transfer function is represented as Where C b -DC Link Capacitance; Hd sf -Unbalance Voltage Sensor Gain; Hi sf -Current Sensor Gain; HV sf -Voltage Sensor Gain; Kd sf -Unbalance Voltage Control attenuation; Ki sf -Current Control Attenuation; KV sf -Voltage Control Attenuation; Km -Multiplier Gain; L sf -Series Filter Inductance; m a -Modulation Ratio; V b -DC Link Voltage; Vm sf - Pulse Width Modulator Gain. Fig. 4: Voltage loop frequency response of the SAF.

A Modified Control Method For A Dual Unified Power Quality Conditioner 245 Fig. 5: Unbalance Voltage loop frequency response of SAF. Fig. 6: Current loop frequency response of the SAF. 2. PAF CONTROL The Parallel active filter scheme consists of three identical voltage feedback loops. Each loop is used for each phase, in order to compare the load voltage signal and sinusoidal reference. These loops are except for 120 degree phase displacements from references of each other. Fig. 7 shows the control block diagram of the parallel active filter.

246 K. Harinath Reddy et al The voltage loop transfer function is obtained by the analysis of single phase equivalent circuit shown in fig. 8. For circuit analysis average values related to switching period are used. By using small signal analysis and Laplace the voltage loop transfer function is given by Fig. 7: Control block diagram of the PAF. Fig. 8: Single phase equivalent circuit of PAF The open loop transfer function is given by

A Modified Control Method For A Dual Unified Power Quality Conditioner 247 Fig. 9: Voltage loop frequency response of the PAF. Kpwm pf - Shunt filter PWM modulator gain The voltage loop frequency response is shown in fig. 9, including the open loop transfer function, controller transfer function and the compensated loop transfer function. 3. FUZZY LOGIC CONTROL The Fuzzy logic control consists of set of linguistic variables. The mathematical modelling is not required in FLC. FLC [9] consists of 1. Fuzzification Membership function values are assigned to linguistic variables. In this the scaling factor is between 1 and -1. 2. Inference Method There are several composition methods such as Max-Min and Max-Dot have been proposed and Min method is used. 3. Defuzzificaion A plant requires non fuzzy values to control, so defuzzification is used. The output of FLC controls the switch in the inverter. To control these parameters they are sensed and compared with the reference values. To obtain this the membership functions of fuzzy controller are shown in fig (10).

248 K. Harinath Reddy et al Fig. 10: Fuzzy logic Controller IV. Power Flow The active power flow of the iupqc is shown in fig. 10. In fig. 10(a) the grid voltage Vs has lower amplitude than the load voltage V L. So the PAF delivers active power to the load. In fig. 10(b) the grid voltage Vs has higher amplitude than the load voltage V L. In this case SAF delivers active power to the load. Therefore voltage imbalance occurs at the dc link. This voltage imbalance can be compensated by unbalance voltage loop transfer function. When Vs is equal to V L the power drained from the electrical grid equals the sum of the load power and the iupqc power losses. Fig. 10: Power flow of iupqc; (a) Vs<V L (b) Vs>V L

A Modified Control Method For A Dual Unified Power Quality Conditioner 249 V. Simulation Results The simulation results of the Dual Unified Power Quality Conditioner using fuzzy logic controller are shown in fig. 11. Here we are creating voltage dip and load changing. Therefore the voltage unbalance and harmonics are controlled by using series active filter, parallel active filter and fuzzy logic controllers. The injected voltage to compensate the voltage can be suppled by using DC Link voltage. Fig. 11 (a):source voltage and load voltage during a voltage dip in phase in A Fig. 11(b): Load voltages and source currents Fig. 11(c): Parallel active filter currents

250 K. Harinath Reddy et al Fig. 11(d): Series active filter voltages Fig. 11(e): Load voltages and load currents during load change Fig. 11(f): DC link voltage and load current

A Modified Control Method For A Dual Unified Power Quality Conditioner 251 VII. Conclusion The results obtained with iupqc using fuzzy logic controller and ABC reference frame were able to compensate the non linear load currents and also to provide the sinusoidal load voltages. The main advantage of the proposed scheme is to provide sinusoidal references which reduce complexity of harmonic extraction. The proposed scheme of iupqc using fuzzy logic controller in ABC reference frame of both SAF and PAF control loops are generated by a digital signal processor. This control loops and its utilisation of sinusoidal references eliminates the harmonics between grid and load. The results show the proposed iupqc control scheme providing power quality improvement. REFERENCES [1] V. Khadkikar and A. Chandra, A noval structure forthree-phase fourwire distribution system utilizing unified power quality conditioner (upqc), IEEE Trans. on Ind. Appl., vol. 45, no. 5, pp. 1897 1902, Sept 2009. [2] B. Han, B. Bae, S. Baek, and G. Jang, New configuration of upqc for medium-voltage application, IEEE Trans. on Power Deliv., vol. 21, no. 3, pp. 1438 1444, July 2006. [3] A. Jindal, A. Ghosh, and A. Joshi, Interline unified power quality conditioner, IEEE Trans. on Power Deliv., vol. 22, no. 1, pp. 364 372, Jan 2007. [4] M. Basu, S. Das, and G. Dubey, Investigation on the performance of upqc-q for voltage sag mitigation and power quality improvement at a critical load point, IET Generation Transmission Distribution, vol. 2, no. 3, pp. 414 423, May 2008. [5] M. Aredes and R. Fernandes, A dual topology of unified power quality conditioner: The iupqc, in 13th European Conf. on Power Electron. And Appl., Sept 2009, pp. 1 10. [6] F. Kamran and T. Habetler, A novel on-line ups with universal filtering capabilities, IEEE Trans. on Power Electron., vol. 13, no. 3, pp. 410 418, May 1998. [7] K. Karanki, G. Geddada, M. Mishra, and B. Kumar, A modified three phase four-wire upqc topology with reduced dc-link voltage rating, IEEE Trans. on Ind. Electron., vol. 60, no. 9, pp. 3555 3566, Sept 2013. [8] Hamid Reza Mohammadi, Ali Yazdian Varjani, and Mokhtari, Multiconverter Unified Power-Quality Conditioning System: MCUPQC IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 24, NO. 3, JULY 2009. [9] Surya kalavathi, Vasishta kumar and Zabi, Fuzzy based interline power quality conditioner for power enhancement IEEE Transactions on International journal of research in electrical. vol. 4 April 2015. [10] M. Kesler and E. Ozdemir, Synchronous-reference-frame-based control method for upqc under unbalanced and distorted load conditions, IEEE Trans. on Ind. Electron., vol. 58, no. 9, pp. 3967 3975, Sept 2011

252 K. Harinath Reddy et al