Wideband Unidirectional Bowtie Antenna with Pattern Improvement

Similar documents
A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

Wideband Double-Layered Dielectric-Loaded Dual-Polarized Magneto-Electric Dipole Antenna

A Very Wideband Dipole-Loop Composite Patch Antenna with Simple Feed

A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS

Design of a Wideband Sleeve Antenna with Symmetrical Ridges

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

R. Zhang, G. Fu, Z.-Y. Zhang, and Q.-X. Wang Key Laboratory of Antennas and Microwave Technology Xidian University, Xi an, Shaanxi , China

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS

Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

X. Li, L. Yang, S.-X. Gong, and Y.-J. Yang National Key Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi, China

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Printed UWB MIMO Antenna with Different Polarizations and Band-Notch Characteristics

A Simple Dual-Wideband Magneto-Electric Dipole Directional Antenna

A Broadband Dual-Polarized Magneto-Electric Dipole Antenna for 2G/3G/LTE/WiMAX Applications

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

A Broadband Omnidirectional Antenna Array for Base Station

A MINIATURIZED INTERNAL WIDEBAND ANTENNA FOR WIRELESS USB DONGLE APPLICATION

Design of a Wideband Planar Microstrip-Fed Quasi-Yagi Antenna

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR

A Compact Dual-Polarized Antenna for Base Station Application

High gain W-shaped microstrip patch antenna

A Phase Diversity Printed-Dipole Antenna Element for Patterns Selectivity Array Application

DUAL-WIDEBAND MONOPOLE LOADED WITH SPLIT RING FOR WLAN APPLICATION

A Compact Dual-Band Dual-Polarized Antenna for Base Station Application

A Printed Vivaldi Antenna with Improved Radiation Patterns by Using Two Pairs of Eye-Shaped Slots for UWB Applications

A Spiral Antenna with Integrated Parallel-Plane Feeding Structure

A WIDEBAND TWIN-DIAMOND-SHAPED CIRCULARLY POLARIZED PATCH ANTENNA WITH GAP-COUPLED FEED

DESIGN OF SEVERAL POWER DIVIDERS USING CPW- TO-MICROSTRIP TRANSITION

A WIDEBAND AND DUAL FREQUENCY THREE- DIMENSIONAL TRANSITION-FED CIRCULAR PATCH ANTENNA FOR INDOOR BASE STATION APPLICA- TION

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

A Compact Wideband Circularly Polarized L-Slot Antenna Edge-Fed by a Microstrip Feedline for C-Band Applications

Compact Triple-Band Monopole Antenna for WLAN/WiMAX-Band USB Dongle Applications

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

Design of Low-Index Metamaterial Lens Used for Wideband Circular Polarization Antenna

Progress In Electromagnetics Research Letters, Vol. 9, , 2009

PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS

A COMPACT CPW-FED MONOPOLE ANTENNA WITH A U-SHAPED STRIP AND A PAIR OF L-SLITS GROUND FOR WLAN AND WIMAX APPLICATIONS

MINIATURIZED MODIFIED DIPOLES ANTENNA FOR WLAN APPLICATIONS

A Wideband Magneto-Electric Dipole Antenna with Improved Feeding Structure

Compact Microstrip Magnetic Yagi Antenna and Array with Vertical Polarization Based on Substrate Integrated Waveguide

Broadband Designs of a Triangular Microstrip Antenna with a Capacitive Feed

Dual-Band Dual-Polarized Antenna Array for Beam Selection MIMO WLAN

MICROSTRIP PHASE INVERTER USING INTERDIGI- TAL STRIP LINES AND DEFECTED GROUND

A COMACT MICROSTRIP PATCH ANTENNA FOR WIRELESS COMMUNICATION

ENHANCEMENT OF PRINTED DIPOLE ANTENNAS CHARACTERISTICS USING SEMI-EBG GROUND PLANE

Broadband low cross-polarization patch antenna

Gain Enhancement and Wideband RCS Reduction of a Microstrip Antenna Using Triple-Band Planar Electromagnetic Band-Gap Structure

A Compact Miniaturized Frequency Selective Surface with Stable Resonant Frequency

NEW DESIGN OF COMPACT SHORTED ANNULAR STACKED PATCH ANTENNA FOR GLOBAL NAVIGA- TION SATELLITE SYSTEM APPLICATION

A Broadband Reflectarray Using Phoenix Unit Cell

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

DESIGN OF OMNIDIRECTIONAL HIGH-GAIN AN- TENNA WITH BROADBAND RADIANT LOAD IN C WAVE BAND

SINGLE-FEEDING CIRCULARLY POLARIZED TM 21 - MODE ANNULAR-RING MICROSTRIP ANTENNA FOR MOBILE SATELLITE COMMUNICATION

Design and Development of Rectangular Microstrip Array Antennas for X and Ku Band Operation

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

MODIFIED BROADBAND SCHIFFMAN PHASE SHIFTER USING DENTATE MICROSTRIP AND PATTERNED GROUND PLANE

RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure

A NOVEL COMPACT ARCHIMEDEAN SPIRAL ANTENNA WITH GAP-LOADING

Development of Low Profile Substrate Integrated Waveguide Horn Antenna with Improved Gain

Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications

Wide-Beamwidth Circularly Polarized Antenna and Its Application in a Sequential-Rotation Array with Enhanced Bandwidth

Broadband and High Efficiency Single-Layer Reflectarray Using Circular Ring Attached Two Sets of Phase-Delay Lines

Design of a Magneto-Electric Dipole Antenna for FM Radio Broadcasting Base Station Antenna Implementation

GPS Patch Antenna Loaded with Fractal EBG Structure Using Organic Magnetic Substrate

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

Design of Frequency and Polarization Tunable Microstrip Antenna

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

A COMPACT DUAL INVERTED C-SHAPED SLOTS ANTENNA FOR WLAN APPLICATIONS

DUAL BAND COPLANAR CAPACITIVE COUPLED MICROSTRIP ANTENNAS WITH AND WITHOUT AIR GAP FOR WIRELESS APPLICATIONS

A Compact Wideband Slot Antenna for Universal UHF RFID Reader

Broadband Circular Polarized Antenna Loaded with AMC Structure

THE DESIGN OF A DUAL-POLARIZED SMALL BASE STATION ANTENNA WITH HIGH ISOLATION HAVING DIELECTRIC FEEDING STRUCTURE

A CPW-fed Microstrip Fork-shaped Antenna with Dual-band Circular Polarization

Development of a directional dual-band planar antenna for wireless applications

A Broadband Planar Quasi-Yagi Antenna with a Modified Bow-Tie Driver for Multi-Band 3G/4G Applications

Progress In Electromagnetics Research Letters, Vol. 23, , 2011

Progress In Electromagnetics Research Letters, Vol. 15, , 2010

Design and Development of Quad Band Rectangular Microstrip Antenna with Ominidirectional Radiation Characteristics

BANDWIDTH AND GAIN ENHANCEMENT OF A SLOTTED BOWTIE ANTENNA USING PARTIAL SUBSTRATE REMOVAL

WIDEBAND CIRCULARLY POLARIZED SUSPENDED PATCH ANTENNA WITH INDENTED EDGE AND GAP- COUPLED FEED

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points

Highly Directive Rectangular Patch Antenna Arrays

A BROADBAND QUADRATURE HYBRID USING IM- PROVED WIDEBAND SCHIFFMAN PHASE SHIFTER

HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS

T-Shaped Antenna Loading T-Shaped Slots for Multiple band Operation

Compact UWB MIMO Antenna with ACS-Fed Structure

Couple-fed Circular Polarization Bow Tie Microstrip Antenna

Progress In Electromagnetics Research Letters, Vol. 25, 77 85, 2011

Design and Simulation of Compact UWB Bow-tie Antenna with Reduced End-fire Reflections for GPR Applications

Chapter 7 Design of the UWB Fractal Antenna

Design of CPW-Fed Slot Antenna with Rhombus Patch for IoT Applications

Design and Application of Triple-Band Planar Dipole Antennas

Emerging wideband reconfigurable antenna elements for wireless communication systems

WIDE BEAMWIDTH QUADIFILAR HELIX ANTENNA WITH CROSS DIPOLES

A UHF RFID Antenna Using Double-Tuned Impedance Matching for Bandwidth Enhancement

Transcription:

Progress In Electromagnetics Research Letters, Vol. 44, 119 124, 4 Wideband Unidirectional Bowtie Antenna with Pattern Improvement Jia-Yue Zhao *, Zhi-Ya Zhang, Neng-Wu Liu, Guang Fu, and Shu-Xi Gong Abstract A wideband unidirectional bowtie antenna with stable radiation patterns is proposed and investigated. It is fed by a wideband microstrip balun, using a coupling triangular structure to induce more balanced currents. Particularly, the corners of the conventional triangular bowtie dipole are rounded to achieve an impedance BW of 16.9% for S 11 1 db ranging from 1.97 GHz to 6.49 GHz. Additionally, a special small circular reflector between the ground plane and the bowtie dipole is used to stabilize the radiation patterns. The antenna achieves a stable gain of around 9.5 dbi with a little variation of 1.4 dbi and unidirectional radiation patterns over the whole operating band. 1. INTRODUCTION In recent years, with the expeditious development of modern wireless communication systems, wideband antennas become a critical component in these systems [1]. As far as the radiation patterns are concerned for wideband antennas, the wideband unidirectional antennas with small electrical dimensions and stable gain are more popular and needed in wireless communication now. Microstrip patch antenna [2] is widely used in communication systems as it has major advantages of unidirectional radiation patterns, low profile and low fabrication cost but its impedance BW is generally smaller than 4% [3], not wide enough to enable stable unidirectional radiation patterns. The similar problems can also be found in the short backfire antenna (SBA) [4 6]. The backfire structure make it can achieve unidirectional pattern and high gain, but it limited by its narrow impedance BW and large profile. Log-periodic antenna [7] cannot be used for these applications for its large dimension. Cavity-backed bowtie antenna was proposed by S.-W. Qu [8], it has stable gain around 9.5 dbi and the impedance bandwidth is 92.2% for S 11 1 db. But the Cavity-backed structure is large and high in fabrication cost. The gain varies from 7.5 dbi to 1.9 dbi with variation of 3.4 dbi, which is not stable enough. In this paper, a wideband unidirectional bowtie antenna is proposed. It is differentially fed by a wideband printed microstrip balun with triangular coupling feeding structure. The rounded bowtie dipole with slot load can make the antenna have a better impedance matching. Moreover, a circular reflector, which replaced the Cavity-backed structure is placed between the bowtie and the ground plane to stabilize the radiation patterns, especially in the high frequency band. With these improvements, the final designed antenna can achieve an impedance BW of 16.9% for S 11 1 db and a stable gain about 9.5 dbi with unidirectional radiation patterns over the whole operating band. 2. ANTENNA DESIGN AND DISCUSSION Figure 1 shows the geometry of the proposed antenna, consisting of a folded triangular bowtie dipole with slot load, a circular-backed plane, a small circular reflector, a wideband printed microstrip balun and an SMA connector which is placed under the circular-backed plane to feed the antenna. Received 2 December 3, Accepted 14 January 4, Scheduled 18 January 4 * Corresponding author: Jia-Yue Zhao (zhaojiayue88@sina.com). The authors are with the National Laboratory of Antennas and Microwave Technology, Xidian University, Xi an, Shaanxi 7171, China.

12 Zhao et al. (a) (b) Figure 1. Geometry of the proposed bowtie antenna. (a) 3-D view, (b) side view. (a) (b) Figure 2. Geometry of the bowtie patch and feeding structure bowtie patch and feeding structure. (a) Top view of the bowtie patch, (b) side view of the feeding structure. Figure 2(a) shows the geometry of the folded triangular bowtie dipole and its parameters in detail. It is built on a substrate with thickness of 1 mm and relative permittivity ε r = 2.65 for easy fabrication and support, the deep color denotes its shape on the top side of the substrate and the light color shows that on the bottom side. The folded triangular bowtie dipole on the top side can provide flatter input impedance and the slot load on the bowtie patch can provide a resonance at 2 GHz, which can widen the impedance BW at low frequency. The smaller triangular coupling structure on the bottom side with two overlapping parts between the two layers acts as an important part of feeding structure and also a capacitive loading. The desired input reactance of the proposed bowtie dipole can be easily achieved. The geometry of the microstrip-to-dsl transition, with one dielectric and two metallic layers, is given in Fig. 2(b), which is built vertically on the ground plane and fabricated on a substrate with ε = 2.65 and a thickness of 1 mm. The Γ-shaped microstrip-to-dsl transition comprises three parts as shown in the Fig. 2(b). The first port can be treated as a microstrip line which act as an impendence transformerthe second portion is responsible to couple the electrical energy to the coupling smaller triangular feeding structure. The remaining coupling strip can be adjusted for impedance matching by selecting appropriate length. The transition and the coupling smaller triangular feeding structure can induce more balanced currents on the bowtie antenna than that used in [8, 9]. The impedance matching is much easier by turning the width and length of the microstrip line. The patterns of bowtie antenna without reflector are split and the main beam is shifted away from the broadside direction when it work at high frequency. That is due to the distance between the bowtie patch and the ground is too larger than λ/4 when the antenna work at high frequency band, so a reflector is added to improve the radiation patterns at high frequency band and make the gain of the antenna more stable. The function of the reflector can be seen from Fig. 3, comparisons of the co-polarizations radiation

Progress In Electromagnetics Research Letters, Vol. 44, 4 1 patterns of the between the proposed antenna with and without are given in this figure. It can be seen that the E-plane and H-plane patterns of the two antennas are almost identical in lower frequency band. When frequency increases up to 4 GHz, the gain of the bowtie antenna without reflector in the normal direction is reduced. Particularly, at 5 GHz the patterns of the bowtie antenna without reflector are seriously distorted and its main beam is also shifted away from the normal direction. The antenna designed with a reflector can achieve a stable gain over the whole band. It can be clearly seen from the Fig. 4 that the gain of the bowtie antenna without reflector reduce tempestuously from 3.5 GHz. The difference of the gain between two antenna is 19 db at 5 GHz. Parameters for the final optimal antenna are shown in Table 1. 1-1 -2-3 -4-3 -2-1 1 27 3 24 33 1-1 -2-3 -4 27-3 -2-1 1 3 24 33 3 4 GHz 6 E-plane 12 H-plane E-plane (without reflector) H-plane (without reflector) 18 1-1 -2-3 9-4 27-3 -2-1 1 3 24 3 3 GHz 33 6 12 E-plane H-plane E-plane (without reflector) H-plane (without reflector) 18 9 18 3 5 GHz E-plane H-plane E-plane (without reflector) H-plane (without reflector) 6 12 9 Figure 3. Simulated co-polarizations radiation patterns of the bowtie antennas with/without reflector at 3, 4, and 5 GHz. Table 1. Dimensions of proposed antenna. Parameters H H 1 H 2 H 3 H f H s H r R 1 R 2 aa Values/mm 29 18 9.5 11.5 28 13.5 11 6 1 24.2 Parameters W W 1 W 2 W gap W f W w W s L gap Values/mm 7 1 1.6 23 14 1 1 4 1 3. EXPERIMENTAL RESULTS All simulations in this paper were performed by AnsysEM High Frequency Structure Simulation (HFSS). Its optimized parameters are shown in the Section 2. The S 11 was measured using an Agilent E8363B PNA network analyzer. The simulated and measured S 11 against frequency for the designed antenna

122 Zhao et al. 12 9 1.97GHz 6.49GHz 6-1 Gain (dbi) 3-3 -6 with reflector without reflector -9 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. (db) S 11-2 -3 simulated result measured result -35 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. Figure 4. Simulated gains in broadside direction of the proposed antenna with/without reflector. Figure 5. Measured and simulated S 11 of the proposed antenna. (db) S 11-1 -2-3 bowtie patch -35 bowtie patch without gap bowtie patch without coupling triangular structure -4 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. Figure 6. Photograph of the fabricated antenna. S 11 (db) -1-2 -3 Hr=11mm -35 Hr=12mm Hr=13mm -4 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. Figure 8. Simulated S 11 of the proposed antenna versus H r. Figure 7. Simulated S 11 of three kinds of bowtie antenna. (db) S 11-1 -2-3 H3= 9.5 mm -35 H3=11.5mm H3=13.5mm -4 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. Figure 9. Simulated S 11 of the proposed antenna versus H 3. are shown in Fig. 5. It can be observed from the figure that measured results reasonably agree with the simulated results with an acceptable frequency discrepancy. For S 11 1 db, the measured impedance bandwidths are about 16.9%, ranging from 1.97 GHz to 6.49 GHz. A prototype of the proposed antenna fabricated according to these design parameters is shown in Fig. 6. Simulated S 11 of the three kinds of bowtie antenna is shown in Fig. 7. It can be observed that the bowtie patch with a gap load can offer a resonance at 2. GHz, which broaden the impedance bandwidths in the lower frequency band. The triangular coupling feeding structure at bottom layer make the antenna has a better impedance matching over the whole working band. Figure 8 shows the simulated S 11 versus H r. It can be seen that the higher the reflector, the worse is the return loss S 11, especially in the lower frequency band, that because of the larger fluctuation

Progress In Electromagnetics Research Letters, Vol. 44, 4 123 of input impedance as H r increases. However, the gain varies with H r obviously as the electric field is sensitive to the change of H r. Considered both the S 11 and the gain of antenna, H r = 11 mm is chosen for the final design to make the antenna has a better impedance matching in the lower frequency band. Simulated S 11 versus different H 3 are given in Fig. 9. H 3 is an important parameter of the Microstrip-to-DSL transition, by selecting appropriate length of which, a better impedance matching can be achieved. It can be seen from this figure that the S 11 is slightly influenced by H 3 in the lower frequency band, but in higher frequency band, especially from 4 to 6 GHz, when H 3 increases, the S 11 show a worse matching. Finally, we chose H 3 = 11.5 mm as the final dimensions of the proposed antenna. The measured and simulated radiation patterns for the designed antenna in the E- and H-planes are shown in Fig. 1 for 3, 4, 5 GHz. Good agreements between them can further prove the validity of simulations over the whole band. It can be observed that the measured front-to-back ratios (FBR) of the proposed antenna are over 25 db and the co-polarization is around 25 db higher than the cross- 33 3 33 3-1 -2 3 6-1 -2 3 6-3 -3-4 27 9-4 27 9-3 -3-2 -1 24 33 18 5 3 12 3 GHz E plane -2-1 24 33 18 3 12 3 GHz 5 H plane -1-1 -2 3 6-2 3 6-3 -3-4 27 9-4 27 9-3 -3-2 -1 24 33 18 5 3 12 4 GHz E plane -2-1 24 33 18 5 3 12 4 GHz H plane -1-1 -2 3 6-2 3 6-3 -3-4 27 9-4 27 9-3 -3-2 -1 24 18 5 12 5 GHz E plane -2-1 24 18 12 5 GHz 5 H plane Figure 1. Measured and simulated radiation patterns of the proposed antenna at 3, 4, and 5 GHz.

124 Zhao et al. 11 1 9 Gain (dbi) 8 7 6 Simulated Gain Measured Gain 5 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. Figure 11. Simulated and measured gain of proposed antenna. polarization with unidirectional and symmetrical radiation patterns in both E- and H-planes across the whole operating band. Figure 11 shows the antenna gain variation against frequency. The measured results match well with the simulation results. Over the whole band, the measured antenna gain varies from about 8.5 dbi to 9.9 dbi with a 1.4 dbi variation, show a stable gain around 9.5 dbi. 4. CONCLUSIONS A wideband unidirectional antenna with a reflector and triangular coupling feeding structure has been designed, simulated, fabricated and tested. Measurements show that the final design features an impedance BW of 16.9%, a stable gain of around 9.5 dbi with unidirectional and symmetrical radiation patterns in both E- and H-planes across the whole operating band. Because of these characteristics, the antenna has wide and potential applications for wireless communication applications. REFERENCES 1. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, New York, 25. 2. Lai, H.-W. and K.-M. Luk, Design and study of wideband patch antenna fed by meandering probe, IEEE Trans. on Antenna and Propag., Vol. 54, No. 2, 564 571, Feb. 26. 3. Lai, H.-W. and K.-M. Luk, Wideband stacked patch antenna fed by meandering probe, Electron. Lett., Vol. 41, No. 6, 297 298, Mar. 25. 4. Hazdra, P. and M. Mazanek, Wideband shorted backfire antenna with L-probe fed microstrip patch, Proc. 4th Eur. Conf. Antennas Propag., 1 3,. 5. Li, R., D. Thompson, M. M. Tentzeris, J. Laskar, and J. Papapolymerou, Development of a wideband short backfire antenna excited by an unbalance-fed H-shaped slot, IEEE Trans. on Antenna and Propag., Vol. 53, No. 2, 662 671, Feb. 25. 6. Ehrenspeck, H. W., The short-backfire antenna, Proc. IEEE, Vol. 53, 1138 114, Aug. 1965. 7. Keen, K. M., Log-periodic antenna with unidirectional radiation characteristics, Electron. Lett., Vol. 12, No. 19, 498 5, 1976. 8. Qu, S.-W., J.-L. Li, Q. Xue, and C. H. Chan, Wideband and unidirectional cavity-backed folded triangular bowtie antenna, IEEE Trans. on Antenna and Propag., Vol. 57, No. 4, 1259 1263, Apr. 29. 9. Sagnard, F. and F. Rejiba, Wide band coplanar waveguide-fed bowtie slot antenna for a large range of ground penetrating radar applications, IET Microw. Antennas Propag., Vol. 5, No. 6, 734 739, 1.