14th Bay Area Mathematical Olympiad. BAMO Exam. February 28, Problems with Solutions

Similar documents
Indicate whether the statement is true or false.

12th Bay Area Mathematical Olympiad

0810ge. Geometry Regents Exam y # (x $ 3) 2 % 4 y # 2x $ 5 1) (0,%4) 2) (%4,0) 3) (%4,%3) and (0,5) 4) (%3,%4) and (5,0)

Project Maths Geometry Notes

Step 2: Extend the compass from the chosen endpoint so that the width of the compass is more than half the distance between the two points.

3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm.

UNIVERSITY OF NORTHERN COLORADO MATHEMATICS CONTEST

Downloaded from

Asymptotic Results for the Queen Packing Problem

25 C3. Rachel gave half of her money to Howard. Then Howard gave a third of all his money to Rachel. They each ended up with the same amount of money.

MATHEMATICS ON THE CHESSBOARD

BmMT 2013 TEAM ROUND SOLUTIONS 16 November 2013

Name Period Date. GEOMETRY AND MEASURESUREMENT Student Pages for Packet 6: Drawings and Constructions

2. A number x is 2 more than the product of its reciprocal and its additive inverse. In which interval does the number lie?

(1) 2 x 6. (2) 5 x 8. (3) 9 x 12. (4) 11 x 14. (5) 13 x 18. Soln: Initial quantity of rice is x. After 1st customer, rice available In the Same way

Geometry by Jurgensen, Brown and Jurgensen Postulates and Theorems from Chapter 1

Geometry - Chapter 6 Review

1999 Mathcounts National Sprint Round Solutions

LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE

Droodle for Geometry Final Exam

0809ge. Geometry Regents Exam Based on the diagram below, which statement is true?

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 17, :30 to 3:30 p.m.

Winter Quarter Competition

Problem 2A Consider 101 natural numbers not exceeding 200. Prove that at least one of them is divisible by another one.

JMG. Review Module 1 Lessons 1-20 for Mid-Module. Prepare for Endof-Unit Assessment. Assessment. Module 1. End-of-Unit Assessment.

Applications of Fermat s Little Theorem and Congruences

Fall. Spring. Possible Summer Topics

16. DOK 1, I will succeed." In this conditional statement, the underlined portion is

The Richard Stockton College of New Jersey Mathematical Mayhem 2013 Group Round

Solutions to the 2004 CMO written March 31, 2004

Geometry - Midterm Exam Review - Chapters 1, 2

2. Nine points are distributed around a circle in such a way that when all ( )

Ivan Guo. Broken bridges There are thirteen bridges connecting the banks of River Pluvia and its six piers, as shown in the diagram below:

Solutions of problems for grade R5

6-1. Angles of Polygons. Lesson 6-1. What You ll Learn. Active Vocabulary

Ivan Guo.

I.M.O. Winter Training Camp 2008: Invariants and Monovariants

b. Draw a line and a circle that intersect at exactly one point. When this happens, the line is called a tangent.

Week 1. 1 What Is Combinatorics?

Caltech Harvey Mudd Mathematics Competition February 20, 2010

Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples

Copying a Line Segment

Twenty-fourth Annual UNC Math Contest Final Round Solutions Jan 2016 [(3!)!] 4

3. Given the similarity transformation shown below; identify the composition:

1. Answer: 250. To reach 90% in the least number of problems involves Jim getting everything

MATH CIRCLE, 10/13/2018

1. Answer: 250. To reach 90% in the least number of problems involves Jim getting everything

Solutions to Exercises on Page 86

9.1 and 9.2 Introduction to Circles

Angles formed by Transversals

BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST, 2006 Senior Preliminary Round Problems & Solutions

Unit 6: Quadrilaterals

6-3 Conditions for Parallelograms

MID-MICHIGAN OLYMPIAD IN MATHEMATICS 2014 PROBLEMS GRADES 5-6

LECTURE 3: CONGRUENCES. 1. Basic properties of congruences We begin by introducing some definitions and elementary properties.

ULUDAĞ UNIVERSITY STUDENT SELECTION AND PLACEMENT EXAM FOR FOREIGN STUDENTS (UÜYÖS)

Tile Number and Space-Efficient Knot Mosaics

Standards of Learning Guided Practice Suggestions. For use with the Mathematics Tools Practice in TestNav TM 8

FAU Math Circle 10/3/2015

Problem of the Month: Between the Lines

Geometry 2001 part 1

N-Queens Problem. Latin Squares Duncan Prince, Tamara Gomez February

Math 3 Geogebra Discovery - Equidistance Decemeber 5, 2014

Geometry Chapter 8 8-5: USE PROPERTIES OF TRAPEZOIDS AND KITES

UK JUNIOR MATHEMATICAL CHALLENGE. April 25th 2013 EXTENDED SOLUTIONS

1.6 Congruence Modulo m

Grade 6 Middle School Mathematics Contest A parking lot holds 64 cars. The parking lot is 7/8 filled. How many spaces remain in the lot?

Organization Team Team ID# If each of the congruent figures has area 1, what is the area of the square?

SOLUTIONS FOR PROBLEM SET 4

Locus Locus. Remarks

Perry High School. Geometry: Week 3

High School Mathematics Contest

Downloaded from

(Geometry) Academic Standard: TLW use appropriate tools to perform basic geometric constructions.

What You ll Learn. Why It s Important

Geometry Station Activities for Common Core State Standards

Daniel Plotnick. November 5 th, 2017 Mock (Practice) AMC 8 Welcome!

The Classification of Quadratic Rook Polynomials of a Generalized Three Dimensional Board

International Contest-Game MATH KANGAROO Canada, 2007

Problem Solving Problems for Group 1(Due by EOC Sep. 13)

Unit 6 Quadrilaterals

Table of Contents. Standards Correlations...v Introduction...vii Materials List... x

9-1: Circle Basics GEOMETRY UNIT 9. And. 9-2: Tangent Properties

UAB MATH TALENT SEARCH

Warm-Up Exercises. Find the value of x. 1. ANSWER 65 ANSWER 120

Tangents and Chords Off On a Tangent

JK XY LJ LJ ZX KL KL YZ LJ KL YX KJ. Final Exam Review Modules 10 16, 18 19

7th Grade Drawing Geometric Figures

4th Pui Ching Invitational Mathematics Competition. Final Event (Secondary 1)

ALGEBRA: Chapter I: QUESTION BANK

Analytic Geometry EOC Study Booklet Geometry Domain Units 1-3 & 6

Taiwan International Mathematics Competition 2012 (TAIMC 2012)

Date: Period: Quadrilateral Word Problems: Review Sheet

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g.,

Workout 5 Solutions. Peter S. Simon. Quiz, December 8, 2004

6th FGCU Invitationdl Math Competition

Measuring and Drawing Angles and Triangles

Points, Lines, and Planes

Geometry Semester 2 Final Review

APMOPS MOCK Test questions, 2 hours. No calculators used.

Transcription:

14th Bay Area Mathematical Olympiad BAMO Exam February 28, 2012 Problems with Solutions 1 Hugo plays a game: he places a chess piece on the top left square of a 20 20 chessboard and makes 10 moves with it. On each of these 10 moves, he moves the piece either one square horizontally (left or right) or one square vertically (up or down). After the last move, he draws an X on the square that the piece occupies. When Hugo plays this game over and over again, what is the largest possible number of squares that could eventually be marked with an X? Prove that your answer is correct. Solution: Index each square by its row number and column number, starting with 0. For example, (0,0) represents the top left square and (2,5) represents the square in the third row down and the sixth column over. When the piece moves down or to the right, the sum of the indices of its square increases by 1, and when the piece moves up or to the left, this sum decreases by 1. Since it starts on a square with sum of indices 0, after 10 moves it must lie on a square with sum of indices at most 10. In addition, since each move changes the sum of indices from even to odd or from odd to even and the piece starts on a square with an even sum of indices, after an even number of moves the sum of indices must be even. Therefore, after 10 moves, the piece lies on a square whose sum of indices is an even number 10. It is possible to reach any one of the squares with sum of indices an even number 10 at the end of 10 moves, since the piece can get to the square (i, j) with i + j 10 simply by moving i squares down, then j squares to the right. If i + j = 10, this uses up all 10 moves; otherwise, the piece can waste the remaining 10 i j moves (which is an even number of moves since i + j is even) simply by moving the piece down a square and then up a square until 10 moves are reached. We have shown that the squares that could be marked with an X are the squares of indices (i, j) where i+ j is an even number 10. Since the squares with i+ j = n form a diagonal of length n+1 extending from the left side of the board to the top of the board, there are 1+3+5+7+9+11 = 36 such squares. Note that if the chessboard is colored black and white in the usual way with a black square in the top left corner, then these squares are the top left square together with the next 5 black diagonals that run from the left side to the top of the board.

2 2 Answer the following two questions and justify your answers: (1) What is the last digit of the sum 1 2012 + 2 2012 + 3 2012 + 4 2012 + 5 2012? (2) What is the last digit of the sum 1 2012 + 2 2012 + 3 2012 + 4 2012 + + 2011 2012 + 2012 2012? Solution: The final digit of a power of k depends only on the final digit of k, so there are 10 cases to consider. These are easy to work out. For k ending in 1, the final digits are 1,1,1,1,... For k ending in 2 they are 2,4,8,6,2,4,8,6,..., et cetera. In fact all 10 possible final digits repeat after 1, 2 or 4 steps, so in every case the final digit is back where it started every 4 steps. Since 2012 is divisible by 4, the last digit of k 2012 is the same as the last digit of k 4. As k varies, the last digits of k 4 go through a cycle of length 10: 1,6,1,6,5,6,1,6,1,0. For part (1), if we list the last digits of the five summands, we have 1,6,1,6,5, whose sum has a last digit of 9. For part (2), if we list the last digits of the 2012 summands, we will have 201 copies of the sequence 1,6,1,6,5,6,1,6,1,0, followed by 1 and 6. Since 1 + 6 + 1 + 6 + 5 + 6 + 1 + 6 + 1 + 0 = 33, the last digit of the original sum is the same as the last digit of 201 33 + 1 + 6, which is 0. 3 Two infinite rows of evenly-spaced dots are aligned as in the figure below. Arrows point from every dot in the top row to some dot in the lower row in such a way that: No two arrows point at the same dot. No arrow can extend right or left by more than 1006 positions. Show that at most 2012 dots in the lower row could have no arrow pointing to them. Solution: Call dots in the lower line that lie at the endpoints of arrows target dots and those that are not, missed dots. If an arrangment has 2013 or more missed dots, pick a contiguous set S of dots in the lower line that includes exactly 2013 missed dots and t target dots. Consider the set of t + 2013 dots directly above the dots in S from which t + 2013 arrows must initiate. At most t of them can terminate in S, so at least 2013 of them terminate outside S. But since arrows can only extend to dots 1006 outside of S on either side, there are only 1006 + 1006 = 2012 possible targets for those 2013 or more arrows, which is impossible. Therefore it is impossible to have 2013 or more missed dots in a valid configuration.

3 4 Laura won the local math olympiad and was awarded a magical ruler. With it, she can draw (as usual) lines in the plane, and she can also measure segments and replicate them anywhere in the plane. She can also divide a segment into as many equal parts as she wishes; for instance, she can divide any segment into 17 equal parts. Laura drew a parallelogram ABCD and decided to try out her magical ruler. With it, she found the midpoint M of side CD, and she extended side CB beyond B to point N so that segments CB and BN were equal in length. Unfortunately, her mischievous little brother came along and erased everything on Laura s picture except for points A, M and N. Using Laura s magical ruler, help her reconstruct the original parallelogram ABCD: write down the steps that she needs to follow and prove why this will lead to reconstructing the original parallelogram ABCD. Solution: Laura should extend the line AM beyond M. Measure AM and find the point P on the extension of AM beyond M such that AM = MP. Vertical angles CMP = DMA, CM = MD and AM = MP so PMC is congruent to AMD by SAS. Because of the triangle congruence, CPM = DAM. This means that the transversal AP makes equal angles with PC and AD so PC will be parallel to AD. The line BC is another line through C that is parallel to AD so it is the same as line PC, so P lies on the line containing B, C, and N. Again, by the congruence of the triangles, CP = AD and AD = BC = BN, so if we use the magic ruler to divide PN into three equal parts, the division points must correspond to the missing points B and C. By extending CM and measuring off an additional length of CM on the other side of M, Laura can construct the final missing point D. N B C P M A D Note: other constructions are also possible. 5 Let x 1,x 2,...,x k be a sequence of integers. A rearrangement of this sequence (the numbers in the sequence listed in some other order) is called a scramble if no number in the new sequence is equal to the number originally in its location. For example, if the original sequence is 1,3,3,5 then 3,5,1,3 is a scramble, but 3,3,1,5 is not. A rearrangement is called a two-two if exactly two of the numbers in the new sequence are each exactly two more than the numbers that originally occupied those locations. For example, 3,5,1,3 is a two-two of the sequence 1,3,3,5 (the first two values 3 and 5 of the new sequence are exactly two more than their original values 1 and 3). Let n 2. Prove that the number of scrambles of is equal to the number of two-twos of 1,1,2,3,...,n 1,n 1,2,3,...,n,n + 1. (Notice that both sequences have n + 1 numbers, but the first one contains two 1s.) Solution: For the scrambles, we need to choose two locations from the n 1 numbers 2,3,...,n to be occupied by the two 1s. Once this has been done, we are left with n 1 numbers, exactly two of which

4 (the numbers whose locations were occupied by the 1s) can be placed freely while all the rest have exactly one location they cannot occupy. For the two-twos, we need to choose two locations from the n 1 numbers 1,2,...,n 1 to be occupied by a number two greater than before; the list ends with n 1 since the n and n + 1 spots don t have a number that is two greater than them. Then, we have n 1 remaining numbers, exactly two of which (1 and 2) can be placed freely while all the rest have exactly one location (the location two less than their value) they cannot occupy. Notice that although the particular locations are different in the two descriptions above, the mechanics of making the selections are identical: Choose two from a particular subset of n 1 of the n+1 locations and fill them with particular items. Next fill the remaining slots with the remaining items such that two of the remaining items can go anywhere and each of the others is excluded from exactly one particular location. Since the rearrangment process is identical in both cases, the number of scrambles and two-twos must be equal. The calculation of the actual number of such scrambles or two-twos for a particular n is a bit difficult, but it is documented in the Online Encyclopedia of Integer Sequences: http://oeis.org/a105927. 6 Given a segment AB in the plane, choose on it a point M different from A and B. Two equilateral triangles AMC and BMD in the plane are constructed on the same side of segment AB. The circumcircles of the two triangles intersect in point M and another point N. (The circumcircle of a triangle is the circle that passes through all three of its vertices.) (a) Prove that lines AD and BC pass through point N. (b) Prove that no matter where one chooses the point M along segment AB, all lines MN will pass through some fixed point K in the plane. Solution: (a) It is not hard to show that point N is on the same side of segment AB as the two triangles, and that N is inside CMD so that {A,M,N,C}, and {B.M,N,D}, are arranged in these orders correspondingly on the circumcircles, as shown on the picture. (The reason is essentially that side MC is tangent to the circumcircle of BMD, because of the angle it makes with AB.) Since A, M, N and C are concyclic, and C and N are on the same side of line AB, ANM = ACM = 60. Since B, M, N and D are concyclic, and B and N are on opposite sides of chord MD, MND = 180 MBD = 180 60 = 120. Thus, the sum ANM + MND = 60 + 120 = 180, which proves that A, N, and D lie on a line. One can prove analogously that B, N, and C also lie on a line. (b) Extend sides AC and BD until they intersect in point E, thereby creating another equilateral ABE. Reflect ABE to ABK across line AB. Note that point K is fixed, regardless of the chosen point M. We claim that line NM will always pass through point K. Proof of Claim: To show that N, M and K lie on a line, it suffices to show that KMB = AMN. To this end, note that because of the reflection, KMB = EMB. From the External Angle Theorem applied to AME, we have EMB = MAE + AEM = AMC + EAD; the latter is true because MAE = AMC = 60 and AEM = EAD from the isosceles trapezoid AMDE. Finally, EAD = CAN = CMN from inscribed angles in the circumcircle of AMC. Putting everything together yields EMB = AMC + CMN = AMN. Thus, indeed, N, M and K are collinear.

5 Alternative Proof of Claim: We already know that AND and BNC are lines. We need to show that line MK also passes through N, i.e., that lines AD, BC and KM are concurrent, or in other words, that these lines are perspective from point N. According to Desargues s Theorem, this is true if and only if the corresponding triangles ABK and DCM are perspective from the line formed by the intersection of their corresponding sides. 1 Let lines AB and DC intersect in point X, lines AK and DM intersect in point Y, and lines BK and CM intersect in point Z. Thus, it suffices to show that XY Z is also a line. However, note that Y and Z are the reflections of C and D across AB (because AMY and BMZ are again equilateral). Hence, line XCD reflects to line XY Z, proving our statement. E E D D C N C N A M B X A M B Y Z K K Note: a number of other solutions to the problem were provided by BAMO 2012 participants, including solutions using inversion in the plane, radical axes, and other extra constructions. Note: This problem was inspired by a problem on the first International Mathematical Olympiad in 1959, where equilateral triangles are replaced by squares. In fact, a more general version that incorporates both problems is the following: Generalization: Given a segment AB and a pont M inside of it, construct circle ω l centered at O l passing through A and M and ω r centered at O r passing through M and B so that O l and O r are on the same side of AB and AO l M = MO r B = 2x. Then ω l andω r intersect at M and another point N. Extend AN until it intersects ω r again at a point D. Prove that DBA = x, and moreover, all lines NM pass through the same point K in the plane. (Note that for triangles we have x = 60, and for squares we have x = 45. ) Solution to Generalization: As above, N is on the same side of AB as O l and O r. For the first part, ANM = x because it spans the arc AM; hence MND = 180 x. As MNDB is cyclic, we have MBD = x. For the second part, ANB = ANM + MNB = x+x = 2x, so that N is on the circle ω passing through A and B for which the arc AB spans an angle of 2x. Consider the point K of ω which is on the other side of AB from N and is such that KA = KB. Then KNA = KNB as they span equal arcs, implying that KN passes through M. 1 Two triangles are perspective from a point if the corresponding vertices of the two triangles form three lines intersecting in a single point. Two triangles are perspective from a line if the corresponding sides of the two triangles (or their continuations) intersect in three points that lie on a line. Desargues Theorem states that two triangles are perspective from a point if and only if they are perspective from a line. See, for example, Geometric Puzzles and Constructions Six Classical Geometry Theorems in Mathematical Adventures For Students and Amateurs, edited by David F. Hayes and Tatiana Shubin, published by the Mathematical Association of America.

6 7 Find all nonzero polynomials P(x) with integer coefficients that satisfy the following property: whenever a and b are relatively prime integers, then P(a) and P(b) are relatively prime as well. Prove that your answer is correct. (Two integers are relatively prime if they have no common prime factors. For example, -70 and 99 are relatively prime, while -70 and 15 are not relatively prime.) Solution: Answer: P(x) = ±x n for each integer n 0. It is evident that these polynomials meet the condition, since the only possible prime factors of P(a) are the prime factors of a, so if a,b have no prime factors in common, P(a),P(b) can t either. Consider any polynomial P not of this form; we show that it does not meet the condition. Write P(x) = c n x n + c n 1 x n 1 + + c 0. Replacing P(x) by P(x) if necessary, we may assume c n > 0. Suppose that c n = 1 and the next nonzero coefficient c k is negative. Then we have x n 1 < P(x) < x n for all large enough x. In all other cases, we have x n < P(x) < x n+1 for all large enough x. In either situation, if we choose q to be a large enough prime, then P(q) is a positive integer lying betwen two consecutive powers of q. In particular, P(q) cannot itself be a power of q, so it must have some other prime factor r q. Then the numbers q and q + r are relatively prime. But since r = (q + r) q P(q + r) P(q), both P(q) and P(q+r) are divisible by r, so they are not relatively prime. Hence, the polynomial P does not satisfy the required condition.