Lessons Learned from the US Air Force SENSE CubeSat Mission

Similar documents
SENSE: Lessons Learned through Acquisition and On-Orbit Operations

Space Environmental NanoSat Experiment (SENSE) Capt Paul La Tour SENSE PM

CubeSat Proximity Operations Demonstration (CPOD) Mission Update Cal Poly CubeSat Workshop San Luis Obispo, CA

First Results From the GPS Compact Total Electron Content Sensor (CTECS) on the PSSCT-2 Nanosat

The FAST, Affordable, Science and Technology Satellite (FASTSAT) Mission

CubeSat Integration into the Space Situational Awareness Architecture

CubeSat Proximity Operations Demonstration (CPOD) Vehicle Avionics and Design

IT-SPINS Ionospheric Imaging Mission

Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) Overview

The Colorado Student Space Weather Experiment (CSSWE) On-Orbit Performance

UNCLASSIFIED R-1 ITEM NOMENCLATURE FY 2013 OCO

FRL's Demonstration and Science Experiments (DSX) rogram Quest for the Common Micro Satellite Bus

DYNAMIC IONOSPHERE CUBESAT EXPERIMENT

Strategies for Successful CubeSat Development. Jordi Puig-Suari Aerospace Engineering Department Cal Poly, San Luis Obispo CEDAR Workshop July, 2009

Small Satellites: The Execution and Launch of a GPS Radio Occultation Instrument in a 6U Nanosatellite

NanoSwarm: CubeSats Enabling a Discovery Class Mission Jordi Puig-Suari Tyvak Nano-Satellite Systems

The Evolution of Nano-Satellite Proximity Operations In-Space Inspection Workshop 2017

HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave configuration

SNIPE mission for Space Weather Research. CubeSat Developers Workshop 2017 Jaejin Lee (KASI)

FORMOSAT-3/COSMIC Mission Satellite Performance: Five Years in Orbit

SMART COMMUNICATION SATELLITE (SCS) PROJECT OVERVIEW. Jin JIN Space Center, Tsinghua University 2015/8/10

Reaching for the Stars

UKube-1 Platform Design. Craig Clark

Mission Goals. Brandi Casey (Project Manager)

RAX: The Radio Aurora explorer

The Nemo Bus: A Third Generation Nanosatellite Bus for Earth Monitoring and Observation

Open Source Design: Corvus-BC Spacecraft. Brian Cooper, Kyle Leveque 9 August 2015

IAC-11.B FASTSAT Mission Results from the Space Test Program S26 Mission. Steve Cook Dynetics, USA,

NASA ELaNa IV Launch

Interplanetary CubeSats mission for space weather evaluations and technology demonstration

Outernet: Development of a 1U Platform to Enable Low Cost Global Data Provision

Free-flying Satellite Inspector

Platform Independent Launch Vehicle Avionics

Development of Microsatellite to Detect Illegal Fishing MS-SAT

HYDROS Development of a CubeSat Water Electrolysis Propulsion System

Geoff Crowley, Chad Fish, Charles Swenson, Gary Bust, Aroh Barjatya, Miguel Larsen, and USU Student Team

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

LITES and GROUP-C on the ISS

New Small Satellite Capabilities for Microwave Atmospheric Remote Sensing: The Earth Observing Nanosatellite- Microwave (EON-MW)

From Single to Formation Flying CubeSats: An Update of the Delfi Programme

DICE CubeSat Mission. Spring 2011 CubeSat Workshop April 20, 2011 Erik Stromberg,

Orbicraft Pro Complete CubeSat kit based on Raspberry-Pi

NetCubeSat and SDR Based Communication System for Climate Change Understanding

Figure 1. Proposed Mission Operations Functions. Key Performance Parameters Success criteria of an amateur communicator on board of Moon-exploration

Miniaturized In-Situ Plasma Sensors Applications for NSF Small Satellite program. Dr. Geoff McHarg

NCUBE: The first Norwegian Student Satellite. Presenters on the AAIA/USU SmallSat: Åge-Raymond Riise Eystein Sæther

Iridium NEXT SensorPODs: Global Access For Your Scientific Payloads

A CubeSat-Based Optical Communication Network for Low Earth Orbit

Proba-V QWG#7 Flight & GS status. 3 4 May 2018 ACRI, Sophia-Antipolis

A CubeSat Radio Beacon Experiment

Beyond CubeSats: Operational, Responsive, Nanosatellite Missions. 9th annual CubeSat Developers Workshop

Launch Service 101: Managing a 101 CubeSat Launch Manifest on PSLV-C37

Drag and Atmospheric Neutral Density Explorer

Incorporating a Test Flight into the Standard Development Cycle

KUTESat. Pathfinder. Presented by: Marco Villa KUTESat Project Manager. Kansas Universities Technology Evaluation Satellite

Deep Space Communication The further you go, the harder it gets. D. Kanipe, Sept. 2013

KySat-2: Status Report and Overview of C&DH and Communications Systems Design

Satellite Testing. Prepared by. A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai

THE RESEARCH AND DEVELOPMENT OF THE USM NANOSATELLITE FOR REMOTE SENSING MISSION

Moog CSA Engineering CubeSat Payload Accommodations and Propulsive Adapters. 11 th Annual CubeSat Developer s Workshop 25 April 2014

Miniaturized Ion and Neutral Mass Spectrometer for CubeSat Atmospheric Measurements

CRITICAL DESIGN REVIEW

JWST Functional Flow Diagrams and Schematic Block Diagrams

High Speed, Low Cost Telemetry Access from Space Development Update on Programmable Ultra Lightweight System Adaptable Radio (PULSAR)

ARMADILLO: Subsystem Booklet

The Virtual Spacecraft Reference Facility

UCISAT-1. Current Completed Model. Former Manufactured Prototype

BRIDGING THE GAP: COLLABORATION USING NANOSAT AND CUBESAT PLATFORMS THROUGH THE TEXAS 2 STEP (2 SATELLITE TARGETING EXPERIMENTAL PLATFORM) MISSION

Introduction. Satellite Research Centre (SaRC)

Istanbul Technical University Faculty of Aeronautics and Astronautics Space Systems Design and Test Laboratory

Emergency Locator Signal Detection and Geolocation Small Satellite Constellation Feasibility Study

I SARA 08/10/13. Pre-Decisional Information -- For Planning and Discussion Purposes Only

A Failure Analysis of the ExoCube CubSat. 13 th Annual Cubesat Workshop San Luis Obispo, CA Wednesday, April 20 th, 2016

Design of a Free Space Optical Communication Module for Small Satellites

2009 CubeSat Developer s Workshop San Luis Obispo, CA

SIMBA Sun Earth Imbalance mission. Tjorven Delabie, KU Leuven

An Overview of the Recent Progress of UCF s CubeSat Program

TopSat: Brief to Ground Segment Coordination. Presenter Ian Pilling. By : W.A. Levett. Co author: E.J. Baxter.

GeneSat-1 Quick Look Mission Report

Nanosatellite Technologies and Services

The STU-2 CubeSat Mission and In-Orbit Test Results

Cesar Arza INTA 2009 CUBESAT DEVELOPERS WORKSHOP 23RD APRIL 2008

Rome, Changing of the Requirements and Astrofein s Business Models for Cubesat Deployer

Design of the Local Ionospheric. ospheric Measurements Satellite

Phoenix. A 3U CubeSat to Study Urban Heat Islands. Sarah Rogers - Project Manager NASA Space Grant Symposium April 14, 2018

Airbus DS ESA Phase-0 L5 Spacecraft/Orbital Concept Overview. Emanuele Monchieri 6 th March 2017

Chapter 2 Satellite Configuration Design

Primary POC: Prof. Hyochoong Bang Organization: Korea Advanced Institute of Science and Technology KAIST POC

Integrating Advanced Payload Data Processing in a Demanding CubeSat Mission. Mark McCrum, Peter Mendham

Copyright 2012, The Aerospace Corporation, All rights reserved

(SDR) Based Communication Downlinks for CubeSats

NASA s X2000 Program - an Institutional Approach to Enabling Smaller Spacecraft

C-Band Transmitter Experimental (CTrEX) Test at White Sands Missile Range (WSMR)

CanX-2 and NTS Canada's Smallest Operational Satellites

InnoSat and MATS An Ingenious Spacecraft Platform applied to Mesospheric Tomography and Spectroscopy

CASSIOPE. CASSIOPE: A Canadian SmallSAT-Based Space Science and Advanced Satcom Demonstration Mission

Nanosat Deorbit and Recovery System to Enable New Missions

UNDERSTANDING SPACE WEATHER EFFECTS WITH DISTRIBUTED SENSOR SYSTEMS. Richard P. Welle The Aerospace Corporation,

A Systems Approach to Select a Deployment Scheme to Minimize Re-contact When Deploying Many Satellites During One Launch Mission

Outline. GPS RO Overview. COSMIC Overview. COSMIC-2 Overview. Summary 9/29/16

Transcription:

Lessons Learned from the US Air Force SENSE CubeSat Mission Lyle Abramowitz Developmental Plans and Projects April 22 2015 2015 The Aerospace Corporation

Recap of the Space Environment NanoSat Experiment (SENSE) Program 2

SENSE mission overview Space, ground and data processing segments OBJECTIVE: SENSE is a space weather demonstration for evaluating the cost-effectiveness and suitability of CubeSat architectures for augmenting or performing future operational missions. Additionally, SENSE is a risk reduction pathfinder for the Common Ground Architecture (CGA) and the Global Space Telemetry Resource (GSTR) antenna suite. SENSE Overview: Mission: Space Environmental Monitoring Architecture: Two 3U CubeSats & Global Ground Sys Mission Life: 13 months + Launch: 19 Nov 2013, ORS Enabler 3 Orbit: 500km Alt, 40.5 Inclination GAIM Ionospheric Model SV-1 Bus Performance: Mass: 4kg Power: 10W Avg, 37W Peak ADCS: <0.5 pointing, <0.3 knowledge Data Rate: 1Mbps down, 4kbps up Encryption: AES256 Type II Sensors and Measurements: 1. CTECS: Electron Density (TEC), Scintillation 2. CTIP: Ionospheric Structure 3. WINCS: Temps & Composition of Ions & Neutrals 4. Dosimeter: Cumulative Radiation SV-2 Kirtland AFB, NM Blossom Point, MD AFSCN Ground System: Sites: Manzano NM, Blossom Point MD, AFSCN Common 3 Ground Architecture (CGA) multi-mission, lights-out operation Leave-behind asset for future missions 3 3

SENSE project objectives Develop rapid and affordable access to space for future operational CubeSat missions while satisfying Air Force space program requirements 14 month design, develop, integrate, and test schedule Satisfy full complement of mission assurance and regulatory requirements Safety and security, mission assurance, spectrum allocation, launch certification Develop processes tailored to small satellite missions Implement low cost lights out satellite operations Develop leave behind capabilities for future CubeSat ground architectures Mature CubeSat Technology Readiness Levels (TRLs) and sensor components Mature bus technologies to increase reliability and duration of on orbit operations by incorporating system engineering best practices for spacecraft design, fabrication and test Mature miniaturized sensor capability to satisfy NPOESS IORD-II requirements Demonstrate CubeSat operational utility by: Utilizing validated data to improve current and future space weather models Perform representative mission operations and data analysis to evaluate the applicability of CubeSats to perform similar space environment monitoring missions SENSE is an acquisition experiment as well as a technical experiment 4

SENSE team and stakeholders Space and Missile Center SMC/AD Development Team SMC/RS Stakeholders Air Force Research Laboratory 5

SENSE vehicles Config A (WINCS & GPS) Deployable Solar Arrays S-Band Radio Battery Module Power Management and Distribution (PMAD) WINCS Command & Data Handling (C&DH) GPS Sensor (on both Configs) CTIP Config B (CTIP & GPS) Payload Envelope Reaction Wheel Assembly (RWA) Inertial Reference Board (IRB) 188145-001.5 6

SENSE space weather sensors SV-1: CTIP + CTECS SV-2: WINCS + CTECS CTIP WINCS CTECS Compact Tiny Ionospheric Photometer (CTIP) Measures 135.6 nm UV nightglow giving ionospheric density variation and structure CubeSat Total Electron Content Sensor (CTECS) (x2) Measures amplitude and phase variations of occulting GPS signals giving ionospheric density and scintillation 7 Winds Ions Neutrals Composition Suite (WINCS) Measures ram fluxes of ions and neutral particles giving local electric field, densities, neutral winds, and temperatures

SENSE data flow From sensors to processor 8

On-Orbit History and Accomplishments 9

SENSE on-orbit timeline Nov 19 2013--Launch and successful orbital injection from the ORS-3 LV Ground initially unable to differentiate SENSE from other ORS deployed vehicles using JSpOC Twoline Elements (TLEs) and maintain contacts Nov 24 Analysis of limited SV-1 telemetry shows bi-fold solar array not deployed and abnormally high use of control authority Dec 6 Use of locally generated TLEs enables contacts and telemetry with radio in beacon mode Jan 2014 Completed first fully automated pass using Neptune Common Ground Architecture, tumble rates reduced, all mission payloads turned on. SV-2 collected CTECS data Feb to June 2014 Unsuccessful attempts to achieve Local Vertical Local Horizontal (LVLH) attitude on SV-1 without star camera data, SV-2 placed in free drift survival mode June to Sept Attitude control experiments on SV-1 using star tracker star camera assessed as unusable Sept-Dec Developed and uploaded new flight software to address attitude control and data handling problems Feb 2015 Successfully switched SV-1 to new flight software March 2015 Deployed CTIP sun baffle and collected photon counts March 21 SV-1 reentered, efforts shifted to SV-2 10

SENSE Accomplishments Very successful vehicle communication using ground antenna network Implemented Neptune CGA at Kirtland AFB allowing lights out automated ground contacts using antennas at Kirtland and Blossom Point MD; data rates near 1 Mbps Ground system pathfinder for future missions First CubeSat use of Unified S-Band frequencies with NTIA frequency assignment and coordination Developed a distributed ground architecture with leave-behind capability to fly the next minimally-manned satellite mission Developed mission data flow to support space weather mission data latency requirements Raised TRL and demonstrated reliability of SENSE Innoflight radio, Li-ion batteries, power management system, reaction wheels and many other CubeSat components Completed exhaustive root cause and corrective action campaign to address solar array deployment failure Successfully uplinked, activated and tested a complete refresh of flight software to mitigate on-orbit problems Provided critical on-orbit test and risk reduction effort for identifying and correcting issues with the remaining Colony 2 buses Many program goals were met and much was learned 11

CTECS Early Orbit Performance SV1 sensor initial powered on 12/12/13 (no downloaded data from s/c) SV1 sensor 2 nd power-on 12/18/13 (7 min period) Tracking started within 60 seconds SV2 sensor initial powered on 1/21/14 (5 min period) Tracking began within 60 seconds Total Time CTECS Operated SV1: 129 days (varying period lengths) SV2: ~87 hours over 8 days Both sensors successfully provided Position/Navigation and occultation data Occulted Signals L1 L2 Seconds 12

EM S/N 012 CubeSat Tiny Ionospheric Photometer (CTIP) Spacecraft Integration Launch 19 Nov 2013 Delivered Jan 2012 Mar 2014 CTIP Readiness Spacecraft ADCS Issues Mar 2015 CTIP Turn On Launch through Apr 2014 Chart courtesy of Rick Doe/SRI 13

On-Orbit Anomalies and Failures 14

SENSE on-orbit anomaly symptoms Problems initially ambiguous and strongly interrelated Initial difficulties identifying and acquiring vehicles Brief contacts Low power Unable to de-tumble vehicles Power drain from excessive torque coil firing to desaturate reaction wheels Noisy magnetometer measurements Added significant delay to anomaly resolution 15

Solar panel deployment failure Dominant mission anomaly On SV-1 only the tri-fold solar panel deployed and neither panel deployed on SV-2 Root cause believed to be burn wire mechanism Low power states induced communication brown outs Downlink power draw tripped protection circuits cutting off flight radio in a few seconds Increased difficulty of initial spacecraft tracking and continued to adversely affect contacts Un-deployed panel obscured sensors 1 of 2 star cameras blocked Some magnetometers out of position and degraded Changed spacecraft mass properties Eventually able to transition SV-1 to adequate mission power and SV-2 to power positive condition 16

Burnwire mechanism failure Most probable cause of solar panel deployment failure Burnwire had flight heritage with 5V applied SENSE burnwire was not tested in vacuum conditions Risk emphasis was that nylon line would be inadequately heated and fail to melt Belief was that ambient conditions would provide a more stressing test Non-repeatability a factor in not testing burnwire during TVAC Problem exacerbated by irregularities in heating coil manufacture SENSE burnwire heater at different voltages in vacuum Failure analysis led to redesign of Colony 2 deployment mechanisms 17

Control system problems Most caused by deployment failure De-tumble initially unable to stabilize vehicles Fixed using upload of corrected control parameters Reaction wheel firing and desaturation by torque coils attempting to maintain sun safe attitude Attitude state progression during initialization was too aggressive Vehicles were placed in unplanned adverse configurations Magnetometers in wrong orientation or too near torque coils Un-obscured SV-1 star camera could not provide attitude solution Excessive focal plane noise, likely due to overexposure to sun Sun sensors responded to earth albedo sun safe mode did not point vehicles at the sun Vehicles stabilized but unable to achieve LVLH attitude 18

Lessons Learned and Conclusions 19

Lessons learned Identification and tracking of satellites launched in swarms is difficult Problem magnified as higher communication frequencies are used Balance between risk management and agile space acquisition is difficult Test critical components in representative space environment Avoid components that cannot be repeatably tested Take small steps in initial bus deployment and checkout do not try to do too much out of the P-POD Many advantages to developing spacecraft in line with ground segment Better still to have a defined ground system prior to spacecraft design Government frequency allocation process slow and difficult Small satellite low complexity 20

Conclusions Operationalization of CubeSats for National Security Space missions is possible but requires a fly-fix-fly approach Higher risk must be tolerated as technologies mature On-orbit experience is growing and will reduce risk going forward Space vehicle discrimination methods in early operation require enhancement as satellites are deployed in larger numbers Lower cost using streamlined, automated ground operations are feasible and highly beneficial for small satellite missions Ground system complexity and cost must scale with space segment Government frequency management process needs to be tailored for agile space missions 21

Questions? 22