Techniques used for Detection of Power Quality Events a Comparative Study C. Venkatesh, Student Member, IEEE, D.V.S.S. Siva Sarma, Senior Member, IEEE

Similar documents
Wavelet and S-transform Based Multilayer and Modular Neural Networks for Classification of Power Quality Disturbances

Wavelet Transform for Classification of Voltage Sag Causes using Probabilistic Neural Network

Detection and Identification of PQ Disturbances Using S-Transform and Artificial Intelligent Technique

CLASSIFICATION OF POWER QUALITY DISTURBANCES USING WAVELET TRANSFORM AND S-TRANSFORM BASED ARTIFICIAL NEURAL NETWORK

Detection and Localization of Power Quality Disturbances Using Space Vector Wavelet Transform: A New Three Phase Approach

Assessment of Power Quality Events by Empirical Mode Decomposition based Neural Network

New Windowing Technique Detection of Sags and Swells Based on Continuous S-Transform (CST)

Discrete Fourier Transform (DFT)

Three Phase Power Quality Disturbance Classification Using S-transform

Real Time Detection and Classification of Single and Multiple Power Quality Disturbance Based on Embedded S- Transform Algorithm in Labview

Detection, localization, and classification of power quality disturbances using discrete wavelet transform technique

Measurement of Power Quality through Transformed Variables

DETECTION AND CLASSIFICATION OF POWER QUALITY DISTURBANCE WAVEFORM USING MRA BASED MODIFIED WAVELET TRANSFROM AND NEURAL NETWORKS

280 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 23, NO. 1, JANUARY 2008

Volume 3, Number 2, 2017 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

MULTIFUNCTION POWER QUALITY MONITORING SYSTEM

Power Quality Monitoring of a Power System using Wavelet Transform

Wavelet based Power Quality Monitoring in Grid Connected Wind Energy Conversion System

Wavelet Transform Based Islanding Characterization Method for Distributed Generation

Analysis of Power Quality Disturbances using DWT and Artificial Neural Networks

A Comparative Study of Wavelet Transform Technique & FFT in the Estimation of Power System Harmonics and Interharmonics

A Novel Detection and Classification Algorithm for Power Quality Disturbances using Wavelets

EE216B: VLSI Signal Processing. Wavelets. Prof. Dejan Marković Shortcomings of the Fourier Transform (FT)

Detection of Power Quality Disturbances using Wavelet Transform

Power Quality Disturbances Classification and Recognition Using S-transform Based Neural classifier

Keywords: Power System Computer Aided Design, Discrete Wavelet Transform, Artificial Neural Network, Multi- Resolution Analysis.

MITIGATION OF POWER QUALITY DISTURBANCES USING DISCRETE WAVELET TRANSFORMS AND ACTIVE POWER FILTERS

AN ALGORITHM TO CHARACTERISE VOLTAGE SAG WITH WAVELET TRANSFORM USING

Power Quality Disturbaces Clasification And Automatic Detection Using Wavelet And ANN Techniques

Wavelet, Kalman Filter and Fuzzy-Expert Combined System for Classifying Power System Disturbances

Frequency Domain Representation of Signals

BASIC ANALYSIS TOOLS FOR POWER TRANSIENT WAVEFORMS

Application of Hilbert-Huang Transform in the Field of Power Quality Events Analysis Manish Kumar Saini 1 and Komal Dhamija 2 1,2

Mitigation of Voltage Sag/Swell Using UPQC

Characterization of Voltage Sag due to Faults and Induction Motor Starting

Detection and Classification of Power Quality Event using Discrete Wavelet Transform and Support Vector Machine

1. INTRODUCTION. (1.b) 2. DISCRETE WAVELET TRANSFORM

Dwt-Ann Approach to Classify Power Quality Disturbances

Automatic Classification of Power Quality disturbances Using S-transform and MLP neural network

Data Compression of Power Quality Events Using the Slantlet Transform

Classification of Power Quality Disturbances using Features of Signals

Time-Frequency Analysis of Non-Stationary Waveforms in Power-Quality via Synchrosqueezing Transform

DETECTION AND CLASSIFICATION OF POWER QUALITY DISTURBANCES

Selection of Mother Wavelet for Processing of Power Quality Disturbance Signals using Energy for Wavelet Packet Decomposition

Classification of Signals with Voltage Disturbance by Means of Wavelet Transform and Intelligent Computational Techniques.

Development of Mathematical Models for Various PQ Signals and Its Validation for Power Quality Analysis

TRANSIENT STABILITY ENHANCEMENT OF POWER SYSTEM USING INTELLIGENT TECHNIQUE

Introduction to Wavelet Transform. Chapter 7 Instructor: Hossein Pourghassem

Fault Location Technique for UHV Lines Using Wavelet Transform

A COMPARATIVE STUDY: FAULT DETECTION METHOD ON OVERHEAD TRANSMISSION LINE

Harmonic Analysis of Power System Waveforms Based on Chaari Complex Mother Wavelet

Empirical Wavelet Transform based Single Phase Power Quality Indices

Localization of Phase Spectrum Using Modified Continuous Wavelet Transform

VU Signal and Image Processing. Torsten Möller + Hrvoje Bogunović + Raphael Sahann

A DWT Approach for Detection and Classification of Transmission Line Faults

Harmonic Analysis Using FFT and STFT

Theory of Telecommunications Networks

EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME

DWT ANALYSIS OF SELECTED TRANSIENT AND NOTCHING DISTURBANCES

POWER QUALITY DISTURBANCE ANALYSIS USING S-TRANSFORM AND DATA MINING BASED CLASSIFIER

Detection and classification of faults on 220 KV transmission line using wavelet transform and neural network

Review of Signal Processing Techniques for Detection of Power Quality Events

Chapter 2. Signals and Spectra

Time-Frequency Analysis Method in the Transient Power Quality Disturbance Analysis Application

Comparison of Wavelet Transform and Fourier Transform based methods of Phasor Estimation for Numerical Relaying

Application of wavelet transform to power quality (PQ) disturbance analysis

ASSESSMENT OF POWER QUALITY EVENTS BY HILBERT TRANSFORM BASED NEURAL NETWORK. Shyama Sundar Padhi

A Faster Method for Accurate Spectral Testing without Requiring Coherent Sampling

Detection of Voltage Sag and Voltage Swell in Power Quality Using Wavelet Transforms

Keywords: Wavelet packet transform (WPT), Differential Protection, Inrush current, CT saturation.

Data Acquisition Systems. Signal DAQ System The Answer?

Practical Application of Wavelet to Power Quality Analysis. Norman Tse

SIGNAL PROCESSING OF POWER QUALITY DISTURBANCES

Power Quality Improvement using Hysteresis Voltage Control of DVR

Chapter 3 Spectral Analysis using Pattern Classification

y(n)= Aa n u(n)+bu(n) b m sin(2πmt)= b 1 sin(2πt)+b 2 sin(4πt)+b 3 sin(6πt)+ m=1 x(t)= x = 2 ( b b b b

VOLTAGE DIPS are generally considered a power-quality

Problem Set 1 (Solutions are due Mon )

A Soft Computing Technique for Characterization of Power Quality Events

DSP-FPGA Based Real-Time Power Quality Disturbances Classifier J.BALAJI 1, DR.B.VENKATA PRASANTH 2

A NOVEL CLARKE WAVELET TRANSFORM METHOD TO CLASSIFY POWER SYSTEM DISTURBANCES

A Wavelet-Fuzzy Logic Based System to Detect and Identify Electric Power Disturbances

Feature Extraction of Magnetizing Inrush Currents in Transformers by Discrete Wavelet Transform

Outline. Introduction to Biosignal Processing. Overview of Signals. Measurement Systems. -Filtering -Acquisition Systems (Quantisation and Sampling)

A Novel Software Implementation Concept for Power Quality Study

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal.

Low Cost Embedded System for Voltage Sag Analysis

Frequency Division Multiplexing Spring 2011 Lecture #14. Sinusoids and LTI Systems. Periodic Sequences. x[n] = x[n + N]

A Versatile Control Scheme for UPQC for Power Quality Improvement using fuzzy controller

MANY protective relaying functions use the phasors

Power System Failure Analysis by Using The Discrete Wavelet Transform

PQ Monitoring Standards

AUTOMATED CLASSIFICATION OF POWER QUALITY DISTURBANCES USING SIGNAL PROCESSING TECHNIQUES AND NEURAL NETWORKS

THE APPLICATION WAVELET TRANSFORM ALGORITHM IN TESTING ADC EFFECTIVE NUMBER OF BITS

FPGA Based Power Disturbances

Fourier and Wavelets

Chapter -3 ANALYSIS OF HVDC SYSTEM MODEL. Basically the HVDC transmission consists in the basic case of two

SIMULATION OF D-STATCOM AND DVR IN POWER SYSTEMS

Distribution System Faults Classification And Location Based On Wavelet Transform

DYNAMIC VOLTAGE RESTORER FOR VOLTAGE SAG MITIGATION IN OIL & GAS INDUSTRY

Transcription:

6th ATIOAL POWER SYSTEMS COFERECE, 5th-7th DECEMBER, 37 Techniques used for Detection of Power Quality Events a Comparative Study C. Venkatesh, Student Member, IEEE, D.V.S.S. Siva Sarma, Senior Member, IEEE Abstract-- This paper presents the analysis of different techniques used for the detection of various power quality disturbances such as voltage sag, swell, interruption and harmonics. Fast Fourier transform technique applied to analyze the voltage signal can correctly identify the magnitudes and phase of harmonic components present in the signal. But it does not give the time information of these harmonics in the analyzed signal. Also, Fast Fourier Transform cannot detect disturbances such as voltage sag, swell and interruption. Measurement of RMS is applied to overcome this. But this method is affected by the instant at which the disturbances occur and hence introduce error in the calculated duration of disturbance. Wavelet Transform of a disturbance signal can detect these disturbances accurately-the magnitude and time information. S-Transform application to detect disturbances is also introduced in this paper, which gives phase information of the harmonics and has capability to detect sag, swell and interruption in the presence of noise. Simulation results of performance comparison of these techniques are presented with disturbance generated by MATLAB code and MATLAB/Simulink. Index Terms FFT, wavelet transform, power quality, S- transform, RMS measurement M I. ITRODUCTIO OST of the voltage sensitive critical loads are nonlinear in nature, due to the application of fast acting semiconductor switches and their specific control strategy. These non-linear loads introduce current harmonics and voltage disturbances in the utility, which affect the performance of other non-linear and linear loads at the point of common coupling (PCC). Failure of sensitive electronic loads such as data processing, process control and telecommunications equipment connected to the system has become a great concern [],[]. One of the important issues in power quality (PQ) problems is to detect and classify disturbance waveforms automatically in an efficient manner. To detect, solve and mitigate the PQ problem, many utilities perform PQ monitoring for their industrial and key customers. The rms magnitude of voltage supply is used in the power quality standards for detection and characterization of voltage events []. The standard method is simple and easy to implement but it does not give information about the phase angle of voltage supply during the event or the point on the C. Venkatesh is Research Scholar in ational Institute of Technology (IT), Warangal, India (e-mail: challacvs@ieee.org). Dr. D.V.S.S. Siva Sarma is with the Electrical Engineering Department, IT, Warangal, India. (e-mail: sivasarma@ieee.org). wave where the event begins and, as can be seen in [], presents important limitations in the detection and estimation of magnitude and duration of short-duration voltage events. Detection of voltage dips is subject to a trade-off between speed and selectivity/accuracy. Fast detection might cause an unnecessary operation either because the detected disturbance is not a voltage dip or because it is a voltage dip but not severe enough to justify the operation of the mitigation equipment. Wavelet transform (WT) has the capability of extracting information from the signal in both time and frequency domain simultaneously and has been applied in the detection and classification of power quality disturbances [3]-[5]. But it exhibits some disadvantages that it is sensitive to noise, requires proper selection of mother wavelet and the level of decomposition are to be chosen based on the disturbance. S- Transform (ST), considered as the extension of Fast Fourier Transform (FFT) or WT, provides magnitude and phase information of the harmonics [6] and detects the sag/swell in the presence of noise or transient. This paper provides the simulation analysis of voltage events such as sag, swell, interruption and harmonics and detection using RMS measurement, FFT, WT and ST techniques. Comparison of these techniques is provided. II. TECHIQUES FOR POWER QUALITY EVET DETECTIO This section introduces several transformation techniques that are used for the detection of power quality disturbances. A. Discrete Fourier Transform (DFT) The frequency content of a periodic discrete time signal with period samples can be determined using the discrete Fourier transform (DFT). The DFT of the sequence x(n) is expressed as X ( k ) = x ( n ) e jk Ω i () i = where Ω = Π/ and k is the frequency index. Considering frequency index that varies from to (/ ), the time domain sequence x(n) can be written as ( / ) π kn π kn x( n ) = X R ( k ).cos X I ( k ).sin k = where X R and X I are the in-phase and quadrature-phase components of X(k), respectively. The phasor quantity at the analog frequency ω k is determined as X ( ω ) = X ( k ) + jx ( k ) (3) k R I The calculation of all the phasor components requires ()

6th ATIOAL POWER SYSTEMS COFERECE, 5th-7th DECEMBER, 38 / operations. The fast Fourier Transform (FFT) was developed to reduce the computational burden of the DFT. When the period for a waveform is an integer power of two, the determination of the Fourier coefficients can be stream lined. The number of operations is reduced from / to log (). However, misapplication of the FFT algorithm would lead to incorrect results. For example, if the number of samples taken includes a fraction of a cycle, the FFT results would show incorrect frequency spectrum due to leakage [7]. Sampling rates of data acquisition systems are usually set at fixed values, multiples of KHz. If the sampled waveforms do not contain an integer number of samples per integer number of cycles, the results of the DFT algorithm will include errors. The resulting error is known as spectral "leakage". The DFT or FFT of such a sampled waveform will incorrectly indicate nonzero values for all of the harmonic frequencies. Furthermore, for the FFT algorithm to be applied, the number of samples needs to be an integer power of two. B. RMS Measurement Voltage signals are recorded as sampled points in time and the RMS value of a sampled time-domain signal is calculated using (4). V rm s = v i i (4) = where is the number of samples per cycle and v i are the magnitudes of sampled signal. RMS calculation can also be performed by considering samples for one half-cycle []. The window length has to be an integer multiple of one-half cycle. Any other window length will produce an oscillation in the rms plot with a frequency twice the fundamental frequency. C. Wavelet Transform (WT) Wavelet transformation has the ability to analyze different power quality problems simultaneously in both time and frequency domains. Wavelet analysis expands functions in terms of wavelets, which are generated in the form of translations and dilations of a fixed function called the mother wavelet. A mother wavelet is a function that oscillates, has finite energy and zero mean value. Compared with Fourier transform, wavelet can obtain both time and frequency information of signal, while only frequency information can be obtained by Fourier transform. The signal can be represented in terms of both the scaling and wavelet function [5] as follows: J f ( t) = c ( n) ( t n) d ( n) j / ( j J ϕ + j t n) (5) n n j = where c J is the J level scaling coefficient d j is the j level wavelet coefficient Ф(t) is scaling function Ψ(t) is wavelet function J is the highest level of wavelet transform t is time Each wavelet is created by scaling and translation operations of mother wavelet. Wavelet theory is expressed by continuous wavelet transformation as C W T (, ) (, ) ( ) * x a b = W x a b = x t a, b ( t ) dt (6) where ( ) / t b a, b t = a ( ), a a (scale) and b (translation) are real numbers. For discrete-time systems, the discretization process leads to the time discrete wavelet series as DW T (, ) ( ) * x m n = x t m, n ( t ) dt (7) m / t nb where o a o m, n ( t ) = a o ( ), a m m a = a o and b = nbo ao Using the discrete wavelet transformation power quality problems can be classified easily. D. S-Transform (ST) ST can be seen as the phase correction of continuous wavelet transform (CWT). The ST of function h(t) is defined as a CWT with a specific mother wavelet multiplied by the phase factor jπ S( τ, f ) = e W( d, τ) (8) where the mother wavelet is defined as t f f j π w ( t, f ) = e e (9) π The scale parameter d is the inverse of the frequency f. The wavelet in (9) does not satisfy the condition of zero mean for an admissible wavelet; therefore, (8) is not strictly a CWT. Written out explicitly, the ST is defined as (). ( τ t) f f S ( τ, f ) = h( t) e e jπ dt () π The ST can also be written as operations on the Fourier spectrum H(f) of h(t) π α S ( τ, f ) = H ( α f ) e f e j α + dα, f () The power system disturbance signal h(t) can be expressed in a discrete form as h(kt), k =,,., -, where T is the sampling time interval and is the total sampling number. The discrete Fourier Transform of h(kt) is obtained as π n H h( kt ). e = () T k = where n =,,., -. Using (), the ST of a discrete time series is given by (let τ kt and f n / T ) m

6th ATIOAL POWER SYSTEMS COFERECE, 5th-7th DECEMBER, 39 m j m k π π n m + n S kt, = H. e n e, n T m = T (3) where k, m =,,., -, and n =,,., -. The discrete ST can be computed quickly by taking advantage of the efficiency of the FFT and the convolution theorem. The ST localizes the phase spectrum as well as the amplitude spectrum. ST analysis results in a complex valued matrix (STC matrix). Each row of the STC matrix gives the frequency components of the signal analyzed at various sampling times. Each column of the STC matrix represents the harmonic magnitude and phase of the disturbance signal at a given time or sample. III. DETECTIO OF VOLTAGE EVETS This section shows the application of FFT, RMS measurement, WT and ST for detection of voltage events such as voltage sag, swell and interruption. Also, detection of harmonics is discussed. A. Voltage Sag/Swell Voltage signals with different levels of sag are generated using MATLAB code. Voltage amplitude of pu is considered for normal condition without any disturbance. The sampling frequency is 6.4 khz with 8 samples per cycle for supply frequency of 5 Hz. Fig. shows the voltage sag waveform of two cycle duration. RMS measurement technique is applied to detect voltage sag. Fig. also shows the performance of -cycle and half-cycle RMS measurement. Voltage sag of two cycle duration (56 samples) starting at the end of first cycle (from sample 9) is considered for analysis. Half-cycle RMS measurement identifies the instant of sag at sample 59 and -cycle RMS measurement identifies the sag at sample 7. Estimation time is taken as the time taken to detect the voltage amplitude to go below.9 pu (IEEE std. 59) from normal value. Fig. shows the time of estimation of voltage amplitude for -cycle and half-cycle RMS methods. It is seen that the half-cycle RMS method is suitable for voltage sag measurement. Same is true for the case of voltage swell and interruption. WT is applied to detect the voltage disturbances such as voltage sag, swell and interruption as shown in Fig. 3. The voltage events are shown in Figs. 3 to (c). Figs. 3(d) to (f) shows the detailed coefficients of WT at level obtained with db6 mother wavelet. There is increase in the coefficient at the instant of disturbance start and end. Disturbance or change in the magnitude of signal is identified instantaneously by the WT. These instants may be used to calculate the duration of the disturbance. Performing multiresolution analysis of the disturbance signal for levels and calculating delta-std at each level, delta-std curves are drawn for sag, swell and interruption conditions as shown in Figs. 3(g) to (i) respectively. The frequency bands of WT coefficients are shown in Table I. The magnitude of delta- STD at level 6 which contains the fundamental component is used calculate the percentage of disturbance. Plot of delta- STDs for voltage sag of % to 5% are shown in Fig. 4. The peak value of delta-std at level 6 determines the magnitude of voltage sag. Hence WT analysis identifies magnitude and duration of the voltage events such as sag, swell or interruption. Vrms (pu).5.5 -.5 Plot of -Cycle and /-Cycle RMS Analysis for Sag -cycle RMS /-cycle RMS Voltage Waveform - 3 4 5 6 Fig.. Detection of voltage sag by RMS analysis Detection time (samples) 7 6 5 4 3 36 7 8 44 8 6 5 Instant of Sag (deg) Fig.. Amplitude estimation by RMS measurements. V (pu) V(pu) V(pu) Plot of Voltage Sag -.5. t (secs) Plot of Voltage Swell -.5. t (secs) Plot of Voltage Intr. -.5. t (secs) (c) Coeff (pu) Coeff (pu). -. 88 34 -. 3 (d). -. -. 3 (e) Coeff (pu). -. 3 (f) 36 D elta-std Delta-STD.5 -cycle RMS /-cycle RMS -.5 4 6 8 Levels (g).5 -.5 4 6 8 Levels (h) Delta-STD - - 4 6 8 Levels (i) Fig. 3. Wavelet analysis of the voltage signal.. Voltage sag waveform,. Voltage swell waveform, (c). Voltage interruption waveform, (d),(e),(f). Detailed coefficient at level for, and (c) respectively and (g),(h),(i). Delta STDs at different levels for, and (c) respectively. Detection of voltage sag is also performed by ST analysis of the signal in Fig. 3. ST of the signal results in STC matrix from which the magnitude of the signal can be extracted. Fig. 5 shows the magnitude plot (in per unit) of the signal versus samples. The rms values are obtained from

6th ATIOAL POWER SYSTEMS COFERECE, 5th-7th DECEMBER, 3 STC matrix by identifying the maximum amplitudes of the signal at every sample using (4). S jt n T (4) [, / ] where T is the sampling time interval, is the total sampling number and n =,,., -. TABLE I FREQUECY BADS OF DWT COEFFICIETS AT DIFFERET LEVELS Coefficients Frequency Band (Hz) d 6 3 HZ d 8 6 HZ d3 4 8 HZ d4 4 HZ d5 HZ d6 5 HZ d7 5 5 HZ Delta-STD.3.. -. -. -.3 -.4 -.5 -.6 -.7 % sag % sag 3% sag 4% sag 5% sag -.8 3 4 5 6 7 8 9 Levels Fig. 4. Delta-STD curves for different Percentages of sag. Fig. 5 shows the magnitude versus frequency plot. There is peak only at fundamental frequency (5 Hz) and the magnitude is.7pu for sag of 3% in Fig. 3. ST contour shown in Fig. 5(c) gives the magnitudes of frequency components at each sample. ormalized frequency ( fn ) in Fig. 5(c) is given by fn = nfo / fs, n =,, 3,. (5) where f o = Fundamental frequency (5 Hz) f s = Sampling frequency (6.4 KHz) The fundamental component RMS is.49pu which is.7pu peak. B. Voltage Harmonics Analysis of voltage signals containing harmonic components are analyzed in this section. Two cases are considered to evaluate the performance of harmonic detection techniques with suitable percentage of harmonic signal added to the fundamental waveform. In first case, the synthetic signal of 3 cycles shown in Fig. 6 with magnitude and frequency content given Table II is considered. FFT analysis of the harmonic signal can detect the magnitudes of the fundamental and harmonics accurately as shown in Fig. 6. But it does not provide the time information of these harmonics. Fig. 7 shows the.9.8.7 Freq. (orm)...3.4.5.6.7.8.9. Time (secs).5 5 5 5 3 35.5..5..5.3.35.4.45 5 5 3 4 5 (c) 6 Fig. 5. ST analysis of voltage sag.. RMS value v/s samples,. Frequency spectrum and (c). ST contour. TABLE II HARMOIC COTET OF THE SYTHETIC SIGAL (CASE ) Harmonic Percentage of Time (s) o. Harmonic....6 3 3 5 v (p u) V (f) (pu) - -...3.4.5.6 time (seconds).8.6.4. 5 5 5 3 35 Fig. 6. Voltage signal with multiple frequencies (case) and 6. Frequency spectrum obtained by FFT analysis. Fig. 7. Detailed coefficients of the multiple frequency signal (case). WT analysis of signal in Fig. 6. The detailed coefficients at five levels (d to d5) and approximation coefficient at

6th ATIOAL POWER SYSTEMS COFERECE, 5th-7th DECEMBER, 3 level 5 (a5) are shown in Fig. 7. With sampling frequency of 64 Hz, the harmonics 5 Hz, 5 Hz and 5 Hz components are present in levels 5, 4 and 3 respectively as given in Table I. The fundamental frequency signal is present in the approximation coefficient plot (a5 plot). Freq. (orm).8.6.4. 5 5 5 3 35 4 35 3 5 5 5 5 5 5 3 35 Fig. 8. Frequency plot obtained by ST (case) and. ST contour of the multiple frequency signal. The frequency spectrum obtained from ST analysis is shown in Fig. 8 from which, the magnitudes of the harmonics are extracted. The time information of these harmonic signals is obtained by plotting the ST contour. ST contour in Fig. 8 is obtained by plotting magnitudes of the STC matrix resulted from ST analysis. Hence ST has the feature of both FFT and WT and is considered as the extension of FFT and WT. Second case is considered with the signal in Fig. 9 simulated by shiing the harmonics as given in Table III. swells with the noise signal present. Figs. and (c) show the effectiveness of the ST in identifying the disturbances. When WT is performed the detailed coefficients are high for the instants when the signal contains noise or transients, and at the instants of start and end of sag/swell in the signal. Fig. (d) shows that when there are transients or noise in the signal WT fails to identify the sag/swell condition. Hence ST is having edge over the WT in detecting a disturbance under noisy condition. ST has the ability to detect the occurrence of disturbance correctly in the presence of noise. v (pu) V(f) (pu) - -...3.4.5.6 time (seconds).8.6.4. 5 5 5 3 35 Fig. 9. Voltage signal with multiple frequencies (case) and. FFT analysis of the signal. TABLE III HARMOIC COTET OF THE SYTHETIC SIGAL (CASE ) Harmoni Percentage of Time (s) c o. Harmonic.. 3 3 5..6 The harmonic spectrum obtained from FFT analysis is given in Fig. 9 which is similar to that in Fig. 6. This shows that FFT can detect the magnitudes frequency components but does not give the time information. WT analysis the signal for case resulted in the coefficient plots as shown in Fig.. Coefficient plot at level 3 (d3 plot) shows that the 5 Hz component is present from sample 9 to 384, and the 5 Hz and 5 Hz components are present from sample to sample 8 which match with the time given in Table III. The frequency spectrum and ST contour plots are shown in Figs. and respectively. The results of ST match with signal definition given in Table III. C. Voltage Sag/Swell with noise Fig. shows the case for consecutive voltage sag and Fig.. Detailed coefficients of the multiple frequency signal (case). Freq. (orm).8.6.4. 5 5 5 3 35 4 35 3 5 5 5 5 5 5 3 35 Fig.. Frequency plot obtained by ST (case) and. ST contour of the signal

6th ATIOAL POWER SYSTEMS COFERECE, 5th-7th DECEMBER, 3 IV. PERFORMACE COMPARISO Several cases of the PQ events are discussed in the previous sections and the comparison is made between the techniques employed for analysis and detection of PQ disturbances such as sag, swell, interruption and harmonics. D. Selection of mother wavelet WT requires proper selection of mother wavelet used for analysis. Performance of WT varies with different mother selection. ST which is the phase extension of WT, on the other hand has a specific mother wavelet defined. E. Effect of noise in the signal When noise or transient is present in the voltage signal, WT cannot detect the sag and swell disturbances as it is very sensitive to noise. But ST can accurately detect the disturbance even in the presence of noise or transients. Fig.. ST and WT analysis of consecutive voltage sag and swell with noise. A. Feature Extraction RMS measurement technique is suitable for detection sag, swell and interruption but cannot be used for harmonic measurement. FFT analysis provides features of harmonic magnitudes but does not provide tome information. Detailed coefficient feature extracted by WT is used for detecting the start and end times of the disturbance. ST analysis results in STC matrix [6], [8], [9] from which the features of voltage magnitudes and phase information are obtained. B. Effect of instant of disturbance initiation on the signal The instant of sag or swell in the voltage signal affects the detection time calculated by using -cycle and half-cycle RMS techniques. The evaluation time of voltage magnitude for different instants of disturbance is shown in Fig.. Also, the detection of disturbance is fast by half-cycle RMS technique as compared to -cycle RMS method. WT can detect the sag, swell or interruption without any time delay. C. Duration of disturbance FFT does not provide any time information of the frequency components in the signal and hence information of duration of disturbance cannot be found by FFT. WT gives better visualization of time-varying waveform distortions. However, this information is not sufficient for accurate analysis and classification of disturbance. Multi-resolution analysis and A techniques or fuzzy logic techniques [] are further to be applied. By using magnitude plot obtained by ST, duration of sag, swell and interruption may be calculated. V. COCLUSIOS This paper presented various techniques used for PQ event detection and their performances are compared. Voltage sag and swell detection is faster with half-cycle RMS technique as compared to -cycle RMS method. FFT analysis applied to voltage can detect the harmonics but does not give any time information of these harmonics. WT can detect the sag, swell, interruption. To detect the harmonics using WT, multiresolution technique is employed for different levels. Detection of disturbances by ST is accurate as it can detect sag and swell in the presence of noise. VI. REFERECES [] Emmanouil Styvaktakis, Irene Y. H. Gu, and Math H. J. Bollen, Voltage Dip Detection and Power System Transients, IEEE Trans. Power Engg. Society Summer Meeting, vol., 5 9 July, pp. 683-688. [] Math H. J. Bollen, Understanding Power Quality Problems: Voltage Sags and Interruptions, IEEE Press. [3] M. V. Chillukuri, P. K. Dash, and K. P. Basu, Time-frequency Based Pattern Recognition Technique for Detection and Classification of Power Quality Disturbances, TECO 4, IEEE Region Conf. 4, Vol. 3, -4, ov. 4, pp. 6-63. [4] W. Kanitpanyacharoean and S. Premrudeepreechacharn, Power Quality Problem Classification Using Wavelet Transformation and Artificial eural etworks, Power Systems Conference and Exposition 4, pp. 496-5. [5] Surya Santoso, W. Mack Grady, Edward J. Powers, Jeff Lamoree and Siddharth C. Bhatt, Characterization of Distribution Power Quality Events with Fourier and Wavelet Transforms, IEEE Transactions on Power Delivery, vol. 5, o., January, pp. 47-53. [6] R. G. Stockwell, L. Mansinha and R. P. Lowe, Localization of Complex Spectrum: The S-transform, IEEE Trans. Signal Processing, vol. 44, o. 4, Apr. 996, pp. 998-. [7] Adli A. Girgis, and Fredrick M. Ham, A Quantitative Study of Pitfalls in the FFT, IEEE Trans. Aerospace and Electronic Systems, Vol. AES-6, o. 4, July 98, pp. 434-439. [8] P. K. Dash, B. K. Panigrahi, and G. Panda, Power Quality Analysis Using S Transform, IEEE Transactions on Power Delivery, Vol. 8, o., April 3, pp. 46-4. [9] Said Assous, Anne Humeau, Maylis Tartus, Pierre Abraham and Jean- Pierre L Huillier, S-Transform Applied to Laser Doppler Flowmetry Reactive Hyperemia Signals, IEEE Trans Biomedical Engg., Vol. 53, o. 6, June 6, pp. 3-37. [] Mamum Bin Ibne Reaz, Florence Choong, Mohd Shahiman Sulaiman, Faisal Mohd-Yasin, and Masaru Kamada, Expert System for Power Quality Disturbance Classifier, IEEE Trans. Power Delivery, Vol., o. 3, July 7, pp. 979-988.