Wireless communication systems for persons with impaired hearing

Similar documents
Radio-frequency channel arrangements for fixed wireless systems operating in the band GHz

Radio-frequency channel arrangements for fixed wireless systems operating in the GHz band

Frequency ranges for operation of non-beam wireless power transmission systems

Radio-frequency arrangements for systems of the fixed service operating in sub-bands in the GHz band

Test procedure for measuring the scanning speed of radio monitoring receivers

Service requirements for digital sound broadcasting to vehicular, portable and fixed receivers using terrestrial transmitters in the VHF/UHF bands

Test procedure for measuring the sensitivity of radio monitoring receivers using analogue-modulated signals. Recommendation ITU-R SM.

Recommendation ITU-R M (12/2013)

Radio-frequency channel arrangements for fixed wireless systems operating in the band GHz

Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000

Method of measuring the maximum frequency deviation of FM broadcast emissions at monitoring stations

Use of International Radio for Disaster Relief (IRDR) frequencies for emergency broadcasts in the High Frequency (HF) bands

Method of measuring the maximum frequency deviation of FM broadcast emissions at monitoring stations. Recommendation ITU-R SM.

Protection criteria for arrival time difference receivers operating in the meteorological aids service in the frequency band 9-11.

Spectrum limit masks for digital terrestrial television broadcasting

Frequency bands and transmission directions for data relay satellite networks/systems

Radio-frequency arrangements for systems of the fixed service operating in the 25, 26 and 28 GHz bands. Recommendation ITU-R F.

Radio-frequency channel arrangements for fixed wireless systems operating in the 8 GHz (7 725 to MHz) band

Alternative BSS earth station antenna radiation pattern for 12 GHz BSS bands with effective apertures in the range cm

Global harmonization of short-range devices categories

Technical and operational characteristics of land mobile MF/HF systems

Use of the frequency bands between MHz by the aeronautical mobile (R) service for data transmission using class of emission J2D

Channel access requirements for HF adaptive systems in the fixed and land mobile services

Radio-frequency channel arrangements for medium- and high-capacity digital fixed wireless systems operating in the MHz band

Common formats for the exchange of information between monitoring stations

Test procedure for measuring direction finder sensitivity in the VHF/UHF frequency range

Protection criteria related to the operation of data relay satellite systems

Characteristics of systems operating in the amateur and amateur-satellite services for use in sharing studies

Radio-frequency channel and block arrangements for fixed wireless systems operating in the 42 GHz (40.5 to 43.5 GHz) band. Recommendation ITU-R F.

Parameters for international exchange of multi-channel sound recordings with or without accompanying picture

Recommendation ITU-R SA (07/2017)

Radio-frequency channel arrangements based on a homogeneous pattern for fixed wireless systems operating in the 4 GHz band

Calculation of the maximum power density (averaged over 4 khz or 1 MHz) of angle-modulated and digital carriers

Methods for measurements on digital broadcasting signals

Frequency block arrangements for fixed wireless access systems in the range MHz

Protection of fixed monitoring stations against interference from nearby or strong transmitters

, 16:9 progressively-captured image format for production and international programme exchange in the 50 Hz environment

Availability objective for radio-relay systems over a hypothetical reference digital path

Systems characteristics of automotive radars operating in the frequency band GHz for intelligent transport systems applications

Recommendation ITU-R BT (03/2010)

Recommendation ITU-R SF.1843 (10/2007)

Essential requirements for a spectrum monitoring system for developing countries

General requirements for broadcastoriented applications of integrated

SINPO and SINPFEMO codes

Frequency sharing between SRS and FSS (space-to-earth) systems in the GHz band

User requirements for codecs for transmission of television signals through contribution, primary distribution, and SNG networks

Recommendation ITU-R SA (07/2017)

Performance and interference criteria for satellite passive remote sensing

Characteristics of data relay satellite systems

The use of diversity for voice-frequency telegraphy on HF radio circuits

Broadcasting of multimedia and data applications for mobile reception by handheld receivers

Characteristics of and protection criteria for systems operating in the mobile service in the frequency range GHz

Radio interface standards of vehicle-tovehicle and vehicle-to-infrastructure communications for Intelligent Transport System applications

Characteristics and protection criteria for non-geostationary mobile-satellite service systems operating in the band

Prediction of building entry loss

Protection criteria for non-gso data collection platforms in the band MHz

Recommendation ITU-R F (05/2011)

Recommendation ITU-R M (06/2005)

Recommendation ITU-R M (09/2015)

Recommendation ITU-R F (03/2012)

Objectives, characteristics and functional requirements of wide-area sensor and/or actuator network (WASN) systems

Assessment of impairment caused to digital television reception by a wind turbine

Interference criteria for meteorological aids operated in the MHz and MHz bands

Radio data system for automatic tuning and other applications in FM radio receivers for use with pilot-tone system

Allowable short-term error performance for a satellite hypothetical reference digital path

Telegraphic alphabet for data communication by phase shift keying at 31 Bd in the amateur and amateur-satellite services. Recommendation ITU-R M.

Guidelines for narrow-band wireless home networking transceivers Specification of spectrum related components

Antenna rotation variability and effects on antenna coupling for radar interference analysis

Electronic data file format for earth station antenna patterns

Technical characteristics and protection criteria for aeronautical mobile service systems in the frequency range GHz

Characteristics of precipitation for propagation modelling

Impact of audio signal processing and compression techniques on terrestrial FM sound broadcasting emissions at VHF

International maritime VHF radiotelephone system with automatic facilities based on DSC signalling format

Prediction of clutter loss

The prediction of the time and the spatial profile for broadband land mobile services using UHF and SHF bands

Bandwidths, signal-to-noise ratios and fading allowances in complete systems

The concept of transmission loss for radio links

Morse telegraphy procedures in the maritime mobile service

Field-strength measurements along a route with geographical coordinate registrations

Serial digital interface for production and international exchange of HDTV 3DTV programmes

Acquisition, presentation and analysis of data in studies of radiowave propagation

Bandwidths, signal-to-noise ratios and fading allowances in HF fixed and land mobile radiocommunication systems

Error performance and availability objectives and requirements for real point-to-point packet-based radio links

Recommendation ITU-R M (10/2015)

Propagation curves for aeronautical mobile and radionavigation services using the VHF, UHF and SHF bands

Water vapour: surface density and total columnar content

Radio-frequency arrangements for fixed service systems

Role of the amateur and amateur-satellite services in support of disaster mitigation and relief

Conversion of annual statistics to worst-month statistics

Attenuation due to clouds and fog

Protection criteria for Cospas-Sarsat local user terminals in the band MHz

Preferred frequency bands for radio astronomical measurements

Colour conversion from Recommendation ITU-R BT.709 to Recommendation ITU-R BT.2020

Recommendation ITU-R M (02/2015)

Recommendation ITU-R F.1571 (05/2002)

Common application environment for interactive digital broadcasting services

Minimum requirements related to technical performance for IMT-2020 radio interface(s)

Recommendation ITU-R M.1905 (01/2012)

Report ITU-R M.2198 (11/2010)

Characteristics and protection criteria for radars operating in the aeronautical radionavigation service in the frequency band

Transcription:

Recommendation ITU-R M.1076-1 (02/2015) Wireless communication systems for persons with impaired hearing M Series Mobile, radiodetermination, amateur and related satellite services

ii Rec. ITU-R M.1076-1 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radiofrequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/itu-r/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http://www.itu.int/publ/r-rec/en) Series BO BR BS BT F M P RA RS S SA SF SM SNG TF V Title Satellite delivery Recording for production, archival and play-out; film for television Broadcasting service (sound) Broadcasting service (television) Fixed service Mobile, radiodetermination, amateur and related satellite services Radiowave propagation Radio astronomy Remote sensing systems Fixed-satellite service Space applications and meteorology Frequency sharing and coordination between fixed-satellite and fixed service systems Spectrum management Satellite news gathering Time signals and frequency standards emissions Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1. ITU 2015 Electronic Publication Geneva, 2015 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU.

Scope Rec. ITU-R M.1076-1 1 RECOMMENDATION ITU-R M.1076-1 * Wireless communication systems for persons with impaired hearing (Question ITU-R 254/5) (1994-2015) This Recommendation provides the technical and operational characteristics for wireless accessibility of hearing aids to public, home and personal audio services operating in the land mobile service. Keywords ALD, ALS, assistive listening device, hearing aid, wireless accessibility of hearing aids Acronyms and abbreviations ALD ALS DSP e.r.p. LAN Assistive listening device Assistive listening systems Digital signal processing Effective radiated power Local area network The ITU Radiocommunication Assembly, considering a) that many forms of hearing impairment cannot be satisfactorily improved by audio amplification only; b) that a number of means have been used to transfer speech signals to the listener s hearing device. These means include infrared radiation, use of the magnetic induction internal to current loops, including operation at audio frequencies, VHF and UHF radio and the external induction field of a radiating antenna; c) that some 10% of people suffer from mild to severe hearing loss; d) that users of aids for hearing impaired (hearing aids including assistive listening devices) are found worldwide; e) that personal uses include access to mobile phone and personal audio applications; f) that home usage includes access to broadcast television, broadcast radio, emergency notification and alarms; g) that public usage includes access to points of sales, counters, public address systems in areas such as airports, train stations, religious places, theatres, events and cinemas; h) that the practical application of infrared systems and audio frequency induction loops to communicate with persons with impaired hearing should also be considered for some applications, * The Director, Radiocommunication Bureau, is requested to bring this Recommendation to the attention of the ITU-T Study Group JCA-AHF and the International Electrotechnical Commission (IEC).

2 Rec. ITU-R M.1076-1 recognizing a) that Resolution 175 (Rev. Busan, 2014) of the Plenipotentiary Conference resolves to take account of persons with disabilities in the work of ITU, noting a) that for public use it may be beneficial to have a standardized wireless system, operating on globally harmonized tuning range; b) that there is a wide divergence in spectrum used around the world for assistive listening devices; c) that administrations need to carefully consider suitable harmonized frequency ranges for the operation of wireless systems for hearing impaired person, recommends that the technical and operational characteristics for radiocommunication systems for persons with impaired hearing given in Annexes 1 and 2 should be used. Annex 1 Operational characteristics of wireless communication systems for persons with impaired hearing 1 System concepts Historically, hearing aids consisted of little more than basic miniature audio amplifiers placed in or behind the ear(s) solely boosting the incoming sounds. As semiconductor technology has evolved and become miniaturised, hearing impaired people enjoy extremely sophisticated digital systems incorporating a range of communication capabilities. State-of-the-art technology uses specialized digital signal processing (DSP) technology that is advanced enough to fulfil the stringent mechanical (ultra miniature) and power consumption (only one small single cell battery) requirements that are specified for modern hearing aid devices. DSPs manipulate the incoming sound spectrum mathematically, converting it into a digital representation; programmable software then manipulates this digital representation to achieve: background noise reduction; correction of user specific deficiencies; enhancement of sound cues and other listening parameters used by the brain to reconstruct normal hearing. Hearing aids contribute to user safety, comfort and enjoyable listening experience. However, real life offers an incredible richness in different listening environments in some of which even the most sophisticated hearing instruments show only a limited benefit. Examples of acoustic environments or listening situations where the performance of conventional hearing instruments can substantially be improved by applying additional communication devices are the following: reverberant environments such as big churches or lecture halls; communication over larger distances, e.g. in a lecture or in a classroom;

communication on the telephone, especially cell phones. Rec. ITU-R M.1076-1 3 situations with large background noise levels (e.g. rooms, halls and areas with multi-talker speech; engine noise inside or outside of trains and busses, etc.). In these environments the application of assistive listening systems (ALS) based on wireless communication technologies offer substantial additional benefits and significantly improve speech intelligibility. The advent of digital broadcasting is now displacing some of the frequencies where these wireless ALSs have traditionally operated. In North America and Europe, approximately 1 person in 10 has some form of hearing loss, from mild to severe. Today only 20% of these people are assisted by hearing aid technology. The binaural rate (wearing two hearing aids: one left and one right) is ~75% to 80% in North America, ~60% in Europe and 10% to 12% in the rest of the world. Reasons for such low adoption rates in general vary from negative stigma associated with wearing cosmetically non-appealing devices to high cost and certain types of hearing losses that could not be corrected. Recent progress made in binaural hearing health revealed that having for example the right hearing aid being able to communicate with the left hearing aid and vice versa helps achieve another level of breakthrough in restoring someone s hearing. This also directly contributes to the safety of that person s listening environment, for example directionality of sounds can be better perceived, in cases such as an approaching ambulance or fire truck which cannot be seen but only heard, is physically located. In some instances where one ear is totally impaired, sounds captured from that side of the head can be relayed to the other ear and processed such as that person experiences full 360 hearing again. A major role of allowing the hearing impaired to communicate and also enjoy similar experiences to those with normal hearing has been played by the Telecoil system which is in worldwide use. Unfortunately these are difficult or impossible to install in large public places such as airports and train stations and are both expensive to install and maintain. Also building owners are often reluctant to allow them to be installed. In addition they only supply a single low quality voice channel. This lack of flexibility and cost have given rise to an explosion of radio based systems for most teaching, especially sports coaching 1 and domestic use where multiple channels are required 2. Hearing aids can be described as body worn therapeutic medical devices used to provide improved medical treatment of a patient. Therefore, they are subject to the very same constraints as all other body worn medical devices: They perform therapeutic tasks aimed at treating, curing, hence bettering patient s lives. They are installed/worn in and around the body. They are subject to severe power consumption constraints, due to their discreet mechanical size, that commands a very small source of energy (single cell battery). A harmonized, worldwide deployable tuning range would facilitate the use of these devices for international travellers in public areas. These devices rely on the radio spectrum to be optimized in terms of energy spent for range and link robustness achieved, hence a low noise floor and minimal interference band, where body tissue absorption and spectrum usage density are taken into account. 1 Football and horse riding are some of the many sports now using this equipment for coaching. 2 Many schools require in excess of 25 channels.

4 Rec. ITU-R M.1076-1 If these devices are exposed to an environment of high emissions the user could experience pain and possible damage 3 to the ear drum and/or other physical incapacity. 2 Induction-Loop system (often referred to as Telecoil) Inductive systems rely on coupling an audio amplifier, e.g. for the microphone of a speaker in a lecture hall or a teacher in a classroom, directly to an induction loop system which basically directly transmits the rather low frequency audio signal as a radiated time varying magnetic field. Induction loop systems use a large coil antenna integrated in the floor of a large room for radiating the magnetic field. Once properly installed, and given that the listener s hearing aids include T coils, an IL system is undoubtedly the most convenient and possibly the most cost effective ALS. To hear the audio, all a person has to do is enter the looped area and switch his/her personal hearing aids to the telecoil position. As long as the person s hearing aids include T coils, he or she always has an assistive device receiver available. However this technology also has some technical drawbacks which limit the range of application of this technology. The physics of inductive coupling requires the receiving coil (T-Coil) to be perpendicularly oriented to the field of the sending coil or induction loop. This is sometimes difficult to achieve because the orientation of the induction loop is fixed and the orientation of the T-Coil depends on how it is built into the hearing instrument and the person's orientation. Furthermore, the inductive transmission strongly depends on the distance between sender and receiver which sometime results in a weak signal. The receiver also always has to remain within the loop in order to receive a signal. External interferences (from power lines or fluorescent lights, computer monitors copiers, fax machines, cell phones, etc.) creating background noises or distortions in the hearing instrument, are difficult to remove. Next, in school environments, several different systems are required for different classrooms. When applying two different systems in neighbouring classrooms it often is difficult to avoid spill over from one induction loop system to the next although recently technological progress has been made for reducing this problem. Furthermore, induction loop systems are not portable and can only be applied where they have been pre-installed. 3 VHF and UHF systems Current systems employing VHF and UHF FM (sub 2 000 MHz) radio transmission are capable of providing communication over distances greater than those using the radio induction-field system, as they employ transmission via a radiation field which decays less rapidly with distance than does an induction field. As a consequence, VHF and UHF radio transmission systems require that each transmission in any locale, such as a school classroom and its environs, be assigned a separate frequency channel. VHF and UHF reception is generally less susceptible to interference from natural and man-made noise than is reception at lower frequencies and systems employing VHF and UHF radio transmission will be useful in many circumstances to avoid local problems of interference which affect the operation of the radio induction-field system. Radiocommunication systems intended only for short-range communication are capable of producing high field strengths at their required working distances, without radiating significant levels of power. Exploitation of the resulting possibilities of shared spectrum usage can result in improved spectrum utilization, and may allow large numbers of channels to be made available, for example to satisfy the 3 http://www.access-board.gov/research/interference.htm http://www.fda.gov/radiation-emittingproducts/radiationemittingproductsandprocedures/ HomeBusinessandEntertainment/CellPhones/ucm116327.htm

Rec. ITU-R M.1076-1 5 requirements of large schools for any children with impaired hearing which is increasingly a requirement of national legislation and an objective for children above five weeks old in many countries. Equipment takes a number of physical forms from add on receivers for behind the ear systems to belt mounted units and necklace units. Currently narrow band FM systems predominate for teaching systems with Bluetooth connectivity for mobile phones and some domestic equipment using radio local area network (LAN) technology for connection to multimedia terminals. Scarcity of spectrum has meant that the narrowband fixed frequency channel equipment using a 100% duty cycle is not suitable for sharing with other services or short range devices (SRD); therefore development of more spectrum efficient techniques such as frequency hopping and control from a remote database are currently under development. One such system is shown below. Overview of the system Wireless audio systems considered here transmit speech or audio from a microphone, over a digital radio link, to a receiver. An assistive listening system for use by the hearing impaired in public spaces such as airports, railway stations, churches and theatres, where the transmitter is connected to the audio programme or public address system and the receiver is worn by deaf users, or integrated into users hearing aids. The use of digital technology, e.g. with 4GFSK modulation and low bit-rate audio coding, provides a balance between the need for good audio quality (a requirement to maintain intelligibility and minimise user fatigue), spectrum efficiency and range. These systems can work well between 150 MHz and about 2 GHz. Depending on available spectrum and coexistence requirements, systems to operate in approximately 200, 400 and 600 occupied bandwidth are outlined. The transmitter and receiver duty cycle is inversely proportional to the bandwidth, which means that the amount of spectrum resource used is roughly independent of the bandwidth, but the receiver power consumption is proportional to the duty cycle. This means that a 600 system would allow receivers to consume approximately 1/3 the power of a 200 system, which is highly beneficial in power-limited applications such as hearing aids. Wider bandwidth also decreases end-to-end delay, which is of benefit to many audio applications where the audio must maintain lip-sync with the talker in order to maximise intelligibility. Below are given technical parameters for wireless communication systems for access of hearing impaired people to public services. The most appropriate channel bandwidth/parameters set should be chosen in accordance with coexistence requirements for the radio frequency band in which such a system would be realized.

6 Rec. ITU-R M.1076-1 200 system Channel bandwidth Frequency tolerance Transmitter effective radiated power (e.r.p.) Transmitter field strength @30m Transmitter out of band emission @30m Transmitter modulation (indicative) Transmitter duty cycle (indicative) Receiver sensitivity, direct inject Receiver selectivity Receiver blocking rejection 200 ±0.005% (transmitter) ±0.005% (receiver) 10 mw 88 db V/m 70 db V/m, 100 from carrier, narrowband 40 db V/m, 1 MHz from carrier, wideband 4GFSK @120 kbit/s, ±40 maximum deviation (outer symbols), BT = 0.5 30-50% for one audio channel 80 dbm or better 30 db minimum, adjacent channel 40 db minimum, alternate channel, image channel and above 50 db minimum, ±2 MHz separation

Rec. ITU-R M.1076-1 7 Example transmitter mask (max hold) (note measurement noise floor at 55 dbm) Nominal 200 bandwidth 1Pk Max Att 30 db Ref 10.00 dbm 0 dbm 10 dbm 20 dbm RBW 3 0 VBW 10 SWT 15 ms M1 M1 (1) 8.35 dbm 867.952100000 MHz 30 dbm 40 dbm 50 dbm 60 dbm 70 dbm 80 dbm CF 868.0 MHz Date: 12.JUN.2012 11:12:50 Span 2.0 MHz M.1076-01 Att 30 db Ref 10.00 dbm RBW 30 VBW 10 SWT 60 ms M1 M1 (1) 8.29 dbm 867.952100000 MHz 1Pk Max 0 dbm 10 dbm 20 dbm 30 dbm 40 dbm 50 dbm 60 dbm 70 dbm 80 dbm CF 868.0 MHz Date: 12.JUN.2012 11:14:56 Span 10.0 MHz M.1076-02

8 Rec. ITU-R M.1076-1 Example transmitter mask (average and max hold) (note measurement noise floor at 55 dbm) Nominal 200 bandwidth 1Pk Clrw 2Pk Max Att 30 db Ref 10.00 dbm 0 dbm 10 dbm 20 dbm 30 dbm RBW 3 0 VBW 10 SWT 15 ms M1 M1 (1) 1.88 dbm 867.980000000 MHz 40 dbm 50 dbm 60 dbm 70 dbm 80 dbm CF 868.0 MHz Date: 12.JUN.2012 12:07:21 M.1076-03 Span 2.0 MHz Att 30 db Ref 10.00 dbm RBW 3 0 VBW 10 SWT 60 ms M1 M1 (1) 3.09 dbm 867.980000000 MHz 1Pk Clrw 2Pk Max 0 dbm 10 dbm 20 dbm 30 dbm 40 dbm 50 dbm 60 dbm 70 dbm 80 dbm CF 868.0 MHz Date: 12.JUN.2012 12:07:46 Span 10.0 MHz M.1076-04

Rec. ITU-R M.1076-1 9 400 system Channel bandwidth Frequency tolerance Transmitter e.r.p. Transmitter field strength @30m Transmitter out of band emission @30m Transmitter modulation (indicative) Transmitter duty cycle (indicative) Receiver sensitivity, direct inject Receiver selectivity Receiver blocking rejection 400 ±0.005% (transmitter) ±0.005% (receiver) 10 mw 88 db V/m 70 db V/m, 200 from carrier, narrowband 40 db V/m, 1 MHz from carrier, wideband 4GFSK @250 kbit/s, ±80 maximum deviation (outer symbols), BT = 0.5 15-25% for one audio channel 80 dbm or better 30 db minimum, adjacent channel 40 db minimum, alternate channel, image channel and above 50 db minimum, ±2 MHz separation

10 Rec. ITU-R M.1076-1 Example transmitter mask (average and max hold) (note measurement noise floor at 55 dbm) Nominal 400 bandwidth 1Pk Clrw 2Pk Max Att 30 db Ref 10.00 dbm 0 dbm 10 dbm 20 dbm 30 dbm RBW 30 VBW 10 SWT 15 ms M1 M1 (1) 7.72 dbm 867.980000000 MHz 40 dbm 50 dbm 60 dbm 70 dbm 80 dbm CF 868.0 MHz Date: 12.JUN.2012 12:00:49 Span 2.0 MHz M.1076-05 Att 30 db Ref 10.00 dbm RBW 30 VBW 10 SWT 60 ms M1 (1) 1.88 dbm 867.980000000 MHz 1Pk Clrw 2Pk Max 0 dbm 10 dbm M1 20 dbm 30 dbm 40 dbm 50 dbm 60 dbm 70 dbm 80 dbm CF 868.0 MHz Date: 12.JUN.2012 12:01:04 Span 10.0 MHz M.1076-06

Rec. ITU-R M.1076-1 11 600 system Channel bandwidth Frequency tolerance Transmitter e.r.p. Transmitter field strength @30m Transmitter out of band emission @30m Transmitter modulation (indicative) Transmitter duty cycle (indicative) Receiver sensitivity, direct inject Receiver selectivity Receiver blocking rejection 600 ±0.005% (transmitter) ±0.005% (receiver) 10 mw 88 db V/m 70 db V/m, 300 from carrier, narrowband 40 db V/m, 1 MHz from carrier, wideband 4GFSK @500 kbit/s, ±120 maximum deviation (outer symbols), BT = 0.5 10-20% for one audio channel 80 dbm or better 30 db minimum, adjacent channel 40 db minimum, alternate channel, image channel and above 50 db minimum, ±2 MHz separation

12 Rec. ITU-R M.1076-1 Example transmitter mask (average and max hold) (note measurement noise floor at 55 dbm) Nominal 600 bandwidth 1Pk Clrw 2Pk Max Att 30 db Ref 10.00 dbm 0 dbm 10 dbm 20 dbm 30 dbm RBW 3 0 VBW 10 SWT 15 ms M1 M1 (1) 0.73 dbm 867.980000000 MHz 40 dbm 50 dbm 60 dbm 70 dbm 80 dbm CF 868.0 MHz Date: 12.JUN.2012 12:34:39 Span 2.0 MHz M.1076-07 Att 30 db Ref 10.00 dbm RBW 3 0 VBW 10 SWT 60 ms M1 (1) 4.19 dbm 867.980000000 MHz 1Pk Clrw 2Pk Max 0 dbm 10 dbm M1 20 dbm 30 dbm 40 dbm 50 dbm 60 dbm 70 dbm 80 dbm CF 868.0 MHz Date: 12.JUN.2012 12:34:22 Span 10.0 MHz M.1076-08

Rec. ITU-R M.1076-1 13 Annex 2 Technical characteristics of wireless communication systems for persons with impaired hearing 1 LF and MF radio systems 1.1 30~190 (China) Magnetic field strength limits @10 m: for 30~50 : for 50~190 : 1.2 315 ~1 MHz (China) Magnetic field strength limits @10 m: 72 dbμa/m (quasi-peak value) 72 dbμa/m ( 3 db/octave) (quasi-peak value). mn dbmn/m (quasi-peak value) 1.3 1.7~2.1 MHz, 2.2~3.0 MHz (China) Magnetic field strength limits @10 m: 9 dbμa/m (quasi-peak value) Frequency tolerance: 0.0001 Chanel bandwidth (6 db): 200 1.4 1~3 MHz except the frequencies listed in 1.3 (China) Magnetic field strength limits @10 m: 15 dbμa/m (quasi-peak value) 2 HF radio systems 2.1 3-11 MHz (not implemented in all regions) Channel bandwidth 300-400 Frequency tolerance < ±1% Transmitter field strength @10 m < 20 db A/m Transmitter modulation (indicative) FSK @300 kbit/s Transmitter duty cycle (indicative) 30-50% for one audio channel 2.2 3.1~4.1 MHz, 4.2~5.6 MHz, 5.7~6.2 MHz, 7.3~8.3 MHz, 8.4~9.9 MHz (China) Magnetic field strength limits @10 m: 9 dbμa/m (quasi-peak value) Frequency tolerance: 0.0001 Chanel bandwidth (6 db): 200. 2.3 6.765~6.795 MHz, 13.553~13.567 MHz, 26.957~27.283 MHz (China) Magnetic field strength limits @10 m: 42 dbμa/m (quasi-peak value) Frequency tolerance: 0.0001

14 Rec. ITU-R M.1076-1 For equipment operated in frequency band 13.553-13.567 MHz, the magnetic field strength limit for offset within 140 at both ends of this frequency band is 9 dbμa/m(@10 m, quasi-peak value). 2.4 3~30 MHz except the frequencies listed in 2.2 and 2.3 (China) Magnetic field strength limits @10 m: 15dBμA/m (quasi-peak value). 3 VHF and UHF radio systems In some parts of the world, systems have successfully shared various frequency bands in the range 169-220 MHz for many years, with the type of radio services to which these frequency bands are allocated by the Radio Regulations. With the introduction of assistive listening device (ALD) systems for public spaces which can be controlled from a database better sharing with broadcast services could be expected. 3.1 40.66-40.70 MHz (China) FM fixed channel system with 100% duty cycle 10 mw Frequency tolerance: 0.0001 27 db A/m@10 m (9-150, measurement bandwidth: 200 Hz) 27 db A/m@10 m (150-10 MHz, measurement bandwidth: 9 ) 3.5 db A/m@10 m (10-30 MHz, measurement bandwidth: 9 ) 250 nw (30-1 000 MHz, measurement bandwidth: 100 ) 4 nw (48.5~72.5, 76-108, 167-223, 470-566, 606-798 MHz, measurement bandwidth: 100 ). 3.2 72-76 MHz (not implemented in all regions) Antenna length and man-made noise are an issue. Frequency tolerance: Frequency stability: Field strength produced at 30 m: Modulation requirements for FM: Out-of-band emissions: Receiver selectivity: Receiver image rejection: 50 for a narrow-band device 200 for a wideband device 0.005% (transmitter) 0.005% (receiver) Not to exceed 8 000 µv/m 1 170 µw (calculated from above) 20 maximum (narrow-band) 75 maximum (wideband) 25 or more from carrier, no more than 150 µv/m at 30 m for narrow-band 150 or more from carrier, no more than 150 µv/m at 30 m for wideband 40 db minimum, adjacent channel 40 db minimum.

3.3 75.4-76 MHz (China) FM fixed channel system with 100% duty cycle Rec. ITU-R M.1076-1 15 < 200 KHz 10 mw Frequency tolerance: 0.0001 27 db A/m@10 m (9-150, measurement bandwidth: 200 Hz) 27 db A/m@10 m (150-10 MHz, measurement bandwidth: 9 ) 3.5 db A/m@10 m (10-30 MHz, measurement bandwidth: 9 ) 250 nw (30-1 000 MHz, measurement bandwidth: 100 ) 4 nw (48.5~72.5, 76-108, 167-223, 470-566, 606-798 MHz, measurement bandwidth: 100 ). 3.4 84-87 MHz (China) FM fixed channel system with 100% duty cycle < 200 KHz 10 mw Frequency tolerance: 0.0001 27 db A/m@10 m (9-150, measurement bandwidth: 200 Hz) 27 db A/m@10 m (150-10 MHz, measurement bandwidth: 9 ) 3.5 db A/m@10 m (10-30 MHz, measurement bandwidth: 9 ) 250 nw (30-1 000 MHz, measurement bandwidth: 100 ) 4 nw (48.5~72.5, 76-108, 167-223, 470-566, 606-798 MHz, measurement bandwidth: 100 ). 3.5 87-108 MHz (China) FM fixed channel system with 100% duty cycle < 200 KHz 3 mw Frequency tolerance: 0.0001 27 db A/m@10 m (9-150, measurement bandwidth: 200 Hz) 27 db A/m@10 m (150-10 MHz, measurement bandwidth: 9 ) 3.5 db A/m@10 m (10-30 MHz, measurement bandwidth: 9 ) 250 nw (30-1 000 MHz, measurement bandwidth: 100 ) 1 000 nw (1 000 MHz-10 th harmonics, measurement bandwidth: 1 MHz) 4 nw (48.5~72.5, 167-223, 470-566, 606-798 MHz, measurement bandwidth: 100 ).

16 Rec. ITU-R M.1076-1 3.6 169 MHz band (Europe and Japan) Analogue FM fixed channel system with 100% duty cycle Spurious emissions (receiver): < 50 3.7 173-175 MHz (in some European countries) Analogue FM fixed channel system with 100% duty cycle Frequency tolerance: Spurious emissions (receiver): 3.8 173.3-174.0 MHz (Korea) 10 mw or <500 mw public systems (Europe only), individual licence required 4 nw (41-68, 87.5-118, 162-230, 470-872 MHz) (250 nw elsewhere below 1 000 MHz) 20 nw (above 1 000 MHz) 2 nw (100-1 000 MHz) 20 nw (1 000-4 000 MHz). < 50 5 2-10 mw Analogue FM fixed channel system with 100% duty cycle Frequency tolerance: Spurious emissions (receiver): 4 nw (41-68, 87.5-118, 162-230, 470-872 MHz) (250 nw elsewhere below 1 000 MHz) 20 nw (above 1 000 MHz) 2 nw (100-1 000 MHz) 20 nw (1 000-4 000 MHz). < 200 0.002% < 10 mw 3.9 174-216 MHz (in some European countries) Analogue FM fixed channel system with 100% duty cycle Frequency tolerance: 250 nw ( 36 dbm) (below 1 000 MHz with reference bandwidth of 100 ) 1 W ( 30 dbm) (above 1 000 MHz with reference bandwidth of 1 MHz) 4 nw ( 54 dbm) (above 9 ). < 50 5 10-50 mw 4 nw (41-68, 87.5-118, 162-230, 470-872 MHz) (250 nw elsewhere below 1 000 MHz) 20 nw (above 1 000 MHz)

Rec. ITU-R M.1076-1 17 Spurious emissions (receiver): 2 nw (100-1 000 MHz) 20 nw (1 000-4 000 MHz). 3.10 216-217 MHz (USA) Analogue FM fixed channel system with 100% duty cycle < 50 Frequency tolerance: Spurious emissions (receiver): 5 100 mw 4 nw (41-68, 87.5-118, 162-230, 470-872 MHz) (250 nw elsewhere below 1 000 MHz) 20 nw (above 1 000 MHz) 2 nw (100-1 000 MHz) 20 nw (1 000-4 000 MHz). 3.11 216-217 MHz (Korea) Analogue FM fixed channel system with 100% duty cycle < 200 Frequency tolerance: Spurious emissions (receiver): 0.002% < 10 mw 250 nw ( 36 dbm) (below 1 000 MHz with reference bandwidth of 100 ) 1 W ( 30 dbm) (above 1 000 MHz with reference bandwidth of 1 MHz) 4 nw ( 54 dbm) (above 9 ). 3.12 189.9~223.0 MHz (China) FM fixed channel system with 100% duty cycle < 200 10 mw Frequency tolerance: 0.0001 4 nw (48.5~72.5, 76-108, 470-566, 606-798 MHz, measurement bandwidth: 100 ) 250 nw (30-1 000 MHz, measurement bandwidth: 100 ) 1 000 nw (1 000 MHz-10 th harmonics, measurement bandwidth: 1 MHz) 3.13 470~510 MHz (China) FM fixed channel system with 100% duty cycle < 200 KHz 50 mw Frequency tolerance: 0.0001

18 Rec. ITU-R M.1076-1 4 nw (48.5~72.5, 76-108, 167~223, 510~566, 606-798 MHz, measurement bandwidth: 100 ) 250 nw (30-1 000 MHz, measurement bandwidth: 100 ) 1 000 nw (1 000 MHz-10 th harmonics, measurement bandwidth: 1 MHz) 3.14 630~787 MHz (China) FM fixed channel system with 100% duty cycle < 200 KHz 50 mw Frequency tolerance: 0.0001 4 nw (48.5~72.5, 76-108, 167~223, 470~566 MHz, measurement bandwidth: 100 ) 250 nw (30-1 000 MHz, measurement bandwidth: 100 ) 1 000 nw (1 000 MHz-12.5 GHz, measurement bandwidth: 1 MHz) 3.15 863-865 MHz (Europe) Specification ETSI EN 301 357 FM fixed channel system with 100% duty cycle Transmitter radiated power: Spurious emissions (receiver): < 200 KHz 10 mw 4 nw (41-68, 87.5-118, 162-230, 470-872 MHz) (250 nw elsewhere below 1 000 MHz) 20 nw (above 1 000 MHz) 2 nw (100-1 000 MHz) 20 nw (1 000-4 000 MHz) 3.16 2 400~2 483.5 MHz (China) FM fixed channel system with 100% duty cycle Frequency tolerance: < 200 KHz 10 mw 75 4 nw (48.5~72.5, 76-108, 167~223, 470~566, 606-798 MHz, measurement bandwidth: 100 ) 250 nw (30-1 000 MHz, measurement bandwidth: 100 ) 1 000 nw (1 000 MHz-12.5 GHz, measurement bandwidth: 1 MHz)