A Geometric Correction Method of Plane Image Based on OpenCV

Similar documents
Sensors and Sensing Cameras and Camera Calibration

Research on Pupil Segmentation and Localization in Micro Operation Hu BinLiang1, a, Chen GuoLiang2, b, Ma Hui2, c

Introduction to DSP ECE-S352 Fall Quarter 2000 Matlab Project 1

Image Measurement of Roller Chain Board Based on CCD Qingmin Liu 1,a, Zhikui Liu 1,b, Qionghong Lei 2,c and Kui Zhang 1,d

Blind Single-Image Super Resolution Reconstruction with Defocus Blur

A Novel Algorithm for Hand Vein Recognition Based on Wavelet Decomposition and Mean Absolute Deviation

AR 2 kanoid: Augmented Reality ARkanoid

A Comparison Between Camera Calibration Software Toolboxes

A Fast Algorithm of Extracting Rail Profile Base on the Structured Light

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics

Image Processing & Projective geometry

LENSLESS IMAGING BY COMPRESSIVE SENSING

ECC419 IMAGE PROCESSING

Digital deformation model for fisheye image rectification

Demosaicing Algorithm for Color Filter Arrays Based on SVMs

MIT CSAIL Advances in Computer Vision Fall Problem Set 6: Anaglyph Camera Obscura

Computer Vision. The Pinhole Camera Model

RESEARCH AND DEVELOPMENT OF DSP-BASED FACE RECOGNITION SYSTEM FOR ROBOTIC REHABILITATION NURSING BEDS

Face Detection System on Ada boost Algorithm Using Haar Classifiers

Method for out-of-focus camera calibration

Digital Photographic Imaging Using MOEMS

ME 6406 MACHINE VISION. Georgia Institute of Technology

A Spectrum Analysis Method to Space Vector Pulse Width Modulation

MULTIPLE SENSORS LENSLETS FOR SECURE DOCUMENT SCANNERS

Computer Vision Slides curtesy of Professor Gregory Dudek

Simulated Programmable Apertures with Lytro

Image Processing by Bilateral Filtering Method

Research on Hand Gesture Recognition Using Convolutional Neural Network

A Study of Slanted-Edge MTF Stability and Repeatability

Image Processing for feature extraction

Detection and Verification of Missing Components in SMD using AOI Techniques

Princeton University COS429 Computer Vision Problem Set 1: Building a Camera

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image

Simultaneous geometry and color texture acquisition using a single-chip color camera

Using Linear Intersection for Node Location Computation in Wireless Sensor Networks 1)

6.098/6.882 Computational Photography 1. Problem Set 1. Assigned: Feb 9, 2006 Due: Feb 23, 2006

Colour correction for panoramic imaging

Unit 1: Image Formation

CCD Automatic Gain Algorithm Design of Noncontact Measurement System Based on High-speed Circuit Breaker

Midterm Examination CS 534: Computational Photography

Projection. Announcements. Müller-Lyer Illusion. Image formation. Readings Nalwa 2.1

The analysis of microstrip antennas using the FDTD method

Various Calibration Functions for Webcams and AIBO under Linux

Dynamic Distortion Correction for Endoscopy Systems with Exchangeable Optics

Cameras. CSE 455, Winter 2010 January 25, 2010

Research on 3-D measurement system based on handheld microscope

Geometry of Aerial Photographs

Keywords Unidirectional scanning, Bidirectional scanning, Overlapping region, Mosaic image, Split image

Spatially Varying Color Correction Matrices for Reduced Noise

Research on a Laser Ring Induced by a Metal Wire

Image Formation. World Optics Sensor Signal. Computer Vision. Introduction to. Light (Energy) Source. Surface Imaging Plane. Pinhole Lens.

Automatic source camera identification using the intrinsic lens radial distortion

Software for Electron and Ion Beam Column Design. An integrated workplace for simulating and optimizing electron and ion beam columns

Image Extraction using Image Mining Technique

Exercise questions for Machine vision

ROBOT VISION. Dr.M.Madhavi, MED, MVSREC

1 st IFAC Conference on Mechatronic Systems - Mechatronics 2000, September 18-20, 2000, Darmstadt, Germany

Image Recognition for PCB Soldering Platform Controlled by Embedded Microchip Based on Hopfield Neural Network

FOCAL LENGTH CHANGE COMPENSATION FOR MONOCULAR SLAM

Quality Measure of Multicamera Image for Geometric Distortion

Catadioptric Stereo For Robot Localization

3D-scanning system for railway current collector contact strips

A new method to recognize Dimension Sets and its application in Architectural Drawings. I. Introduction

Digital Image Processing

A Comparison of Histogram and Template Matching for Face Verification

Lecture 7: homogeneous coordinates

Checkerboard Tracker for Camera Calibration. Andrew DeKelaita EE368

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Acoustic resolution. photoacoustic Doppler velocimetry. in blood-mimicking fluids. Supplementary Information

DETERMINING CALIBRATION PARAMETERS FOR A HARTMANN- SHACK WAVEFRONT SENSOR

Performance Evaluation of Edge Detection Techniques for Square Pixel and Hexagon Pixel images

This experiment is under development and thus we appreciate any and all comments as we design an interesting and achievable set of goals.

Digital Image Fundamentals. Digital Image Processing. Human Visual System. Contents. Structure Of The Human Eye (cont.) Structure Of The Human Eye

Digital Image Fundamentals. Digital Image Processing. Human Visual System. Contents. Structure Of The Human Eye (cont.) Structure Of The Human Eye

Single Camera Catadioptric Stereo System

The study of combining hive-grid target with sub-pixel analysis for measurement of structural experiment

MarineBlue: A Low-Cost Chess Robot

Image Formation: Camera Model

Digital Image Processing

Dimension Recognition and Geometry Reconstruction in Vectorization of Engineering Drawings

EMC ANALYSIS OF ANTENNAS MOUNTED ON ELECTRICALLY LARGE PLATFORMS WITH PARALLEL FDTD METHOD

Influence of Vibration of Tail Platform of Hydropower Station on Transformer Performance

A Mathematical model for the determination of distance of an object in a 2D image

Demosaicing Algorithms

Simulation Analysis of SPWM Variable Frequency Speed Based on Simulink

Efficient Construction of SIFT Multi-Scale Image Pyramids for Embedded Robot Vision

Improvement of Accuracy in Remote Gaze Detection for User Wearing Eyeglasses Using Relative Position Between Centers of Pupil and Corneal Sphere

Multiplication and Area

Design and Testing of DWT based Image Fusion System using MATLAB Simulink

Computer Vision. Thursday, August 30

APPLICATION OF COMPUTER VISION FOR DETERMINATION OF SYMMETRICAL OBJECT POSITION IN THREE DIMENSIONAL SPACE

Projection. Readings. Szeliski 2.1. Wednesday, October 23, 13

Image and Multidimensional Signal Processing

Design of High-Precision Infrared Multi-Touch Screen Based on the EFM32

Opto Engineering S.r.l.

According to the proposed AWB methods as described in Chapter 3, the following

Improving the Safety and Efficiency of Roadway Maintenance Phase II: Developing a Vision Guidance System for the Robotic Roadway Message Painter

Color Image Segmentation in RGB Color Space Based on Color Saliency

Effective Pixel Interpolation for Image Super Resolution

Transcription:

Sensors & Transducers 204 by IFSA Publishing, S. L. http://www.sensorsportal.com A Geometric orrection Method of Plane Image ased on OpenV Li Xiaopeng, Sun Leilei, 2 Lou aiying, Liu Yonghong ollege of Mechanical Engineering, hina University of Petroleum, Qingdao, 266580, Shandong Province, hina 2 hina Petroleum Pipline ureau, Langfang, 065000, Hebei Province, hina Received: 2 January 204 /Accepted: 2 February 204 /Published: 28 February 204 Abstract: Using OpenV, a geometric correction method of plane image from single grid image in a state of unknown camera position is presented. The method can remove the perspective and lens distortions from an image. The method is simple and easy to implement, and the efficiency is high. Experiments indicate that this method has high precision, and can be used in some domains such as plane measurement. opyright 204 IFSA Publishing, S. L. Keywords: orrection, Perspective distortion, Lens distortion, Accuracy evaluation.. Introduction omputer Vision is widely used in some domains such as automatic industrial manufacturing line, a variety of testing and monitoring, automatic interpretation of image and so on. Its application can improve work efficiency and product quality. Since the images captured by camera have certain perspective and lens distortions, in order to obtain object s actual size, it is necessary to carry out geometric correction, and result of geometric correction affects the detection accuracy directly. How to more accurately and quickly correct image, many scholars have made a lot of research on it and gotten some results. According to whether the calibration object is needed, the method of camera calibration is classified into traditional and self-calibration one []. The method proposed in the paper belongs to the former. There are several researches have been done on the traditional camera calibration method. In 987 Tsai proposed two-stage methods with distortion model [2]. The method has high precision and less calculation. However, the method only considers the factors of radial distortion, loses sight of the effect of tangential distortion. In 998, Zhang proposed a flexible camera calibration by viewing a plane from unknown orientations [3, 4]. The method requires the camera to shoot a chessboard in at least two different directions and the camera and chessboard to move freely. It ensures that internal and external parameters can be acquired. Zhou Fuqiang et al proposed correction method based on feature object (points, lines and other features of the object) [5-8]. The method is based on the principle that feature object still exists some properties in the ideal image. Then the distortion parameter equation is established. This method is very complicated, or needs to strictly control the relationship between image coordinate system (IS) and world coordinate system (WS). The planar measurement needs an image that would have resulted if the camera had looked perfectly perpendicularly without distortions from the world plane. This geometric correction is useful for 234 Article number P_RP_0078

applications that must work on the image data itself, e.g., measurement of small-sized object on the conveyor belt, printed matter pattern detection. In these applications, the distance and angle of the camera and the world plane are almost constant, if these above methods are used again, the process of geometric correction will too complicated, and it will be very difficult for the real-time data processing to be realized. So the present study proposes a geometric correction method of plane picture based on OpenV. The method can be used to establish relationship between no-distortion image and distorted image in plane by a checkerboard image, and easily remove the perspective and lens distortions from an image. The method is simple and easy to implement, and the efficiency is high. 2. esign of Geometric orrection Algorithm This algorithm is mainly used in planar measurement, shape, size, coordinate and direction of an object can be determined from an image. For the convenience of measurement, geometric deformation should be removed from an image. This creates an image that would have resulted if the camera had looked perfectly perpendicularly without distortions from the world plane. Aiming at this special application, the following prerequisites are established: ) Measurand is placed onto the plane and it is infinitely thin; 2) The distance and angle of the camera and the world plane is constant during measurement; 3) The camera chain, namely pinhole camera, consists of ordinary lens and area array. Research object is shown in Fig.. The actual shape of target in the world coordinate system is shown in Fig. (a). The image from a camera and geometric corrected image are shown in Fig. (b) and Fig. (c) respectively. They have their own image coordinate system. omparing Fig. (b) with Fig. (a), there is complex geometric distortion in Fig. (b), e.g., perspective distortion, lens distortion, rotation, translation and scaling in image coordinate system. Using geometric correction method, the algorithm converts Fig. (b) to Fig. (c). And the correspondence of Fig. (c) and Fig. (b) is determined. y w A p w c A c A p p p 2w p 2 p 2 r x w r (a) Ideal image (b) Image from the camera (c) Geometric corrected image Fig.. Image distortion schematic diagram. This algorithm is based on the idea: ) ivide shooting plane into small square regions along X and Y axes of WS, respectively. 2) The premise of algorithm is the 3 position of the grid corner pw is known. Find the projection p of the grid corner in image, and then convert it into image coordinate P corresponding to the 3 position. Through this step, pixel location of the grid corner will usually produce the best correction results. 3) For other points in square domain, their projections in image are affected by the perspective and lens distortions, but because of the smaller square, the lens distortion in square region can be ignored, we only need to remove the perspective distortion from the image. If we use homogeneous coordinates to express both the distorted coordinate P in uncorrected image and the undistorted coordinate P in corrected image, this mapping in terms of matrix multiplication can be expressed by: P T P, () where T p is the 3-by-3 matrix. Matrix T p can be calculated by four corner-points in uncorrected and corrected image. The other undistorted coordinates in corrected image can be obtained by formula (). It can be predicted that the smaller the divided square region, the better geometric correction will be. 4) Treat the remaining square regions in order, thus complete geometric correction. 5) For each pixel in the corrected image, its RG value obtained by using bilinear interpolation method. 3. Geometric orrection Algorithm Implementation The experimental device is a special measuring platform. With ++ programming language and P 235

computer vision library OpenV, software was developed. Specific steps are as follows: ) The camera is mounted in its proper position over the shooting plane. To ensure camera s axis is basically perpendicular to the plane. Manual focus until the image becomes the finest, and then fixes the current camera state. 2) esign and manufacture of a checkerboard pattern which is large enough to cover the shooting region, shows as Fig. (a). The checkerboard pattern is placed into known location in the world coordinates. The rectangular matrix layout of the rows and columns of the checkerboards enables the geometric calibration algorithm to determine the correspondence between the corners and their image points easily. 3) The image from a camera is shown in Fig. (b). Find corners on the image with the findhessboardorners() function. To find the corner location with sub-pixel accuracy, the cornersubpix() function is used. 4) Enter four corner-points in uncorrected and corrected image into getperspectivetransform() to compute the projective transformation matrix T p for the square view. 5) For other points within square, the undistorted coordinates in corrected image can be obtained by formula () and step (4). 6) Obtain each undistorted coordinates in order, thus get a no-distortion image. 7) The undistorted coordinates in corrected image may not be integer, so the RG value can not be obtained directly. According to bilinear interpolation method, find the four proximate points ( u,v ), ( u,v 2 2 ), ( u,v 3 3 ) and ( u,v 4 4 ) to desired point ( u, v ), use the distance relation of the points, and obtain the RG value. 4. Experiments and Result Analysis In order to study on the algorithm accuracy and the effects of different parameters on the algorithm accuracy, experiments are performed on different images. Analyze the experimental result, compare with other methods and study the advantages, disadvantages. 4.. The imensional Accuracy of the ifferent Positions and Lengths Fig. 2 shows an example of the geometric correction method. In Fig. 2(a), the image of a caliper together with the calibration target that defines the shooting plane is shown. The uncorrected and corrected images of the caliper are shown in Fig. 2(a) and Fig. 2(b), respectively. Note that the geometric correction has removed the perspective and lens distortions from the image. To quantitatively analyze the linear dimensional precision of geometric correction, we can measure and calculate the actual size between graduation lines of the caliper according to the correspondence of the actual size and pixel of the corrected image, as shown in Table. (a) The uncorrected image (b) The corrected image Fig. 2. Image correction result. Table. The measured distance value and error. Measurement scale Actual length / mm Measured value / mm Absolute error / mm Relative error / % - 2 cm 0 9.99-0.0 0. 2-3 cm 0 0.03 0.03 0.3 3-4 cm 0 9.95-0.05 0.5 4-5 cm 0 9.95-0.05 0.5 5-6 cm 0 9.99-0.0 0. - 3 cm 20 20.06 0.06 0.3-4 cm 30 30.05 0.05 0.7-5 cm 40 40.02 0.02 0.05-6 cm 50 49.94-0.06 0.2 236

The Table lists nine sets of measurements. As seen from the table, the linear dimensional precision of image after geometric correction is higher (the most relative error is 0.5 %), the dimension error is distributed random, has nothing to do with the measured position and length, and does not accumulate. The image of a rectangular board with different angles could be calibrated, the results should display as shown in Fig. 3. The uncorrected and corrected images are shown in Fig. 3(a) and Fig. 3(b), respectively. Note that the geometric correction has removed the distortions from the image. (a) The uncorrected image (b) The corrected image Fig. 3. Image correction result. To quantitatively analyze angle precision of geometric correction, we can measure the actual angles of 30, 45, 60, 90 marked on Fig. 3, as shown in Table 2. The Table 2 lists four sets of measurements. As seen from the table, the maximum absolute error is 0.2, the most relative error is 0.33 %, and the average absolute error and relative error are 0.3 and 0.25 % respectively. Note that the angles in the corrected image have no obvious changes. Many groups of data set out the Table 2 indicate that range error is small, and angle precision is high. We hold that this method is feasible, and it can meet the requirements of the plane measurement. Table 2. The measured angle value and error. Serial number True angle Measured angle Absolute error Relative error 30 29.9-0. 0.33 % 2 45 45. 0. 0.22 % 3 60 60.2 0.2 0.33 % 4 90 90. 0. 0. % 4.2. The Effect of heckerboard Size on the orrection Accuracy ased on these results, this paper further investigates the effect of checkerboard size on the correction accuracy. In this paper, the shooting plane is divided into different size of checkerboard. The distance from 6 cm to 8 cm is calculated, the calculated distance value is compared with the actual length between graduation lines of the caliper, as shown in Table 3. The difference between the measured and actual values is graphically described in Fig. 4. As can be seen from the Table 3 and Fig. 4: ) In cases where camera position and focal length is fixed, the smaller the checkerboard, the better geometric correction will be. 2) As we can see from Fig. 4, relative error changes smoothly in respect to checkerboard having size about 0~7.5 mm, relative error is great in respect to checkerboard having size over 7.5 mm. In a word, the selection of checkerboard size should depend on specific condition. Table 3. The measured distance value and error. Serial number heckerboard size / mm Measured value / mm Absolute error / mm Relative error / % 7.5 9.99-0.0 0.05 2 0 9.95-0.05 0.25 3 2.5 20.06 0.06 0.30 4 5 20.07 0.07 0.35 5 7.5 9.92-0.08 0.40 6 20 20.0 0.0 0.50 237

Relative error / % 0.6 0.4 0.2 0 2 3 4 5 6 Serial number Fig. 4. The effect of checkerboard size on the correction accuracy. stored as a template. It can be used to accelerate correction process and save calculation time but can not influence precision. Experiment indicates that this method has high precision, and can be used in some domains such as plane measurement. In order to improve the correction precision, there are some problems need to be solved, such as corner extraction precision, this is the future research direction. Acknowledgements 4.3. A ontrast Experiment of ifferent Methods The proposed method is compared with Zhengyou Zhang's calibration method and camera calibration toolbox for Matlab, experimental conditions are the same. Measurements are performed on 9 measuring locations in Fig. 2, each location is measured 0 times and its average relative error is calculated. The relative error of three methods is shown in Fig. 5. As can be seen from Fig. 5, the accuracy of the proposed method is comparable to two mature calibration methods (Zhengyou Zhang's calibration method and camera calibration toolbox for Matlab). Relative error / % 0.5 0.4 0.3 0.2 0. 0 2 3 4 5 6 7 8 9 Measuring position Fig. 5. The relative error of three methods. 5. onclusions Suggested method Zhang's method Matlab In this paper, the geometric correction method of plane picture based on OpenV is proposed from the point of view of a practical application. ompared with the existing methods, this method is simple and easy to come true, the computation is low. In the process of geometric correction, the relationship between no-distortion image and distorted image is This work was supported by the Fundamental Research Funds for the entral Universities of hina (2X04056A, 3X06089A) and Shandong Provincial Natural Science Foundation, hina (ZR203EEQ029). References []. M. L. Qiu, S.. Ma, Y. Li, Overview of camera calibration for computer vision, Acta Automatica Sinica, Vol. 26, Issue, 2000, pp. 43-55. [2]. R. Y. Tsai, An efficient and accurate camera calibration technique for 3 machine vision, in Proceedings of the IEEE onference on omputer Vision and Pattern Recognition VPR'86, Miami each, Florida, 986, pp. 364 374. [3]. Z. Zhang, Flexible camera calibration by viewing a plane from unknown orientations, in Proceedings of the International onference on omputer Vision, Kerkyra, Greece, 20-27 September 999, pp. 666-673. [4]. Z. Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, Issue, 2000, pp. 330-334. [5]. F. Q. Zhou, K. Hu, G. J. Zhang, orrecting distortion of camera lens with collinear points, hinese Journal of Mechanical Engineering, Vol. 42, Issue 9, 2006, pp. 74-77. [6]. Z. Q. Qiu, H. W. Lu, Q. F. Yu, A correction method of fish-eye lens distortion using projective invariability, Journal of Application Optics, Vol. 24, Issue 5, 2003, pp. 36-38. [7]. Y. Liu,. F. Huang, Z. Q. et al., istortion correction method of camera lens based on affine transformation and perspective projection, Journal of Southwest University o f Science and Technology, Vol. 25, Issue 3, 200, pp. 76-8. [8]. J. J. He, G. J. Zhang, X. M. Yang, Approach for calibration of lens distortion based on cross ratio invariability, hinese Journal of Scientific Instrument, Vol. 25, Issue 5, 2004, pp. 597-599. 204 opyright, International Frequency Sensor Association (IFSA) Publishing, S. L. All rights reserved. (http://www.sensorsportal.com) 238