BFQ790. Data Sheet. RF & Protection Devices. High Linearity High Gain 1/2 Watt RF Driver Amplifier. Revision 2.0, Preliminary

Similar documents
Tire Pressure Monitoring Sensor

BFP450. Datasheet. RF & Protection Devices. Linear Low Noise Silicon Bipolar RF Transistor. Revision 1.2,

BFP650. Data Sheet. RF & Protection Devices. High Linearity Silicon Germanium Bipolar RF Transistor. Revision 1.1,

LED Drivers for Low Power LEDs BCR205W. Data Sheet. Industrial and Multimarket. Ultra low dropout LED controller. Revision 2.

BFP780. Data Sheet. RF & Protection Devices. 200 mw High Gain RF Driver Amplifier. Revision 3.0,

BFP843. Data Sheet. RF & Protection Devices. Robust Low Noise Broadband Pre-Matched Bipolar RF Transistor. Revision 1.

Power Management & Multimarket

BFP760. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.1,

BGA7L1BN6. Data Sheet. RF & Protection Devices. Silicon Germanium Low Noise Amplifier for LTE. Revision 3.1,

BFP740. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.1,

BFP720F. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.1,

BFP840ESD. Data Sheet. RF & Protection Devices. Robust Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.2,

Power Management & Multimarket

BFP740F. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 2.0,

BFN18. Data Sheet. RF & Protection Devices. NPN Silicon High-Voltage Transistors. Revision 1.0,

BFP450. Data Sheet. RF & Protection Devices. High Linearity Low Noise Si NPN RF Transistor. Revision 1.0,

BGB719N7ESD. Data Sheet. RF & Protection Devices. Low Noise Amplifier MMIC for FM Radio Applications. Revision 1.1,

Power Management & Multimarket

BFP640. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 2.0,

BFP640ESD. Data Sheet. RF & Protection Devices. Robust Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.1,

BGA729N6. Data Sheet. RF & Protection Devices. Broadband Low Noise Amplifier for Portable and Mobile TV Applications. Revision 3.

BFP650. Data Sheet. RF & Protection Devices. High Linearity Low Noise SiGe:C NPN RF Transistor. Revision 1.0,

BFR720L3RH. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 2.0,

BFR740L3RH. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 2.0,

Power Management & Multimarket

BFP842ESD. Data Sheet. RF & Protection Devices. Robust Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.1,

ESD (Electrostatic discharge) sensitive device, observe handling precautions

Power Management & Multimarket

BGA924N6. Data Sheet. RF & Protection Devices. Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems (GNSS)

Power Management & Multimarket

BFR840L3RHESD. Data Sheet. RF & Protection Devices. Robust Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.

BFP720FESD. Data Sheet. RF & Protection Devices. Robust Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.

BGM1143N9. Data Sheet. RF & Protection Devices. Front-End Module for Global Navigation Satellite Systems (GNSS) Revision 2.0, Preliminary

Power Management & Multimarket

BGM1043N7. Data Sheet. RF & Protection Devices. GPS and GLONASS Front-End Module. Revision 3.0,

BGB741L7ESD. Data Sheet. RF & Protection Devices. Robust Low Noise Broadband RF Amplifier MMIC. Revision 2.0,

Revision: Rev

BGA7L1N6. Data Sheet. RF & Protection Devices. Silicon Germanium Low Noise Amplifier for LTE. Revision 3.1 (Min/Max),

Power Management & Multimarket

BGM1034N7. Data Sheet. RF & Protection Devices. GPS and GLONASS Front-End Module. Revision 3.0,

Power Management & Multimarket

BGB717L7ESD. Data Sheet. RF & Protection Devices. SiGe:C Low Noise Amplifier MMIC for FM Radio Applications. Revision 3.

LED Drivers for High Power LEDs

BGS22W2L10. Data Sheet. Power Management & Multimarket. DPDT (Dual-Pole / Double-Throw) Differential RF Switch. Revision October 12, 2012

BFP720ESD. Data Sheet. RF & Protection Devices. Robust High Performance Low Noise Bipolar RF Transistor. Revision 1.0,

Revision: Rev

Power Management & Multimarket

Power Management & Multimarket

Power Management & Multimarket

Power Management & Multimarket

BGSF110GN26. Preliminary Datasheet. RF & Protection Devices

BGS12SN6. Data Sheet. Power Management & Multimarket. Wideband RF SPDT Switch in ultra small package with 0.77mm 2 footprint. Revision 1.

TVS Diodes ESD5V0L1B-02V. Data Sheet. Industrial and Multi-Market. Transient Voltage Suppressor Diodes. Bi-directional Low Capacitance TVS Diode

Power Management & Multimarket

BGS12SN6. Data Sheet. Power Management & Multimarket. Wideband RF SPDT Switch in small package with 0.77mm 2 footprint. Revision 2.

BGA751N7. Data Sheet. RF & Protection Devices. SiGe Bipolar 3G/3.5G/4G Single-Band LNA. Revision 3.1,

AN523. About this document. Scope and purpose

Power Management & Multimarket

Power Management & Multimarket

High Precision Hall Effect Switch for Consumer Applications

Power Management & Multimarket

Power Management & Multimarket

Revision: Rev

Revision: Rev

Revision: Rev

Power Management & Multimarket

EiceDRIVER. High voltage gate drive IC. Application Note. AN Revision 1.3,

BGA748L16. Data Sheet. RF & Protection Devices. High Linearity Quad-Band UMTS LNA (2100, 1900, 900, 800 MHz) Revision 3.

Revision: Rev

LED Drivers for High Power LEDs

Revision: Rev

BGA713L7. Data Sheet. RF & Protection Devices. Single-Band UMTS LNA (700, 800 MHz) Revision 3.0,

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22

Power Management & Multimarket

Revision: Rev

Power Management & Multimarket

High Precision Automotive Hall Effect Switch for 5V Applications

Revision: Rev

Revision: Rev

Revision: Rev

Revision: Rev

Application Note AN410

Edition Published by Infineon Technologies AG Munich, Germany 2017 Infineon Technologies AG All Rights Reserved.

SPDT RF CMOS Switch. Revision: Rev

Revision: Rev

Revision: Rev

TVS Diodes. ESD0P2RF Series. Data Sheet. Industrial and Multi-Market. Transient Voltage Suppressor Diodes

Ultra Low Quiescent Current Linear Voltage Regulator

Power Management and Multimarket

Revision: Rev

BGA628L7. Data Sheet. RF & Protection Devices. Silicon Germanium Wide Band Low Noise Amplifier. Revision 1.1, Preliminary

BGB707L7ESD. Data Sheet. RF & Protection Devices. SiGe:C Wideband MMIC LNA with Integrated ESD Protection. Revision 3.

Band 20 ( MHz)

Revision: Rev

BFR840L3RHESD for 5 to 6 GHz

BGS12PN10. Data Sheet. Power Management & Multimarket. SPDT high linearity, high power RF Switch. Revision

BFP720. Data Sheet. RF & Protection Devices. SiGe:C Heterojunction Wideband RF Bipolar Transistor. Revision 1.0,

Revision: Rev

Overvoltage at the Buck Converter Output

Revision: Rev

Transcription:

High Linearity High Gain 1/2 Watt RF Driver Amplifier Data Sheet Revision 2.0, 2014-08-26 Preliminary RF & Protection Devices

Edition 2014-08-26 Published by Infineon Technologies AG 81726 Munich, Germany 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BFQ790, High Linearity High Gain 1/2 Watt RF Driver Amplifier Revision History: 2014-08-26, Revision 2.0 Page Subjects (major changes since last revision) Preliminary datasheet based on measurements of engineering samples, replaces target datasheet. Trademarks of Infineon Technologies AG AURIX, C166, CanPAK, CIPOS, CIPURSE, EconoPACK, CoolMOS, CoolSET, CORECONTROL, CROSSAVE, DAVE, DI-POL, EasyPIM, EconoBRIDGE, EconoDUAL, EconoPIM, EconoPACK, EiceDRIVER, eupec, FCOS, HITFET, HybridPACK, I²RF, ISOFACE, IsoPACK, MIPAQ, ModSTACK, my-d, NovalithIC, OptiMOS, ORIGA, POWERCODE ; PRIMARION, PrimePACK, PrimeSTACK, PRO-SIL, PROFET, RASIC, ReverSave, SatRIC, SIEGET, SINDRION, SIPMOS, SmartLEWIS, SOLID FLASH, TEMPFET, thinq!, TRENCHSTOP, TriCore. Other Trademarks Advance Design System (ADS) of Agilent Technologies, AMBA, ARM, MULTI-ICE, KEIL, PRIMECELL, REALVIEW, THUMB, µvision of ARM Limited, UK. AUTOSAR is licensed by AUTOSAR development partnership. Bluetooth of Bluetooth SIG Inc. CAT-iq of DECT Forum. COLOSSUS, FirstGPS of Trimble Navigation Ltd. EMV of EMVCo, LLC (Visa Holdings Inc.). EPCOS of Epcos AG. FLEXGO of Microsoft Corporation. FlexRay is licensed by FlexRay Consortium. HYPERTERMINAL of Hilgraeve Incorporated. IEC of Commission Electrotechnique Internationale. IrDA of Infrared Data Association Corporation. ISO of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB of MathWorks, Inc. MAXIM of Maxim Integrated Products, Inc. MICROTEC, NUCLEUS of Mentor Graphics Corporation. MIPI of MIPI Alliance, Inc. MIPS of MIPS Technologies, Inc., USA. murata of MURATA MANUFACTURING CO., MICROWAVE OFFICE (MWO) of Applied Wave Research Inc., OmniVision of OmniVision Technologies, Inc. Openwave Openwave Systems Inc. RED HAT Red Hat, Inc. RFMD RF Micro Devices, Inc. SIRIUS of Sirius Satellite Radio Inc. SOLARIS of Sun Microsystems, Inc. SPANSION of Spansion LLC Ltd. Symbian of Symbian Software Limited. TAIYO YUDEN of Taiyo Yuden Co. TEAKLITE of CEVA, Inc. TEKTRONIX of Tektronix Inc. TOKO of TOKO KABUSHIKI KAISHA TA. UNIX of X/Open Company Limited. VERILOG, PALLADIUM of Cadence Design Systems, Inc. VLYNQ of Texas Instruments Incorporated. VXWORKS, WIND RIVER of WIND RIVER SYSTEMS, INC. ZETEX of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 Preliminary Data Sheet 3 Revision 2.0, 2014-08-26

Table of Contents Table of Contents Table of Contents................................................................ 4 List of Figures................................................................... 5 List of Tables.................................................................... 6 1 Product Brief.................................................................... 7 2 Features........................................................................ 8 3 Absolute Maximum Ratings........................................................ 9 4 Recommended Operating Conditions.............................................. 10 5 Thermal Characteristics.......................................................... 11 6 Electrical Performance in Application.............................................. 12 7 Electrical Performance in Test Fixture............................................. 13 7.1 DC Parameter Table.............................................................. 13 7.2 AC Parameter Tables............................................................. 14 7.3 Characteristic DC Diagrams........................................................ 17 7.4 Characteristic AC Diagrams........................................................ 19 8 Simulation Data................................................................. 28 9 Package Information SOT89...................................................... 29 Preliminary Data Sheet 4 Revision 2.0, 2014-08-26

List of Figures List of Figures Figure 5-1 Absolute Maximum Power Dissipation P diss,max vs. T s.................................. 11 Figure 7-1 BFQ790 Testing Circuit......................................................... 14 Figure 7-2 Collector Current vs. V CE, I B = Parameter.......................................... 17 Figure 7-3 DC Current Gain h FE vs. at V CE = 5 V............................................. 17 Figure 7-4 Collector Emitter Breakdown Voltage BV CER vs. Resistor R_B/GND...................... 18 Figure 7-5 Transition Frequency f T vs., V CE = Parameter...................................... 19 Figure 7-6 Collector Base Capacitance C CB vs. at f = 30 MHz, V CB = Parameter................... 19 Figure 7-7 Gain G ms, G ma, IS 21 I² vs. f at V CE = 5 V, = 250 ma................................... 20 Figure 7-8 Maximum Power Gain G max vs. at V CE = 5 V, f = Parameter.......................... 20 Figure 7-9 Maximum Power Gain G max vs. V CE at = 250 ma, f = Parameter...................... 21 Figure 7-10 Output Reflection Coefficient S 22 vs. f at V CE = 5 V, = Parameter....................... 21 Figure 7-11 Input Reflection Coefficient S 11 vs. f at V CE = 5 V, = Parameter......................... 22 Figure 7-12 Source Impedance Z Sopt for Minimum Noise Figure vs. f at V CE = 5V, = Parameter......... 22 Figure 7-13 Noise Figure NF min vs. f at V CE = 5 V, Z S = Z Sopt, = Parameter......................... 23 Figure 7-14 Noise Figure NF min vs. at V CE = 5 V, Z S = Z Sopt, f = Parameter........................ 23 Figure 7-15 Noise Figure NF 50 vs. at V CE = 5 V, Z S = 50 Ω, f = Parameter......................... 24 Figure 7-16 Load Pull Contour OP 1dB [dbm] at V CE = 5 V, = 250 ma, f = 0.9 GHz, Z I = Z opt............. 24 Figure 7-17 Load Pull Contour OIP3 [dbm] at V CE = 5 V, = 250 ma, f = 0.9 GHz, Z I = Z opt............. 25 Figure 7-18 Load Pull Contour Gain G [db] at V CE = 5 V, = 250 ma, f = 0.9 GHz, Z I = Z opt.............. 25 Figure 7-19 P out, Gain,, PAE vs. P in at V CE = 5 V, q = 155 ma, f = 0.9 GHz, Z I = Z opt................ 26 Figure 7-20 P out, Gain,, PAE vs. P in at V CE = 5 V, q = 250 ma, f = 0.9 GHz, Z I = Z opt................ 26 Figure 7-21 P out, Gain,, PAE vs. P in at V CE = 5 V, q = 250 ma, f = 2.6 GHz, Z I = Z opt................ 27 Figure 7-22 OIP3 vs. at V CE = 5 V, f = 0.9 GHz, Z L = Z Lopt...................................... 27 Figure 9-1 Package Outline............................................................... 29 Figure 9-2 Package Footprint.............................................................. 29 Figure 9-3 Marking Example (Marking BFQ790: R3)............................................ 29 Figure 9-4 Tape Dimensions.............................................................. 29 Preliminary Data Sheet 5 Revision 2.0, 2014-08-26

List of Tables List of Tables Table 3-1 Absolute Maximum Ratings at T A = 25 C (unless otherwise specified)..................... 9 Table 4-1 Recommended Operating Conditions............................................... 10 Table 5-1 Thermal Resistance........................................................... 11 Table 6-1 Application Notes.............................................................. 12 Table 7-1 DC Characteristics at T A = 25 C................................................. 13 Table 7-2 General AC Characteristics at T A = 25 C........................................... 14 Table 7-3 AC Characteristics, V CE = 5 V, f = 0.9 GHz.......................................... 15 Table 7-4 AC Characteristics, V CE = 5 V, f = 1.8 GHz.......................................... 15 Table 7-5 AC Characteristics, V CE = 5 V, f = 2.6 GHz.......................................... 15 Table 7-6 AC Characteristics, V CE = 5 V, f = 3.5 GHz.......................................... 16 Preliminary Data Sheet 6 Revision 2.0, 2014-08-26

Product Brief 1 Product Brief The BFQ790 is a single stage high linearity high gain driver amplifier. The device is not internally matched and hence provides flexibility to be used for any application where high linearity is key. There are several application notes available, most of them for LTE frequencies, a summary can be found in chapter 6. The device is based on Infineon's reliable and cost effective NPN silicon germanium technology running in very high volume. The technology comprises lowohmic substrate contacts so that emitter bond wires can be omitted. Thereby the emitter inductance is minimized and the power gain optimized. For example one of the circuits provides an OIP3 of 41 dbm at 2650 MHz, with a power gain of 14 db. The datasheet describes the device mainly at 250 ma collector current IC, operated in Class A mode. Under these conditions the BFQ790 provides ½ Watt RF power and highest linearity. If energy efficiency is in the focus it is recommended to operate the device in class AB mode. That means to adjust a quiescent current ICq lower than 250 ma and use the self biasing effect to get high linearity and efficiency when the input RF power is high. Please refer to figure 7-19, where as an example an ICq of 155 ma is adjusted. OIP3 vs. IC is shown in figure 7-22. For the BFQ790 an advanced large signal compact model is available. Further information please find in chapter 8. The BFQ790 is very rugged. A special collector design prevents from thermal runaway respectively 2nd breakdown. This leads to a high ruggedness against mismatch at the output. The collector design allows safe operation with a single 5 V supply. The special design of the emitter-base diode makes the input robust and yields a high maximum RF input power. The chip is housed in a halogen free industry standard package SOT89. The high thermal conductivity of the silicon substrate and the low thermal resistance of the package add up to a thermal resistance of only 35 K/W, what leads to moderate junction temperatures even at high dissipated DC power values. Recommended operating conditions can be found in chapter 4. The proper die attach with good thermal contact is tested 100%, so that there is a minimum variation of thermal properties. The devices are 100% DC and RF tested. Preliminary Data Sheet 7 Revision 2.0, 2014-08-26

Features 2 Features High 3rd order intercept point OIP3 of 41 dbm @ 5 V, 250 ma in 1850 MHz and 2650 MHz Class A application circuits High compression point OP1dB of 27 dbm @ 5 V, 250 ma corresponding to 40% collector efficiency High power gain of 17 db @ 5V, 250 ma in 1850 MHz Class A application circuit Low minimum noise figure of 2.6 db @ 1800 MHz, 5 V, 70 ma Single stage, intended for external matching Exceptional ruggedness up to VSWR 10:1 at output High maximum RF input power PRFinmax of 18 dbm Safe operation with single 5 V supply 100% test of proper die attach for reproducible thermal contact 100% DC and RF tested Easy to use large signal compact (VBIC) model available Cost effective NPN SiGe technology running in very high volume Easy to use Pb-free (RoHS compliant) and halogen-free industry standard package SOT89, low RTHJS of 35 K/W 2 3 1 2 Applications As High linearity driver or pre-driver in the transmit chain 2nd or 3rd stage LNA in the receive chain IF or LO buffer amplifier In Commercial / industrial wireless infrastructure / basestations Repeaters Automated test equipment For Cellular, PCS, DCS, UMTS, LTE, CDMA, WCDMA, GSM, GPRS WLAN, WiMAX, WLL and MMDS ISM, AMR UHF television, CATV, DBS Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions Product Name Package Pin Configuration Marking BFQ790 SOT89 1 = B 2 = E 3 = C R3 Preliminary Data Sheet 8 Revision 2.0, 2014-08-26

Absolute Maximum Ratings 3 Absolute Maximum Ratings Table 3-1 Absolute Maximum Ratings at T A = 25 C (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Min. Max. Collector emitter voltage V CE 6.1 5.1 V T A = 25 C T A = -40 C Collector base voltage V CB 18 V Instantaneous total base emitter reverse voltage v BE -2.0 V DC + RF swing Instantaneous total collector current i C 600 ma DC + RF swing DC collector current 300 ma DC base current I B 10 ma RF input power P RFin 18 dbm In- and output matched Mismatch at output VSWR 10:1 In compression, over all phase angles ESD stress pulse V ESD -500 500 V HBM, all pins, acc. to ANSI / ESDA / JEDEC JS-001-2012 Dissipated power P diss 1500 mw T S 97.5 C 1), regard derating curve in figure 5-1 Junction temperature T J 150 C Operating case temperature T A -40 105 2) C Storage temperature T Stg -55 150 C 1) T S is the soldering point temperature. T S is measured on the emitter lead at the soldering point of the pcb. 2) At the same time regard T J,max. Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Preliminary Data Sheet 9 Revision 2.0, 2014-08-26

Recommended Operating Conditions 4 Recommended Operating Conditions This following table shows examples of recommended operating conditions. As long as maximum ratings are regarded operation outside these conditions is permitted, but increases failure rate and reduces lifetime. For further information refer to the quality report available on the BFQ790 internet page. Table 4-1 Recommended Operating Conditions Operating Mode Ambient Temperature 1) T A [ C] Collector Current [ma] DC Power 2) P DC [mw] RF Output Power 3) P RFout [mw] (dbm) Efficiency 4) Dissipated Power 5) Thermal Resistance of pcb 6) R THSA [K/W] Junction Temperature 7) Compression 55 250 1250 500 (27) 40 750 35 110 Final stage 55 200 1000 250 (24) 25 750 35 110 High T A 85 120 600 50 (17) 8.5 550 10 110 Maximum T A 105 50 250 100 (20) 40 150 10 110 Linear 55 150 750 50 (17) 7 700 35 110 Very Linear 55 250 1250 50 (17) 4 1200 10 110 1) Is the operating case temperature respectively of the heat sink. 2) P DC = V CE * with V CE = 5V. 3) RF power delivered to the load, P RFout = η * P DC. 4) Efficiency of the conversion from DC power to RF power, η = P RFout / P DC (collector efficiency). 5) P diss = P DC - P RFout. The RF output power P RFout delivered to the load reduces the power P diss to be dissipated by the device. This means a good output match is recommended. 6) R THSA is the thermal resistance of the pcb including heat sink, that is between the soldering point S and the ambient A. Regard the impact of R THSA on the junction temperature T J, see below. The thermal design of the pcb, respectively R THSA, has to be adjusted to the intended operating mode. 7) T J = T A + P diss * R THJA. R THJA = R THJS + R THSA. R THJA is the thermal resistance between the transistor junction J and the ambient A. R THJS is the combined thermal resistance of die and package, which is 35 K/W for the BFQ790, see chapter 5. η [%] P diss [mw] T J [ C] Preliminary Data Sheet 10 Revision 2.0, 2014-08-26

Thermal Characteristics 5 Thermal Characteristics Table 5-1 Thermal Resistance Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Junction - soldering point R THJS 35 K/W 1600 1400 1200 P diss,max [mw] 1000 800 600 400 200 Figure 5-1 0 0 20 40 60 80 100 120 140 160 T S [ C] Absolute Maximum Power Dissipation P diss,max vs. T s Note: In the horizontal part of the derating curve the maximum power dissipation is given by P diss,max =V CE,max *,max. In this part the junction temperature T J is lower than T J,max. In the declining slope it is T J =T J,max, P diss,max has to be reduced according to the curve in order not to exceed T J,max. It is T J,max =T S +P diss,max *R THJS. Preliminary Data Sheet 11 Revision 2.0, 2014-08-26

Electrical Performance in Application 6 Electrical Performance in Application The table shows the most important results of the application notes available for the BFQ790. In all cases the matching is better 10 db, the isolation ~20 db, the stability factor > 1 and V CC = 5V. Fore more detailed informations please refer to the BFQ790 internet page. Application notes for Class AB operating mode respectively lower quiescent currents q are in development. Table 6-1 Application Notes Application Frequency OP1dB OIP3 Gain Operating ICq Note Mode # [MHz] [dbm] [dbm] [db] [ma] AN385 2620-2690 27 41 14 Class A 220 AN386 1805-1880 27 41 17 Class A 230 Preliminary Data Sheet 12 Revision 2.0, 2014-08-26

Electrical Performance in Test Fixture 7 Electrical Performance in Test Fixture 7.1 DC Parameter Table Table 7-1 DC Characteristics at T A = 25 C Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Collector emitter breakdown voltage V (BR)CEO 6.1 6.7 V = 1 ma, open base Collector emitter leakage current ES 1 0.1 1) Upper spec value limited by the cycle time of the 100% test. 2) Pulse width is 1 ms, duty cycle 10%. Regard that the current gain h FE depends on the junction temperature T J and T J amongst others from the thermal resistance R THSA of the pcb, see notes to table 4-1. Hence the h FE specified in this datasheet must not be the same as in the application. It is highly recommended to apply circuit design techniques to make the collector current independent on the h FE production variation and temperature effects. 40 1) 3 na µa V CE =8 V, V BE =0 V CE =18 V, V BE =0 E-B short circuited Collector base leakage current BO 1 40 1) na V CB =8 V, I E =0 Open emitter Emitter base leakage current I EBO 1 40 1) na V EB = 0.5 V, =0 Open collector DC current gain h FE 60 120 180 V CE =5V, = 250 ma Pulse measured 2) Preliminary Data Sheet 13 Revision 2.0, 2014-08-26

Electrical Performance in Test Fixture 7.2 AC Parameter Tables Table 7-2 General AC Characteristics at T A =25 C Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Transition frequency f T 20 GHz V CE =5V, = 250 ma, f = 0.5 GHz Collector base capacitance C CB 1.1 pf V CB =5V, V BE =0 f = 1MHz Emitter grounded Collector emitter capacitance C CE 2.2 pf V CE =5V, V BE =0 f =1MHz Base grounded Emitter base capacitance C EB 9.4 pf V EB =0.5V, V CB =0 f =1MHz Collector grounded Measurement setup for the AC characteristics shown in tables 7-3 to 7-6 is a test fixture with Bias T s and tuners to adjust the source and load impedances in a 50 Ω system, T A = 25 C. Figure 7-1 BFQ790 Testing Circuit Preliminary Data Sheet 14 Revision 2.0, 2014-08-26

Electrical Performance in Test Fixture Table 7-3 AC Characteristics, V CE = 5 V, f = 0.9 GHz Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Power gain db Maximum power gain G ma 23 = 250 ma Transducer gain S 21 2 13 = 250 ma Minimum Noise Figure db Z S = Z Sopt Minimum noise figure NF min 2.5 =70mA Linearity dbm Z L = Z Lopt 1 db compression point at output OP1dB 27 = 250 ma 3rd order intercept point at output OIP3 38.5 = 250 ma Table 7-4 AC Characteristics, V CE = 5 V, f = 1.8 GHz Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Power gain db Maximum power gain G ma 18.5 = 250 ma Transducer gain S 21 2 7.5 = 250 ma Minimum Noise Figure db Z S = Z Sopt Minimum noise figure NF min 2.6 =70mA Linearity dbm Z L = Z Lopt 1 db compression point at output OP1dB 27 = 250 ma 3rd order intercept point at output OIP3 38.5 = 250 ma Table 7-5 AC Characteristics, V CE = 5 V, f = 2.6 GHz Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Power gain db Maximum power gain G ma 16 = 250 ma Transducer gain S 21 2 5.5 = 250 ma Minimum Noise Figure db Z S = Z Sopt Minimum noise figure NF min 3.0 =70mA Linearity dbm Z L = Z Lopt 1 db compression point at output OP1dB 27 = 250 ma 3rd order intercept point at output OIP3 38.5 = 250 ma Preliminary Data Sheet 15 Revision 2.0, 2014-08-26

Electrical Performance in Test Fixture Table 7-6 AC Characteristics, V CE = 5 V, f = 3.5 GHz Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Power gain db Maximum power gain G ma 13 = 250 ma Transducer gain S 21 2 3 = 250 ma Minimum Noise Figure db Z S = Z Sopt Minimum noise figure NF min 3.4 =70mA Linearity dbm Z L = Z Lopt 1 db compression point at output OP1dB 27 = 250 ma 3rd order intercept point at output OIP3 38.5 = 250 ma Preliminary Data Sheet 16 Revision 2.0, 2014-08-26

Electrical Performance in Test Fixture 7.3 Characteristic DC Diagrams [ma] 500 450 400 350 300 250 200 150 100 50 6mA 5.25mA 4.5mA 3.75mA 3mA 2.25mA 1.5mA 0.75mA 0mA 0 0 1 2 3 4 5 6 7 V CE [V] Figure 7-2 Collector Current vs. V CE, I B = Parameter Note: Regard absolute maximum ratings for, V CE and P diss 10 3 h FE 10 2 10 1 10 0 10 1 10 2 10 3 I c [ma] Figure 7-3 DC Current Gain h FE vs. at V CE = 5 V Preliminary Data Sheet 17 Revision 2.0, 2014-08-26

Electrical Performance in Test Fixture 24 22 20 18 V CER [V] 16 14 12 10 8 Figure 7-4 6 10 1 10 2 10 3 10 4 10 5 10 6 R BE [Ohm] Collector Emitter Breakdown Voltage BV CER vs. Resistor R_B/GND Note: The above figure shows the collector-emitter breakdown voltage BVCER with a resistor R_B/GND between base and emitter. Only for very high R_B/GND values ("open base") the breakdown voltage is as low as BVCEO (here 6.7 V). With decreasing R_B/GND values BVCER increases, e.g. at R_B/GND=10 kohm to BVCER=10 V. In the application the biasing base resistance together with block capacitors take over the function of R_B/GND and allows the RF voltage amplitude to swing up to voltages much higher than BVCEO, no clipping occurs. Due to this effect the transistor can be biased at VCE=5 V and still high RF output powers achieved, see the OP1dB values reported in chapter 7.2. Preliminary Data Sheet 18 Revision 2.0, 2014-08-26

Electrical Performance in Test Fixture 7.4 Characteristic AC Diagrams 25 f T [GHz] 20 15 10 3.00V 4.00V 5.00V 2.00V 5 1.00V 0.50V 0 0 100 200 300 400 500 600 [ma] Figure 7-5 Transition Frequency f T vs., V CE = Parameter 3 2.6 CCB [pf] 2.2 1.8 1.00V 1.4 2.00V 3.00V 4.00V 5.00V 1 0 100 200 300 400 500 600 IC [ma] Figure 7-6 Collector Base Capacitance C CB vs. at f = 30 MHz, V CB = Parameter Preliminary Data Sheet 19 Revision 2.0, 2014-08-26

Electrical Performance in Test Fixture 36 33 G ms 30 27 24 G [db] 21 18 15 G ma 12 9 6 3 S 21 2 0 0 1 2 3 4 5 6 f [GHz] Figure 7-7 Gain G ms, G ma, IS 21 I² vs. f at V CE = 5 V, = 250 ma 36 G max [db] 33 30 27 24 21 18 15 12 9 0.15GHz 0.45GHz 0.90GHz 1.50GHz 1.80GHz 2.60GHz 3.50GHz 6 0 100 200 300 400 500 600 [ma] Figure 7-8 Maximum Power Gain G max vs. at V CE = 5 V, f = Parameter Preliminary Data Sheet 20 Revision 2.0, 2014-08-26

Electrical Performance in Test Fixture 36 G max [db] 33 30 27 24 21 18 15 12 9 0.15GHz 0.45GHz 0.90GHz 1.50GHz 1.80GHz 2.60GHz 3.50GHz 6 0 1 2 3 4 5 6 7 V [V] CE Figure 7-9 Maximum Power Gain G max vs. V CE at = 250 ma, f = Parameter 1 1.5 0.5 2 0.4 0.2 0.3 3.0 4.0 5.0 6.0 3 4 5 0.1 2.0 0.01 to 6 GHz 10 0 1.0 0.1 0.2 0.3 0.4 0.5 1 1.5 2 3 4 5 0.1 0.01 10 0.2 0.3 0.4 3 4 5 0.5 1 1.5 2 70 ma 150 ma 200 ma 250 ma Figure 7-10 Output Reflection Coefficient S 22 vs. f at V CE = 5 V, = Parameter Preliminary Data Sheet 21 Revision 2.0, 2014-08-26

Electrical Performance in Test Fixture 1 1.5 0.4 0.5 4.0 5.0 2 0.3 3.0 6.0 3 4 0.2 5 0.1 2.0 0.01 to 6 GHz 10 0 0.1 0.2 0.3 0.4 0.5 1 1.5 2 3 4 5 1.0 0.01 0.1 10 0.2 0.3 0.4 3 4 5 0.5 2 70 ma 1 1.5 150 ma 200 ma 250 ma Figure 7-11 Input Reflection Coefficient S 11 vs. f at V CE = 5 V, = Parameter 1 1.5 0.5 2 0.4 0.3 3 4 0.1 0.2 0.9 0.45 0.45 to 3.5 GHz 5 10 0 0.1 0.2 0.3 0.4 0.5 1 1.5 2 3 4 5 1.5 0.1 1.8 10 0.2 5 2.6 0.3 0.4 0.5 3.0 3.5 2 3 4 70 ma 1 1.5 150 ma 200 ma 250 ma Figure 7-12 Source Impedance Z Sopt for Minimum Noise Figure vs. f at V CE = 5V, = Parameter Preliminary Data Sheet 22 Revision 2.0, 2014-08-26

Electrical Performance in Test Fixture 5 4.5 4 NF min [db] 3.5 3 2.5 2 1.5 = 250 ma I = 200 ma C = 150 ma = 70 ma 1 0 0.5 1 1.5 2 2.5 3 3.5 4 f [GHz] Figure 7-13 Noise Figure NF min vs. f at V CE = 5 V, Z S = Z Sopt, = Parameter 5 4.5 4 NF min [db] 3.5 3 2.5 2 1.5 f = 3.5 GHz f = 2.6 GHz f = 1.8 GHz f = 1.5 GHz 1 0 50 100 150 200 250 [ma] Figure 7-14 Noise Figure NF min vs. at V CE = 5 V, Z S = Z Sopt, f = Parameter Preliminary Data Sheet 23 Revision 2.0, 2014-08-26

Electrical Performance in Test Fixture NF 50 [db] 8 7.5 7 6.5 6 5.5 5 4.5 4 3.5 3 2.5 f = 3.5 GHz f = 2.6 GHz f = 1.8 GHz f = 1.5 GHz 2 0 50 100 150 200 250 [ma] Figure 7-15 Noise Figure NF 50 vs. at V CE = 5 V, Z S = 50 Ω, f = Parameter 1 1.5 0.5 2 0.4 0.1 0.2 0.3 21.3 23.4 24.3 3 4 5 10 0 26.5 26 25.2 23.9 27 0.1 0.2 0.3 0.4 0.5 1 1.5 2 3 4 5 0.1 0.2 0.3 0.4 25.6 24.7 21.3 23.4 10 5 4 3 0.5 2 1 1.5 Figure 7-16 Load Pull Contour OP 1dB [dbm] at V CE = 5 V, = 250 ma, f = 0.9 GHz, Z I = Z opt Preliminary Data Sheet 24 Revision 2.0, 2014-08-26

Electrical Performance in Test Fixture 1 1.5 0.5 2 0.4 0.3 32.5 3 4 0.2 34.7 5 0.1 0 35.7 0.1 0.2 0.3 0.4 0.5 1 1.5 2 3 4 5 37.9 37.4 36.3 10 0.1 38.5 10 0.2 0.3 0.4 36.8 33 35.2 3 4 5 0.5 2 1 1.5 Figure 7-17 Load Pull Contour OIP3 [dbm] at V CE = 5 V, = 250 ma, f = 0.9 GHz, Z I = Z opt 1 1.5 0.5 2 0.4 0.2 0.3 14.4 16 16.5 3 4 5 0.1 0 19.6 19 18 17 0.1 0.2 0.3 0.4 0.5 1 1.5 2 3 4 5 10 0.1 0.2 0.3 0.4 18.5 17.5 16.5 15.5 13.4 10 5 4 3 0.5 2 1 1.5 Figure 7-18 Load Pull Contour Gain G [db] at V CE = 5 V, = 250 ma, f = 0.9 GHz, Z I = Z opt Preliminary Data Sheet 25 Revision 2.0, 2014-08-26

Electrical Performance in Test Fixture 80 300 70 IP1dB 280 Pout [dbm], Gain [db], PAE [%] 60 50 40 30 20 Pout G PAE 260 240 220 200 180 [ma] 10 160 0 20 15 10 5 0 5 10 15 140 20 P in [dbm] Figure 7-19 P out, Gain,, PAE vs. P in at V CE = 5 V, q = 155 ma, f = 0.9 GHz, Z I = Z opt 60 290 50 IP1dB Pout [dbm], Gain [db], PAE [%] 40 30 20 10 0 Pout G PAE 280 270 260 [ma] 10 20 25 20 15 10 5 0 5 10 250 15 P [dbm] in Figure 7-20 P out, Gain,, PAE vs. P in at V CE = 5 V, q = 250 ma, f = 0.9 GHz, Z I = Z opt Preliminary Data Sheet 26 Revision 2.0, 2014-08-26

Electrical Performance in Test Fixture 50 280 IP1dB Pout [dbm], Gain [db], PAE [%] 40 30 20 10 0 G PAE Pout 275 270 265 260 255 [ma] 10 25 20 15 10 5 0 5 10 250 15 P in [dbm] Figure 7-21 P out, Gain,, PAE vs. P in at V CE = 5 V, q = 250 ma, f = 2.6 GHz, Z I = Z opt 39 38 37 OIP3 [dbm] 36 35 34 33 32 50 100 150 200 250 [ma] Figure 7-22 OIP3 vs. at V CE = 5 V, f = 0.9 GHz, Z L = Z Lopt Note: The curves shown in this chapter have been generated using typical devices but shall not be understood as a guarantee that all devices have identical characteristic curves. T A =25 C. Preliminary Data Sheet 27 Revision 2.0, 2014-08-26

Simulation Data 8 Simulation Data For the BFQ790 a large signal model exists. It is a VBIC model, which is an advancement of the SPICE Gummel- Poon model. It covers properties of a power transistor which are not known by the standard SPICE Gummel-Poon model, such as self-heating, quasi-saturation and voltage breakdown. The VBIC model can be used in standard simulation tools such as ADS and MWO as easily as the SPICE Gummel-Poon model. On the BFQ790 internet page the VBIC model is provided as a netlist. The model already contains the package parasitics and is ready to use for DC and high frequency simulations. Besides the DC characteristics all S-parameters in magnitude and phase, noise figure (including optimum source impedance and equivalent noise resistance), intermodulation and compression have been extracted. On the BFQ790 internet page you also find the S-parameters (including noise parameters) for linear simulation. In any case please consult our website and download the latest versions before actually starting your design. Preliminary Data Sheet 28 Revision 2.0, 2014-08-26

Package Information SOT89 9 Package Information SOT89 4.5 ±0.1 45 0.25 ±0.05 B 1.5 ±0.1 0.2 MAX. 1) 1.6 ±0.2 1) 1±0.1 2.5±0.1 4 ±0.25 0.15 +0.1-0.15 2.75 1 2 3 1±0.2 1.5 3 0.45 +0.2-0.1 0.15 M 0.2 B B x3 0.35 ±0.1 1) Ejector pin markings possible SOT89-PO V02 Figure 9-1 Package Outline 2.0 1.2 1.0 2.5 0.8 0.8 0.7 SOT89-FP V02 Figure 9-2 Package Footprint Figure 9-3 Marking Example (Marking BFQ790: R3) 8 4.6 12 Pin 1 4.3 1.6 SOT89-TP V02 Figure 9-4 Tape Dimensions Preliminary Data Sheet 29 Revision 2.0, 2014-08-26

www.infineon.com Published by Infineon Technologies AG