Designing Next-Generation AESA Radar Part 2: Individual Antenna Design

Similar documents
Design Technologies for MIMO and Phased- Array Antenna System Development

Design Technologies for MIMO and Phased-Array Antenna System Development

Design and Matching of a 60-GHz Printed Antenna

Nonlinear Effects in Active Phased Array System Performance

! # & # ( ( Published in IEEE Antennas and Wireless Propagation Letters, Volume 10, May 2011, pp ! # % % # & & # ( % # ) ) & ( ( % %

A Product Development Flow for 5G/LTE Envelope Tracking Power Amplifiers, Part 2

FAQs on AESAs and Highly-Integrated Silicon ICs page 1

LTE Small-Cell Base Station Antenna Matched for Maximum Efficiency

print close Chris Bean, AWR Group, NI

Design and Simulation of an ISM Band Antenna on PCB Technology

Using Enhanced Load-Pull Measurements for the Design of Base Station Power Amplifiers

Load-Pull Analysis Using NI AWR Software

WHITE PAPER. Hybrid Beamforming for Massive MIMO Phased Array Systems

Complete RF And Microwave Design Flow with AWR Design Environment. Tabish Khan, AWR Corporation

Hot S 22 and Hot K-factor Measurements

Introducing Antenna Magus. Presenter Location Date

EMC Amplifiers Going Beyond the Basics to Ensure Successful Immunity Tests

RF System Design and Analysis Software Enhances RF Architectural Planning

A Simulation-Based Flow for Broadband GaN Power Amplifier Design

VSWR AND ANTENNA SYSTEMS Copyright by Wayne Miller 2018 Revision 4 page 1 of 6

Leveraging High-Accuracy Models to Achieve First Pass Success in Power Amplifier Design

The New Load Pull Characterization Method for Microwave Power Amplifier Design

Evaluation of Package Properties for RF BJTs

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar

New System Simulator Includes Spectral Domain Analysis

Synthesis of Robust UHF RFID Antennas on Dielectric Substrates

K.NARSING RAO(08R31A0425) DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING (NOVH).

Linearity Improvement Techniques for Wireless Transmitters: Part 1

mmwave Automotive Radar and Antenna System Development

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand

MAKING TRANSIENT ANTENNA MEASUREMENTS

Newsletter 2.0. Antenna Magus version 2.0 released! New Array synthesis tool. April 2010

4G MIMO ANTENNA DESIGN & Verification

A PLL-based Retro-Directive Antenna System for Communications with Arbitrary Frequency Gaps

CHAPTER 5 ANALYSIS OF MICROSTRIP PATCH ANTENNA USING STACKED CONFIGURATION

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters

Design, Optimization and Production of an Ultra-Wideband (UWB) Receiver

NI AWR Design Environment V13

Retrodirective Antenna Array Using High Frequency Offset

Traveling Wave Antennas

Design of Duplexers for Microwave Communication Systems Using Open-loop Square Microstrip Resonators

UNIT-3. Ans: Arrays of two point sources with equal amplitude and opposite phase:

LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS

Network Analysis Basics

Transmit Power Extension Power Combiners/Splitters Figure 1 Figure 2

Radiation Analysis of Phased Antenna Arrays with Differentially Feeding Networks towards Better Directivity

Colubris Networks. Antenna Guide

RF Board Design for Next Generation Wireless Systems

Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA

Application Note Synthesizing UHF RFID Antennas on Dielectric Substrates

RF/Microwave Amplifier Design Using Harmonic Balance Simulation With Only S-parameter Data

Using Accurate Component Models to Achieve First-Pass Success in Filter Design

Electronically Steerable planer Phased Array Antenna

The Basics of Patch Antennas, Updated

PLANAR BEAM-FORMING ARRAY FOR BROADBAND COMMUNICATION IN THE 60 GHZ BAND

Antenna Array Using Non-Identical Truncated Circular Elements for FSLL Reduction

Modeling and Simulating Large Phased Array Systems

5G Antenna System Characteristics and Integration in Mobile Devices Sub 6 GHz and Milli-meter Wave Design Issues

Co-site interference analysis. Marli Strydom CST AG

HANDBOOK OF ACOUSTIC SIGNAL PROCESSING. BAW Delay Lines

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012

L AND S BAND TUNABLE FILTERS PROVIDE DRAMATIC IMPROVEMENTS IN TELEMETRY SYSTEMS

Antennas and Propagation. Chapter 1: Introduction

CHAPTER 3 DESIGN OF MICROSTRIP PATCH ARRAY ANTENNA

Switched parasitic antennas and cxontrolled reactance parasitic antennas: a systems comparison

A HILBERT TRANSFORM BASED RECEIVER POST PROCESSOR

Design of an Ultra-Wideband Antenna With AntSyn

DUAL-POLARIZED, DIFFERENTIAL LINE FEED MICROSTRIP CIRCULAR PATCH ANTENNA FOR FULL DUPLEX COMMUNICATION

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION

Modeling Physical PCB Effects 5&

You will need the following pieces of equipment to complete this experiment: Wilkinson power divider (3-port board with oval-shaped trace on it)

The Challenge: Increasing Accuracy and Decreasing Cost

Antenna Matching Within an Enclosure Part 1: Theory and Principle

Smart antenna technology

How to anticipate Signal Integrity Issues: Improve my Channel Simulation by using Electromagnetic based model

8 th Order Dielectric Resonator Filter with Three Asymmetric

EMC Simulation of Consumer Electronic Devices

Introduction to Radar Systems. Radar Antennas. MIT Lincoln Laboratory. Radar Antennas - 1 PRH 6/18/02

Measurements 2: Network Analysis

Efficient Metasurface Rectenna for Electromagnetic Wireless Power Transfer and Energy Harvesting

Modeling & Simulating Antenna Arrays and RF Beamforming Algorithms Giorgia Zucchelli Product Marketing MathWorks

Recon UWB Antenna for Cognitive Radio

Broadband Methodology for Power Distribution System Analysis of Chip, Package and Board for High Speed IO Design

Efficiently simulating a direct-conversion I-Q modulator

ICO S-BAND ANTENNAS TEST PROGRAM

Chapter 5. Array of Star Spirals

IMPROVEMENT OF YAGI UDA ANTENNA RADIATION PATTERN

RECOMMENDATION ITU-R F.1097 * (Question ITU-R 159/9)

COMPUTED ENVELOPE LINEARITY OF SEVERAL FM BROADCAST ANTENNA ARRAYS

Beamforming measurements. Markus Loerner, Market Segment Manager RF & microwave component test

Development of a noval Switched Beam Antenna for Communications

ANTENNA ELEMENTS INTEGRATED INTO THE PARACHUTES OF PLANETARY ENTRY PROBES

Synthesis and Analysis of an Edge Feed and Planar Array Microstrip Patch Antenna at 1.8GHz

Lecture 5: Dynamic Link

ELEC4604. RF Electronics. Experiment 2

Susceptibility of an Electromagnetic Band-gap Filter

Overview. Copyright Remcom Inc. All rights reserved.

Linking RF Design and Test Connecting RF Design Software to LabVIEW & Instruments

Antenna Measurements using Modulated Signals

METAMATERIAL INSPIRED PATCH ANTENNA WITH L-SHAPE SLOT LOADED GROUND PLANE FOR DUAL BAND (WIMAX/WLAN) APPLICATIONS

Transcription:

Design Designing Next-Generation AESA Radar Part 2: Individual Antenna Design Figure 8: Antenna design Specsheet user interface showing the electrical requirements input (a), physical constraints input (b) and database of candidate antenna types for use in EM optimization In the previous example, the 15 x 5 array presented the radiation patterns for an ideal isotropic antenna (gain = 0 dbi) and a simple patch antenna. In addition to the array configuration itself, the design team will likely want to specify the radiation pattern and size constraints for the individual antenna elements. This operation can be performed using the synthesis capabilities in AntSyn, the antenna synthesis software from NI. AntSyn uses an electromagnetic solver driven by proprietary evolutionary algorithms to explore multiple design options based on antenna specifications defined by the engineer. These specifications include typical antenna metrics, physical size constraints and optional candidate antenna types (the user may select from a database of antenna types or let the software automatically select likely antenna types to optimize), s. figure 8. AntSyn creates antenna geometries from its database of design types and then applies EM simulation and its unique evolutionary optimization to modify those design to achieve the required electrical performance and size constraints. A run time update of the design types under investigation is listed along with a star rating system to indicate which designs are close to achieving the desired performance. Users are able to review the results and design styles as the simulation progresses. Promising designs can then be exported into an EM tool from NI or supported thirdparty EM simulators, figure 9. The design flow between AntSyn and NI AWR Design Environment is shown in figure 10, where AntSyn takes antenna requirements and generates an antenna for use in the NI EM tools which will create the antenna pattern for the VSS phased array model. Dr. Gent Paparisto, Joel Kirshman and David Vye, AWR Group, NI Figure 9: The AntSyn project tree (left) lists the original specsheet as well as all attempted antenna designs with their star rating showing how well the antenna came to desired results. Individual antenna results can be viewed with the interface (right) and exported to supported EM tools hf-praxis 9/2017 81

Figure 10: Operations and products used to create a new antenna design for EM analysis and incorporation into the VSS phased array model Due to its relatively small size and easy fabrication, a square ring patch antenna was chosen from the potential antennas created by AntSyn. The antenna was exported using the AXIEM options and then imported into a new EM structure (AXIEM) in the initial phased array project. The re-simulated antenna is shown in figure 11. This simulation provided the antenna pattern used to replace the original patch antenna used in the 15 x 5 phased array (figure 12a) with the new antenna pattern shown in 12b. The new phased array results for both the original antenna (red trace) and the square ring patch (green trace) are shown in figures 12 c and d. Modeling Complex Interactions The mutual coupling between antenna elements affects antenna parameters like terminal impedances, reflection coefficients and hence the antenna array performance in terms of radiation characteristics, output signal-tointerference noise ratio (SINR), and radar cross section (RCS). The most recent release (version 13) of VSS includes new capabilities for more accurate simulation of these parameters including enhanced modeling of element patterns, including mutual coupling. The next section will look at these recent advances in advanced phase array modeling, including accurate representation of the feed structure. As mentioned, designers can define gains or full radiation patterns for each antenna element in the phased array. This allows them to use different radiation patterns for internal, edge and corner elements of the phased array, s. figure 13. The radiation pattern of each antenna element will likely be affected by its position in the phase array. These patterns may be measured in the lab or calculated in the integrated electromagnetic (EM) simulator such as AXIEM or Analyst. A simple approach to characterizing the appropriate radiation pattern for a given element is to use a 3X3 phased array and excite one element, either the internal element, one of the edge elements, or one of the corner elements, while terminating all others. This will provide the internal, edge, and corner element radiation patterns, which can then be automatically stored in data files using the NI AWR software output data file measurements (the same technique used in the example above). This approach would include the effect of mutual coupling from first-order neighbors. An array with a larger number of elements may be used to extend mutual coupling to first- and second-order neighbors. It is also important to capture the mutual coupling between neighboring elements. The VSS phased array model does this through a coupling table defined in configuration file. Different coupling levels can be defined based on distance from each other. In figure 14, the coupling, which is specified in magnitude (db) and phase (degrees), is defined for two different distances (adjacent side elements: radius c1 and adjacent corner elements: radius c2). Modeling Impairments and Yield Analysis RF hardware impairments of the array will affect the resulting side lobe levels and beam patterns, and ultimately reduce system-level performance. For transmitter arrays, side lobe levels from imperfectly formed beams may interfere with external devices or make the transmitter visible to countermeasures. In radar systems, side lobes may also cause a form of self-induced multipath, where multiple copies of the same radar signal arrive from different side lobe directions, which can exaggerate ground clutter and require expensive signal processing to remove. Therefore, it is critical to identify the source of such impairments, observe their impact on the array performance, and take steps to reduce or eliminate them. Figure 11: AntSyn generated square ring antenna imported into AXIEM and simulated to generate antenna patterns used by VSS phased array model 82 hf-praxis 9/2017

impacts amplifier compression. Therefore, it is imperative to be able to simulate the interactions between the antenna array and the individual RF links in the feed network. RF Link Modeling Figure 12: a) original antenna pattern of single patch antenna used in original phased array analysis, b) antenna pattern for square ring antenna generated by AntSyn, c) and d) comparison of radiation patterns from phased arrays based on simple patch antenna and square ring patch The VSS phased array configuration file, allows engineers to simulate array imperfections due to manufacturing flaws or element failure. All gain/phase calculations are performed internally and yield analysis can be applied to the block in order to evaluate sensitivity to variances of any of the defining phased array parameters. As an example, VSS was used to perform an element failure analysis on a 64 element (16 x 4) array, producing the plots in figure 15 which illustrate the side lobe response degradation. Systematic errors that may be compensated include inter-chain variations caused by asymmetrical routing (layout), frequency dependencies, noise, temperature, and varied mismatching due to changing antenna impedance with steer angle which also NI AWR software products include the simulation and modeling technology to capture these impairments accurately and incorporate these results into the VSS phased array assembly model. This is an important functionality since RF links are not ideal and can cause the array behavior to deviate significantly. The phased array assembly can operate in either the RX or TX modes, supporting the configuration of the array element geometry, each element s antenna characteristics, the RF link characteristics, and the common linear characteristics of the combiner/splitter used to join the elements together. The configuration is performed primarily through a text data file, with commonly swept settings either specified directly via block parameters (such as steering angles), or specified in the data file but capable of being overridden via block parameters (such as individual element gain and phase adjustments). The configuration of the phased array assembly may be divided into several sections: Array geometry - defines the number of elements, their RF impairments can also be caused by any number of items relating to the feed network design and related components. Figure 13: The VSS phased array model supports assigning different antenna patterns to individual elements, allowing designers to more accurately represent corner, edge and center elements hf-praxis 9/2017 83

placement, and any geometry related gain and phase tapers Antenna characteristics defines antenna gain, internal loss, polarization loss, mismatch loss, and radiation patterns for both receive and transmit configurations RF link characteristics defines links for individual elements including gain, noise, P1dB. Supports 2-port RF nonlinear amplifiers using large signal nonlinear characterization data typically consisting of rows of input power or voltage levels and corresponding output fundamental, harmonic, and/or intermodulation product levels. Frequency-dependent data is also supported Assignment of antenna and RF link characteristics to individual elements Figure 14: 64 element array showing the mutual coupling table used in the configuration file to specify the amount of coupling between elements, allowing more accurate simulation of terminal impedances, reflection coefficients, etc. Figure 15: Side lobe degradation to element failures 2% and 5% Power splitter characteristics splits the incoming signal into n-connected output ports Mutual coupling characteristics (previously discussed) One common challenge is that not all RF links should be equal. For example, gain tapers are commonly used in phased arrays; however, when identical RF links are used for all antenna elements, elements with higher gains may operate well into compression while others operate in a purely linear region, causing undesired array performance. To avoid this problem, designers often use different RF link designs for different elements. While this is a more complicated task, it will result in more efficient phased arrays and VSS phased-array modeling allows them to achieve this. To assist the design team creating the feed network and provide the RF link to the systems team, VSS includes capability to automatically generate the characteristics of the phased array element link defined by these data tables. The designer starts by creating a schematicbased link design per the system requirements. A measurement extracts the design characteristics, which can include circuitlevel design details (i.e. nonlinearities) through Microwave Office co-simulation, and saves a properly formatted data file for use with the phased array assembly model, s. figure 16. In-situ Nonlinear Simulations An accurate simulation must also account for the interactions that occur between the antenna elements and the driving feed network. The problem for simulation software is that the antenna and the driving feed network influence each other. The antenna s pattern is changed by setting the input power and relative phasing at its various ports. At the same time, the input impedances at the ports change with the antenna pattern. Since input impedance affects the performance of the nonlinear driving Figure 16: Measurement in VSS extracts characterization of RF link designs and allows assignment for individual elements in the phased array 84 hf-praxis 9/2017

Figure 17: Characterizing changing antenna feed impedance as a function of beam steering using the variable phase and attenuator settings defined in the feed network design At this point the designer can directly investigate the power amplifiers non-linear behavior as a function of the load (antenna) impedance. With the load-pull capability in Microwave Office, the PA designers can investigate output power, compression and any other number of non-linear metrics defining the amplifier behavior, figure 18. With a detailed characterization of the RF links for each individual element, the overall system simulation is able to indicate trouble areas, figure 19 that would have previously gone undetected until expensive prototypes were made and tested in the lab. Figure 18: Simulated antenna feed impedance vs. frequency superimposed over power load-pull contours for a broadband MMIC power amplifier circuit, the changing antenna pattern affects the overall system performance. In this case, the input impedance of each element in the array must be characterized for all beam steering positions. The array is only simulated once in the EM simulator. The resulting S-parameters are then used by the circuit simulator, which also includes the feed network and amplifiers. As the phase shifters are tuned over their values, the antenna s beam is steered. At the same time, each amplifier sees the changing impedance at the antenna input it is attached to, which affects the amplifier s performance. In this final example, the PAs are nonlinear, designed to operate at their 1 db compression point (P1dB) for maximum efficiency. They are, therefore, sensitive to the changing load impedances Figure 19: Phased array simulations with RF link effects including the impact of impedance mismatch between power amplifier and steered antenna array presented by the array. The beam of a 16 element array is steered by controlling the relative phasing and attenuation to the various transmit modules, figure 17. In practice, the harmonic balance simulation used to characterize the power amplifiers with Microwave Office takes substantial time to run with 16 power amplifiers. Therefore, the beam is steered with the amplifiers turned off. The designer then turns on the individual power amplifier for specific points of interest once the load impedance from the directed antenna has been obtained. Conclusion The capability to design and verify the performance of the individual components along with the entire signal channel that defines the AESA radar is a necessity as element counts increase and antenna /electronics integration advances. Through circuit simulation, system-level behavioral modeling, and electromagnetic analysis operating within a single design platform, development teams can investigate system performance and component-to-component interaction prior to costly prototyping. References 1. www.nssl.noaa.gov/publications/mpar_reports/lmco_ Consult2.pdf 2. www.astron.nl/other/workshop/mcct/mondaypatel.pdf hf-praxis 9/2017 85