Powerful narrow-line source of blue light for laser cooling Yb/Er and Dysprosium atoms

Similar documents
Wide-autoscanned narrow-line tunable system based on CW Ti:Sapphire/Dye laser for high precision experiments in nanophysics

Efficient second-harmonic generation of CW radiation in an external optical cavity using non-linear crystal BIBO

240-GHz continuously frequency-tuneable Nd:YVO 4 /LBO laser with two intra-cavity locked etalons

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

CW Yb-fibre laser with wavelength-variable efficient intracavity frequency doubling in partially coupled enhancement cavity

UNMATCHED OUTPUT POWER AND TUNING RANGE

Wavelength Control and Locking with Sub-MHz Precision

High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

High-power semiconductor lasers for applications requiring GHz linewidth source

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

taccor Optional features Overview Turn-key GHz femtosecond laser

LOPUT Laser: A novel concept to realize single longitudinal mode laser

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

Single frequency Ti:sapphire laser with continuous frequency-tuning and low intensity noise by means of the additional intracavity nonlinear loss

G. Norris* & G. McConnell

A transportable optical frequency comb based on a mode-locked fibre laser

Actively Stabilized Scanning Single-Frequency. Ti:Sa /Dye Ring Laser External Doubling Ring Ti:Sa /Dye Standing Wave Laser

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Femtosecond optical parametric oscillator frequency combs for high-resolution spectroscopy in the mid-infrared

High power VCSEL array pumped Q-switched Nd:YAG lasers

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

Single-frequency operation of a Cr:YAG laser from nm

All-solid-state tunable continuous-wave ultraviolet source with high spectral purity and frequency stability

A CW seeded femtosecond optical parametric amplifier

Actively Stabilized Scanning Single Frequency. Ti:Sa /Dye Ring Laser

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

The VIRGO injection system

Theory and Applications of Frequency Domain Laser Ultrasonics

Fast Widely-Tunable CW Single Frequency 2-micron Laser

Self-organizing laser diode cavities with photorefractive nonlinear crystals

A Narrow-Band Tunable Diode Laser System with Grating Feedback

THE TUNABLE LASER LIGHT SOURCE C-WAVE. HÜBNER Photonics Coherence Matters.

Multi-Wavelength, µm Tunable, Tandem OPO

High resolution cavity-enhanced absorption spectroscopy with a mode comb.

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator

Frequency evaluation of collimated blue light generated by wave mixing in Rb vapour

A continuous-wave optical parametric oscillator for mid infrared photoacoustic trace gas detection

Diode Laser Control Electronics. Diode Laser Locking and Linewidth Narrowing. Rudolf Neuhaus, Ph.D. TOPTICA Photonics AG

TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

An Auto-Locked Diode Laser System for Precision Metrology

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

A Coherent White Paper May 15, 2018

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

SECOND HARMONIC GENERATION AND Q-SWITCHING

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Self-injection locked CW single-frequency tunable Ti:sapphire laser

Report to the 20th Meeting of CCTF Research Activities on Time and Frequency National Metrology Institute of Japan (NMIJ)/AIST

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

Simultaneous Measurements for Tunable Laser Source Linewidth with Homodyne Detection

Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators

Increasing the output of a Littman-type laser by use of an intracavity Faraday rotator

Eye safe solid state lasers for remote sensing and coherent laser radar

Concepts for High Power Laser Diode Systems

Single-frequency, high-power, continuous-wave fiber-laser-pumped Ti:sapphire laser

R. J. Jones Optical Sciences OPTI 511L Fall 2017

Absolute frequency measurement of unstable lasers with optical frequency combs

Installation and Characterization of the Advanced LIGO 200 Watt PSL

Observation of Rb Two-Photon Absorption Directly Excited by an. Erbium-Fiber-Laser-Based Optical Frequency. Comb via Spectral Control

레이저의주파수안정화방법및그응용 박상언 ( 한국표준과학연구원, 길이시간센터 )

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Single Frequency DPSS Lasers

Waveguide-based single-pixel up-conversion infrared spectrometer

10W Injection-Locked CW Nd:YAG laser

FREQUENCY COMPARISON AT 633 NM WAVELENGTH: DETERMINATION OF DIAGONAL ELEMENTS OF MATRIX MEASUREMENTS BY USING A MASTER-SLAVE He-Ne LASER SYSTEM

The VIRGO detection system

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

Measurements of linewidth variations within external-cavity modes of a grating-cavity laser

Final Year Projects 2016/7 Integrated Photonics Group

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

A new picosecond Laser pulse generation method.

Status on Pulsed Timing Distribution Systems and Implementations at DESY, FERMI and XFEL

SA210-Series Scanning Fabry Perot Interferometer

Electro-optic Spectral Decoding Measurements at FLASH

LISA and SMART2 Optical Work in Europe

MULTIFREQUENCY CONTINUOUS WAVE ERBIUM DOPED FIBER NON-RESONANT OPTICAL SOURCE

Single Frequency Laser/Single Longitudinal Mode Laser

A continuous-wave Raman silicon laser

FFP-TF2 Fiber Fabry-Perot Tunable Filter Technical Reference

arxiv: v1 [physics.optics] 11 Aug 2012

Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO

Solid-State Laser Engineering

Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser

SELECTION GUIDE MULTIPLE-ORDER QUARTZ WAVEPLATES ZERO-ORDER QUARTZ WAVEPLATES DUAL-WAVELENGTH WAVEPLATES... 85

Recent Progress in Pulsed Optical Synchronization Systems

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

High-Coherence Wavelength Swept Light Source

Characteristics of absorption and dispersion for rubidium D 2 lines with the modulation transfer spectrum

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

The Realization of Ultra-Short Laser Sources. with Very High Intensity

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm

Doppler-Free Spetroscopy of Rubidium

High-power fibre Raman lasers at the University of Southampton

High-efficiency continuously tunable single-frequency doubly resonant optical parametric oscillator

Quantum frequency standard Priority: Filing: Grant: Publication: Description

GaSb based high power single spatial mode and distributed feedback lasers at 2.0 μm

Transcription:

Powerful narrow-line source of blue light for laser cooling Yb/Er and Dysprosium atoms Sergey Kobtsev 1,4, Benjamin Lev 2, József Fortagh 3, Vladimir Baraulia 4 1 Novosibirsk State University, Novosibirsk, 630090, Russia 2 University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA 3 Physikalisches Institut der Universität Tübingen, Tuebingen, D-72076, Germany 4 Tekhnoscan JSC, Novosibirsk, 630058, Russia E-mail: kobtsev@lab.nsu.ru ABSTRACT This report for the first time presents the results of parameter optimisation of ultra-narrow-linewidth frequency-doubled CW Ti:Sapphire lasers pumped with 12.5 18.5 W of 532-nm light. Proposed laser systems are designed for atom cooling and provide output radiation power of more than 1.5 W at 399/401 nm (Ytterbium/Erbium) and more than 1 W at 421 nm (Dysprosium) pumped at 18.5 W. The output power of single-frequency radiation at 421 nm achieved during the present work is the highest published to-date for a commercially available system achieving a 10 khz linewidth. Keywords: CW Ti:Sapphire laser, resonant frequency doubler, atom cooling 1 INTRODUCTION For atomic cooling, there is a need for special powerful sources of radiation with narrow output lines and possibility of wavelength detuning. One of the most widely used means for this application is the CW single-frequency Ti:Sapphire laser with its relatively broad working spectral range (700 1100 nm) and comparatively high output power reaching 3 4 W when pumped with the most powerful commercially available green lasers. Their substantially high practical limit of the fundamental output power in the range of high gain for the Ti:Sapphire crystal (~720 1000 nm) allows these lasers to achieve equally impressive output levels in the second harmonic, correspondingly within the ~360 500-nm range, the maximum attainable output values being located within the narrower range of ~390 410 nm. The frequencies of the most important transitions of a series of atoms actively investigated at present (Yb, Er, Dy, Sr, &c) are located within the spectral range of second-harmonic generation of the Ti:Sapphire laser, therefore it is highly desirable to continue development of better systems based on second-harmonic generation of Ti:Sapphire lasers. This continued development means the improvement of the system s ability to deliver the highest possible power at the required wavelength, at the same time providing the narrowest possible linewidth and the longest uninterrupted operation time. The achievable progress in this domain is as much governed by the values of the maximum power available from the green pump lasers and by the efficiency of non-linear optical crystals, as it is by new technical solutions applied in Ti:Sapphire lasers and radiation frequency doublers. It was reported earlier about the achievement of efficient second harmonic generation of a single-frequency Ti:Sapphire laser [1 8]. In the best implementations, the absolute values of the radiation power of the second harmonic ranged from several hundreds of mw [1 6] to watt-level [7, 8], whereas the measured linewidths of the second harmonic radiation varied between 3 MHz [3, 7] to 40 khz rms [9], the narrowest line width of blue radiation [9] having been achieved at the second harmonic output power of 200 mw. The present report announces, for the first time, the possibility to generate blue radiation with the linewidth of less than 10 khz at the output power exceeding 1 W within the wavelength range 390 425 nm.!"#$%&!'(')&*(+),+&-.-/&0)123"#"45&(3%&6)7$1)+8&)%$')%&95&:;&<3%,)=&>#(,?+"38& @",A(3&B"%4+"38&C(A)+2&D;&!2",$8&E,"1;&"F&!E.G&H"#;&IJIK8&IJIKLM&N&O&LPQP&!E.G&N&>>>&1"%)/&PLIIRIKS-TQPTUQK&N&%"$/&QP;QQQITQL;KVQSWL E,"1;&"F&!E.G&H"#;&IJIK&&IJIKLMRQ

2 EXPERIMENT Powerful narrow-line source of blue light was built on the basis of a ring-cavity Ti:Sapphire laser and a resonant radiation frequency doubler. The general layout of the Ti:Sapphire laser is presented in Fig. 1. ref cavity D D PD1 PD2 M, PD Laser Head M6 E2 BF Ml FR El Ti:Sapphire crystal M3 M2 Fig 1 Optical layout of the CW single-frequency ring Ti:Sapphire laser: P - pump mirror, L - lens, M1 & M2 - spherical mirrors (R=100 mm, T < 0.1%), M3, M4, M5 - flat mirrors (T < 0.1%), M6 - flat output mirror (T=7-8%), AE - Ti:Sapphire crystal, BF - 3-plate birefringent filter, E1 - thin Fabry-Perot étalon, E2 - thick Fabry-Perot étalon, FR - Faraday rotator, BP- Brewster plate, EMD - electro-mechanical drive, PD - photodetector, M7 & M8 - auxiliary mirrors, piezoceramic. Single-frequency operation of the laser was achieved by application of three selective elements: bi-refringent filter and two Fabry-Perot étalons. Other details of the optical layout and design of this laser are available in Refs [9, 10]. For continuous detuning of the laser generation frequency within a range of about 20 GHz, a Brewster plate was used with a galvanometer control. The generation frequency of this laser was stabilised with the help of a reference interferometer characterised by an approximately 2-MHz wide transmission peak. Small mirror M5 attached to a thin element served as the fast actuator of the frequency stabilisation system. The first mechanical resonance of this element occurred at frequencies exceeding 100 khz. For measurements of the absolute instantaneous radiation line width we used two identical Ti:Sapphire lasers, the radiation from which was combined and then the beat spectrum of which was taken. These two Ti:Sapphire lasers were pumped with identical green lasers and the output power of each of the Ti:Sa lasers amounted to 450 mw at the wavelength of 770 nm. Frequency beating between these lasers was detected with an avalanche photodiode and fed into an RF spectrum analyzer. Fig. 2 demonstrates typical beat spectra of these lasers recorded using 1-second scanning of the analyser in the range of 300 100 khz around 1 MHz. The measured spectral width of the beats varied around 3 5.5 khz, thereby indicating that the absolute short-time line width of each laser s radiation amounted to 2 4 khz, its rms value being 1 khz and even less. In the course of the following experiments, powerful green lasers Verdi with the output ranging from 12.5 to 18.5 W were used in order to achieve higher output powers of the Ti:Sapphire laser s output radiation. A high-quality Ti:Sapphire crystal with FOM > 500 was used in the Ti:Sapphire laser, which provided linear growth of the output power versus pump intensity up to the level of ~13 13.5 W with the regular alignment of the cavity. Further increase of the output from the Ti:Sa laser pumped with ~13.5 18.5 W of green radiation required a special alignment of the resonator as well as more efficient cooling of the active element. Shown in Fig. 3 is the output power dependence of the Ti:Sapphire laser at 800 nm upon the pump power in the mode of special cavity alignment and at the Ti:Sa crystal temperature 10 ºC. One can readily see that this curve is steeper than the usual one: at 18.5 W of pump power the output E,"1;&"F&!E.G&H"#;&IJIK&&IJIKLMRL

level of the Ti:Sapphire laser amounts to 4.1 W, whereas at 10 W of pumping power the output power drops to just 1 W instead of the usual 2 W, and the generation threshold rises to 6 W instead of ~3 W. However, it is with this particular alignment of the Ti:Sapphire laser cavity that a quasi-linear growth of the output power as dependant of the pumping power was possible up to maximum available 18.5 W, while maintaining TEM 00 output mode of the Ti:Sapphire laser within the full range of output powers. Fig 2 Beat spectra of two identical CW frequency-stabilized single-frequency ring Ti:Sapphire lasers. Frequency doubling of the Ti:Sapphire laser was performed with resonant doubler whose technical parameters are given in Ref [11]. This unit used a 15-mm long LBO crystal with normal faces, anti-reflection coated for both the fundamental and the second harmonic radiation. Even though spurious reflections of the fundamental radiation from the non-linear crystal were quite low, good radiation mode matching between the cavity of the Ti:Sapphire laser and that of the frequency doubler lead to perceptible light feed-back from the doubler to the laser, which manifested itself by E,"1;&"F&!E.G&H"#;&IJIK&&IJIKLMRW

frequency hops of the Ti:Sapphire laser output. When optical isolator was used between the laser and the doubler, this parasitic effect completely disappeared. For uninterrupted operation of the frequency doubler, the Auto Relock system was used, which allowed automatic re-locking of the frequency doubler s resonator to the output wavelength of the Ti:Sapphire laser when it accidentally went out of lock. Fig 3 Ti:Sapphire laser output (800 nm) versus pump power. Second harmonic output at 421 nm, W 1,0 0,8 0,6 0,4 0,2 1,0 1,5 2,0 2,5 3,0 Input power at 842 nm, W Fig 4 Second harmonic output at 421 nm versus input power at 842 nm The maximum obtainable output power of the Ti:Sapphire laser at 842 nm reached 3.3 W when pumped with 18.5 W, however, because of optical losses along the path to the frequency doubler from an optical isolator, the maximum power at the entrance aperture of the doubler was only 2.8 W, the maximum output power in the second harmonic amounting to 1 W, and the conversion efficiency, to 35%. The magnitude of the second harmonic power fluctuations within several seconds did not exceed 6%. The measured linewidth of the second-harmonic radiation was less than 10 khz. An external view of the laser system in shown in Fig. 5. E,"1;&"F&!E.G&H"#;&IJIK&&IJIKLMRV

Fig. 5. Powerful narrow-line source of blue light based on CW frequency-stabilised ring Ti:Sapphire laser and resonant frequency doubler. The output power of the Ti:Sapphire laser at wavelengths around 800 nm is higher than that at 842 nm, therefore the power of the second harmonic in the vicinity of 400 nm is also higher than that at 421 nm. Thus, the highest attained second harmonic power at 400 nm reached 1.5 W with the input (fundamental) power at the entrance to the frequency doubler being 4.1 W (green pump power 18.5 W), and it was as high as 700 mw when pumped with 12.5 W of green radiation. It is necessary to note that such comparatively elevated levels of the second harmonic output power were generated in the course of this work on traditional non-linear crystals LBO. The use of periodically-poled crystals may deliver better efficiency of conversion, but, as a rule, at substantially lower radiation powers. Utilisation of such crystal in single-pass configuration at wavelength 421 nm resulted in Ref [12] in only 0.3 mw at the pump Ar laser power of 13 W. There are definitely numerous examples of more efficient conversion of Ti:Sapphire laser radiation into the blue range with the help of periodically-poled crystals. Nevertheless, the attained absolute power levels are substantially lower than those achievable in external cavities with LBO crystals. 3 CONCLUSIONS The present paper discusses laser systems on the basis of Ti:Sapphire laser with powerful pump (12.5 18.5 W) and efficient external radiation frequency doublers for generation of powerful radiation at the level of 1 1.5 W in the 390 425 nm range, featuring instantaneous line widths of less than 10 khz. These systems are used for cooling of atoms such as dysprosium (421 nm), ytterbium/erbium (399/404 nm), and others. Presented tandem configurations on the basis of Ti:Sapphire lasers and external frequency doublers have proven themselves as reliable and efficient sources of powerful wavelength-tuneable blue radiation with ultra-narrow line width. E,"1;&"F&!E.G&H"#;&IJIK&&IJIKLMRJ

ACKNOWLEDGEMENTS This work was supported by a Grant Scientific and educational staff of innovational Russia in 2009-2013 (Grant No 2490). REFERENCES [1] E.S.Polzik, H.J.Kimble, Frequency doubling with KNbO 3 in an external cavity. Opt. Lett., 16, N 18, 1400-1402 (1991). [2] E.Jurdik, J.Hohlfeld, A.F.Etteger, A.J.Toonen, W.L.Meerts, H.Kempen, Th.Rasing, Performance optimization of an external enhancement resonator for optical second-harmonic generation. J. Opt. Soc. Am. B, 19, N 7, 1660-1667 (2002). [3] T.Fujii, H.Kumagai, K.Midorikawa, M.Obara, Development of a high-power deep-ultraviolet continuous-wave coherent light source for laser cooling of silicon atoms. Opt. Lett., 25, N 19, 1457-1459 (2000). [4] H.Kumagai, Y.Asakawa, T.Iwane, K.Midorikawa, M.Obara, Efficient frequency doubling of 1-W continuous-wave Ti:sapphire laser with a robust high-finesse external cavity. Appl. Opt., 42, N 6, 1036-1039 (2003). [5] F.Torabi-Goudarzi, E.Riis, Efficient cw high-power frequency doubling in periodically poled KTP. Opt. Comm., 227, 389-403 (2003). [6] H.J.Onisto, R.L.Cavasso-Filho, A.Scalabrin, D.Pereira, F.C.Cruz, Frequency doubled and stabilized all-solid-state Ti:sapphire lasers. Opt. Eng., 41, 1122 (2002). [7] Y.H.Cha, K.H.Ko, G.Lim, J.M.Han, H.M.Park, T.S.Kim, D.Y.Jeong, External-cavity frequency doubling of a 5-W 756-nm injection-locked Ti:sapphire laser. Opt. Express, 16, N 7, 4866-4871 (2008). [8] J.C.J.Koelemeij, W.Hogervorst, W.Vassen, High-power frequency-stabilized laser for laser cooling of metastable helium at 389 nm. Rev. Sci. Instrum., 76, 033104 (2005). [9] S.Kobtsev, V.Baraulya, V.Lunin, Ultra-narrow-linewidth combined CW Ti:Sapphire/Dye laser for atom cooling and high-precision spectroscopy. Proc. SPIE, "Solid State Lasers XVI: Technology and Devices", 6451, 64511U (2007). [10] S.M.Kobtsev, V.I.Baraulya, V.M.Lunin, Combined CW single-frequency ring Dye/Ti:Sapphire laser. Quantum Electronics, 36, N 12, 1148 1152 (2006). [11] S.Kobtserv, A.Zavyalov, Efficient second-harmonic generation of CW radiation in an external optical cavity using non-linear crystal BIBO. Proc. SPIE, "Laser Optics 2006: Solid State Lasers and Nonlinear Frequency Conversion", 6610, 66100P (2007). [12] N.Leefer, A.Cingöz, D.Budker. Measurement of hyperfine structure and isotope shifts in the Dy 421 nm transition. Opt. Lett., 34, 2548-2550 (2009). E,"1;&"F&!E.G&H"#;&IJIK&&IJIKLMRS