ULTRASONIC GUIDED WAVE ANNULAR ARRAY TRANSDUCERS FOR STRUCTURAL HEALTH MONITORING

Similar documents
CIRCULAR LAMB AND LINEAR SHEAR HORIZONTAL GUIDED WAVE ARRAYS FOR STRUCTURAL HEALTH MONITORING

Application of Ultrasonic Guided Waves for Characterization of Defects in Pipeline of Nuclear Power Plants. Younho Cho

Properties of Interdigital Transducers for Lamb-Wave Based SHM Systems

Rayleigh Wave Interaction and Mode Conversion in a Delamination

Investigation on Sensor Fault Effects of Piezoelectric Transducers on Wave Propagation and Impedance Measurements

A Numerical study on proper mode and frequency selection for riveted lap joints inspection using Lamb waves.

HEALTH MONITORING OF ROCK BOLTS USING ULTRASONIC GUIDED WAVES

Novel Approach to Make Low Cost, High Density PZT Phased Array and Its Application in Structural Health Monitoring

Selective Excitation of Lamb Wave Modes in Thin Aluminium Plates using Bonded Piezoceramics: Fem Modelling and Measurements

Detection of Protective Coating Disbonds in Pipe Using Circumferential Guided Waves

SPARSE ARRAY TOMOGRAPHY SYSTEM FOR CORROSION EXTENT MONITORING H. Bian, H. Gao, J. Rose Pennsylvania State University, University Park, PA, USA

Quasi-Rayleigh Waves in Butt-Welded Thick Steel Plate

Design of mode selective actuators for Lamb wave excitation in composite plates

Quantitative Crack Depth Study in Homogeneous Plates Using Simulated Lamb Waves.

Instantaneous Baseline Damage Detection using a Low Power Guided Waves System

APPLICATION OF ULTRASONIC GUIDED WAVES FOR INVESTIGATION OF COMPOSITE CONSTRUCTIONAL COMPONENTS OF TIDAL POWER PLANTS

FATIGUE CRACK GROWTH MONITORING OF AN ALUMINUM JOINT STRUCTURE

Co-Located Triangulation for Damage Position

Excitation and reception of pure shear horizontal waves by

Ultrasonic Guided Waves for NDT and SHM

Detectability of kissing bonds using the non-linear high frequency transmission technique

Determination of the width of an axisymmetric deposit on a metallic pipe by means of Lamb type guided modes

ACOUSTO-ULTRASONIC EVALUATION OF HYBRID COMPOSITES USING

DEFECT SIZING IN PIPE USING AN ULTRASONIC GUIDED WAVE FOCUSING TECHNIQUE

Investigation of interaction of the Lamb wave with delamination type defect in GLARE composite using air-coupled ultrasonic technique

Time Reversal FEM Modelling in Thin Aluminium Plates for Defects Detection

Guided wave based material characterisation of thin plates using a very high frequency focused PVDF transducer

Piezoelectric Fiber Composite Ultrasonic Transducers for Guided Wave Structural Health Monitoring

DISBOND DETECTION AND CHARACTERIZATION USING HORIZONT ALL Y

vibro-acoustic modulation

GUIDED WAVES FOR DAMAGE MONITORING IN PLATES FOR NOTCH DEFECTS

A Lamb Wave Based SHM of Repaired Composite Laminated Structures

Piezoelectric Wafer Active Sensor Guided Wave Imaging

Passive Polymer. Figure 1 (a) and (b). Diagram of a 1-3 composite (left) and a 2-2 composite (right).

A New Lamb-Wave Based NDT System for Detection and Identification of Defects in Composites

Measurement of phase velocity dispersion curves and group velocities in a plate using leaky Lamb waves

DAMAGE DETECTION IN PLATE STRUCTURES USING SPARSE ULTRASONIC TRANSDUCER ARRAYS AND ACOUSTIC WAVEFIELD IMAGING

Multiple crack detection of pipes using PZT-based guided waves

Structural Health Monitoring for Life Management of Aircraft. Qiaojian Huang, Brad Regez and Sridhar Krishnaswamy

A Wire-Guided Transducer for Acoustic Emission Sensing

Professor Emeritus, University of Tokyo, Tokyo, Japan Phone: ;

Multi-Mode and Multi-Frequency Differential Lamb Wave Imaging with in situ Sparse Transducer Arrays

PIEZOELECTRIC WAFER ACTIVE SENSORS FOR STRUCTURAL HEALTH MONITORING STATE OF THE ART AND FUTURE DIRECTIONS

Lamb Wave Ultrasonic Stylus

In-Situ Damage Detection of Composites Structures using Lamb Wave Methods

A SHEAR WAVE TRANSDUCER ARRAY FOR REAL-TIME IMAGING. R.L. Baer and G.S. Kino. Edward L. Ginzton Laboratory Stanford University Stanford, CA 94305

Structural Integrity Monitoring using Guided Ultrasonic Waves

THE ANALYSIS OF ADHESIVE BONDS USING ELECfROMAGNETIC

Penn State University ESM Ultrasonics R&D Laboratory Joseph L. Rose Research Activities

Research on An Inspection Method for De-bond Defects in Aluminum. Skin-Honeycomb Core Sandwich Structure with Guided Waves

Lamb Wave Dispersion Compensation in Piezoelectric Wafer Active Sensor Phased-Array Applications

Keywords: Ultrasonic Testing (UT), Air-coupled, Contact-free, Bond, Weld, Composites

Ultrasonic Guided Wave Testing of Cylindrical Bars

Probability of Detection Assessment of a Guided Wave Structural Health Monitoring System

Piezoelectric transducer excitation for guided waves propagation on pipeline with flexural wave modes

EMBEDDED NON-DESTRUCTIVE EVALUATION FOR DAMAGE DETECTION USING PIEZOELECTRIC WAFER ACTIVE SENSORS

REPORT DOCUMENTATION PAGE

MODELING AND EXPERIMENTATION OF THICKNESS MODE E/M IMPEDANCE AND RAYLEIGH WAVE PROPAGATION FOR PIEZOELECTRIC WAFER ACTIVE SENSORS ON THICK PLATES

Generation Laser Scanning Method for Visualizing Ultrasonic Waves Propagating on a 3-D Object

ULTRASONIC GUIDED WAVE FOCUSING BEYOND WELDS IN A PIPELINE

Long Range Ultrasonic Testing - Case Studies

G. Hughes Department of Mechanical Engineering University College London Torrington Place London, WClE 7JE, United Kingdom

Determination of the Structural Integrity of a Wind Turbine Blade Using Ultrasonic Pulse Echo Reflectometry

Use of Lamb Waves High Modes in Weld Testing

Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves 1

REFLECTION AND TRANSMISSION OF LAMB WAVES AT DISCONTINUITY IN PLATE Z. Liu NDT Systems & Services AG, Stutensee, Germany

Change in Time-of-Flight of Longitudinal (axisymmetric) wave modes due to Lamination in Steel pipes

RELIABILITY OF GUIDED WAVE ULTRASONIC TESTING. Dr. Mark EVANS and Dr. Thomas VOGT Guided Ultrasonics Ltd. Nottingham, UK

MEASUREMENT OF SURFACE ACOUSTIC WAVE USING AIR COUPLED TRANSDUCER AND LASER DOPPLER VIBROMETER

CIRCULAR PHASED ARRAY PROBES FOR INSPECTION OF SUPERPHOENIX STEAM GENERATOR TUBES

Finite Element Analysis and Test of an Ultrasonic Compound Horn

MODELLING AND EXPERIMENTS FOR THE DEVELOPMENT OF A GUIDED WAVE LIQUID LEVEL SENSOR

DEVELOPMENT OF HEAT-RESISTANT OPTICAL FIBER AE SENSOR

Maximizing the Fatigue Crack Response in Surface Eddy Current Inspections of Aircraft Structures

Identifying Scatter Targets in 2D Space using In Situ Phased Arrays for Guided Wave Structural Health Monitoring

Testing of Buried Pipelines Using Guided Waves

Developments in Ultrasonic Guided Wave Inspection

Keywords: Guided wave, structural health monitoring, HCSS, disbond, damage index. More Info at Open Access Database

AIR FORCE INSTITUTE OF TECHNOLOGY

Ultrasonic Air-Coupled Non-Destructive Testing of Aerospace Components

INSPECTION OF THERMAL BARRIERS OF PRIMARY PUMPS WITH PHASED ARRAY PROBE AND PIEZOCOMPOSITE TECHNOLOGY

Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors

Switch-less Dual-frequency Reconfigurable CMOS Oscillator using One Single Piezoelectric AlN MEMS Resonator with Co-existing S0 and S1 Lamb-wave Modes

Optimization of a Love Wave Surface Acoustic Device for Biosensing Application

CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS

Study on Propagation Characteristics of Ultrasonic Guided Wave for EMAT Sensor

Instantaneous Baseline Structural Damage Detection Using a Miniaturized Piezoelectric Guided Waves System

ACOUSTIC EMISSION MEASUREMENTS ON SHELL STRUCTURES WITH DIRECTLY ATTACHED PIEZO-CERAMIC

Active sensor arrays for damage detection P. H. Malinowski 1,a, T. Wandowski 1,b and W. M. Ostachowicz 1,2,c

Multi Level Temperature Measurement Using a single 90 bend waveguide

ULTRASONIC GUIDED WAVES FOR AGING WIRE INSULATION ASSESSMENT

Abstract. 1 Introduction. 1.2 Concept. 1.1 Problematic. 1.3 Modelling

Inspection of pipe networks containing bends using long range guided waves

PVP PVP

The Development of Laser Ultrasonic Visualization Equipment and its Application in Nondestructive Inspection

SELECTION OF MATERIALS AND SENSORS FOR HEALTH MONITORING OF COMPOSITE STRUCTURES

SHM of CFRP-structures with impedance spectroscopy and Lamb waves

Simulation of the Lamb wave interaction between piezoelectric wafer active sensors and host structure

RECENT PWAS-SHM DEVELOPMENTS IN THE LABORATORY FOR ACTIVE MATERIALS AND SMART STRUCTURES

INFLUENCE OF SENSOR STATISTICS ON PIEZOELECTRIC AND MAGNETO- ELASTIC DAMAGE DETECTION

Transcription:

ULTRASONIC GUIDED WAVE ANNULAR ARRAY TRANSDUCERS FOR STRUCTURAL HEALTH MONITORING H. Gao, M. J. Guers, J.L. Rose, G. (Xiaoliang) Zhao 2, and C. Kwan 2 Department of Engineering Science and Mechanics, The Pennsylvania State University 22 Earth and Engineering Science Building, University Park, PA, 682, USA 2 Intelligent Automation, Inc., 54 Calhoun Drive, Rockville, MD, 2855, USA ABSTRACT. The work presented in this paper utilizes the physics of guided wave propagation for structural health monitoring (SHM) transducer designs. Both the theoretical and experimental studies illustrated the importance of guided wave mode selection for SHM applications. Guided wave mode control is realized with an annular array transducer design on a PVDF polymer piezoelectric film. A sample problem on a mm thick aluminum plate is presented. Numerical calculations of the wave structures and guided wave power flow distribution inside the plate provide quick guidelines for the wave mode selection in structural health monitoring. Experimental study illustrates the importance of mode control with the comparison of PVDF annular array transducers and PZT ceramic disc transducers. The characteristics of wave mode reflections to defect depth and the defect sizing effect are also discussed in this paper. Keywords: PVDF sensor, SHM, dispersion curve, power flow distribution PACS: 4.8. Fx, 4.5.Cg INTRODUCTION Ultrasonic guided wave based technologies are commonly used in nondestructive evaluation (NDE). With the merits of long distance monitoring, easy accessibility for in service structural components, and wireless interrogation potential [], ultrasonic guided waves have attracted much research attention in structural health monitoring (SHM). In addition, a predefined reference state provides an opportunity for the application of many data driven and statistical signal processing technologies in SHM. However, a physically based theoretically driven monitoring methodology becomes more and more important for better interpretation of the sensor signal changes. Guided wave mode selection often needs to be considered in the design stage of the monitoring system to achieve specific monitoring requirements. In order to get good correlation between the time domain signal and the spatial domain damage localization information, a single mode guided wave excitation is preferred. This requires that the ultrasonic guided wave transducers have good mode-control capability. PVDF polymer based piezoelectric transducers are flexible and cost effective [2-]. The flexibility and the thin film structure of the PVDF transducers make them extremely suitable for surface mounted or embedded SHM. By properly patterning the PVDF 68

transducer electrode, comb transducers, interdigital transducers, annular array, and sectioned annular array transducers can be designed to achieve guided wave mode control and mode selection. The importance of the wave mode selection in ultrasonic guided wave based SHM is the focus of this paper. Power flow distribution of a certain wave mode is utilized as a key parameter to estimate the magnitude of wave-defect interaction. Theoretical study on a mm thick aluminum plate provided an example guideline on how to choose appropriate a wave mode for the best sensitivity for surface damage monitoring and easy damage severity assessment. In the experiment, wave mode selection is realized with a group of sectioned annular array transducers with adjustable electrode periods Experimental results clearly illustrated the performance difference of different wave modes in studying defect depth and defect sizing. THEORY Guided wave mechanics is the basis for appropriate wave mode selection in structural health monitoring. Guided wave displacement, stress, and power flow distribution along the thickness of the structure are very important issues in selecting a good mode for a particular type of damage. Take a mm thick aluminum plate for example, the guided wave phase velocity and group velocity dispersion curve are shown in Figure and Figure 2 respectively. Each point of the dispersion curves represents a possible guided wave testing mode with a unique frequency and wavelength combination. Since each wave modes has its unique characteristics, appropriate mode selection is very important for a successful structural health monitoring sensor network design [4]. The displacement and power flow distribution of a certain wave mode can be calculated as follows. Displacement field distribution can be obtained from wave structure analysis. iξ ( x vt ) u = f ( x e. () u = f u ) u ( x ) e iξ ( x vt ). (2) Here fu and f u are the distribution of the x and x direction displacement along the thickness of the structure. Using the strain-displacement relation, constitutive relation, and displacement-particle velocity relation of the material, strain field, stress filed, and the particle velocity field can be derived. FIGURE. Phase velocity dispersion curve of a mm Al plate. FIGURE 2. Group velocity dispersion curve of a mm Al plate. 68

Poynting s vector of the wave propagation at a certain point can be expressed as Equation [5]. * v σ P =. () 2 The entire power flow along a cross section can be expressed as the integration of Poynting s vector. ˆ P n ds = Ps + i [( Us) ( U ) ] peak v peak s ω. (4) For guided Lamb waves in an aluminum plate, power flow along the x and x directions are real and imaginary respectively. This means when a wave propagates in a structure, energy flow occurs in both the x and x direction. In the x direction, there is net power transmission. While in the x direction, there is flow of reactive peak kinetic energy and elastic energy. Reactive power flow is zero at both surfaces. This means there is no energy flow out of the system from the surface. Reactive power flow is zero at symmetric plane of the system. The power flow distributions of 4 typical wave modes are shown in Figure. Figure (a), (b), (c), and (d) represents the A mode at.5mhz, S mode at.9 MHz, S mode at 2. MHz, and the A mode at 2. MHz respectively. It is shown in these figures that the first two modes have comparably flat x direction power flow distribution along the entire thickness. However, the power flow of the third and fourth mode concentrates at the center region and surface region respectively. These information implies that the first two mode will produce quasi-linear signal to defect relation, while the third and fourth mode will be particularly sensitive to center and surface defects respectively. 2 x direction x direction 5 4 8 6 4 2 x direction x direction 2 - -2.2.4.6.8 Thickness 8 (a) -2.2.4.6.8 Thickness (mm) 6 (c) 7 6 5 x direction x direction 5 4 x direction x direction 4 2 2 - -.2.4.6.8 Thickness (mm) -2 -.2.4.6.8 Thickness (b) (d) FIGURE. Power flow distribution of guided wave modes along the thickness of a mm aluminum plate structure. (a) A mode at.5mhz, (b) S mode at.9 MHz, (c) S mode at 2. MHz, and (d) A mode at 2. MHz. 682

x t h w x FIGURE 4. A model of defect in a plate structure. A first order hypothesis for a quick estimation of wave defect interaction is expressed as follows. Defect influence on a particular guided wave mode is strongly related to the power flow distribution. A planar defect is a strong reflector of x direction power flow; x direction power flow will also be affected by volumetric defect. The interference of these two factors affects the final pulse echo and through transmission signal. A simple model of square notch defect is shown in Figure 4. The total power flow through the entire thickness along x direction is P total = h Px dx ) (. (5) P = t echo Px ( dx ) + α Px w. (6) P RCoeff = echo. (7) P total Here, h is the thickness of the plate. The width and depth of the defect is w and t. α is a coefficient representing the conversion from x direction power flow to x direction reflected guided wave strength. When the influence from the x direction is negligible, a sensitivity factor of the wave modes to a certain depth defect can be estimated from only the integration term. Take the S mode 9kHz and A mode 2 khz for example. The relation between defect depth and echo strength is shown in Figure 5. The figure shows that the S mode at 9kHz generally has good linear correlation between defect depth and reflection signal. However, the A mode at 2kHz has strong nonlinearity. The energy flow along the x direction is also large. There exist possibilities that the reflection from a certain depth defect could be larger than a through hole defect..2.8 Reflection Factor Reflection Factor.8.6.4.6.4.2 -.2.2.4.6.8 Defect depth (mm).2 -.2 -.4 Reflection Factor X -.6 Reflection Factor X -.8.2.4.6.8 Defect depth (mm) (a) FIGURE 5. Relation between reflection factor and defect depth when the width of the defect is mm. (a) S mode at.9 MHz, (b) A mode at 2. MHz. (b) 68

EXPERIMENTAL STUDY The PVDF transducers used include two functional components, one is a PVDF piezoelectric thin film, and the other is an electrode pattern fabricated on a polyimide substrate. The lay-up of the PVDF transducer is shown in Figure 6, in which the functional layers are bonded with conductive and normal adhesives. Guided wave mode excitation and receiving are controlled by the joint influence of electrode pattern and wave propagation characteristics of the structure under monitoring. For a PVDF annular array, the electrode trace is circular, such that the waves excited from the transducer is omni directional. In order to control the wave excitation angular profile, sectioned circular arrays are studied in this work. A sample electrode patterns of a sectioned annular array is shown in Figure 7. For the 9 degree span sectioned annular array, the line width and the spacing between lines are both mm. When only one set of electrode is connected to excitation signal, the period of the electrode pattern is 4mm. When both sets of electrodes are connected to the excitation signal, the period is 2mm. Therefore, wave modes with two wave lengths can be achieved with this electrode pattern. The theoretical excitation lines are shown in Figure 8. Comparison of mode selection performance of the PVDF transducer and a PZT disc transducer is shown in Figure 9. The seven finger PVDF sectioned annular array transducer has good mode selection performance. However, the PZT disc transducer excites both A and S mode with comparable amplitude at.9 MHz. Polyimide copper clad PVDF Al Instant glue Conductive epoxy FIGURE 6. PVDF transducer element lay-up. FIGURE 7. Annular array and section annular array with 9 o span. 684

5 4 S2 mode A2 mode 2 A mode S mode 9 8 Line 7 6 S mode 5 4 Line 2 2 A mode.5.5 2 2.5.5 4 4.5 5 Frequency (MHz) FIGURE 8. Mode selection line of annular array transducers. Phase velocity (km/s) Ultrasonic pulse echo tests at different defect depth were studied with the four different wave modes shown in Figure. Three structural states were monitored, the first was a reference state, the second was a state with a approximately a /mm depth, 5mm diameter simulated corrosion defect on one side of the plate, the third was a through hole defect with 5mm diameter. The results show that the fourth wave modes used in the experiment had much different responses to these defect states. As was estimated form the power flow theory of the wave modes, A at.5 MHz, and S at.9 MHz have increasing echo amplitudes from the surface defect to through-hole. S mode at 2. MHz are very dispersive, in addition the wave excitability is low, no significant echo from the defects are detected. For A mode at 2. MHz, the echo from the surface defect is very strong because the power flow concentrates at the surface region of the structure. When the defect increased from the surface to a through whole, the influence from x direction power flow reflection reduced. Therefore, smaller echo in the signal is detected. Quantitative explanation of this abnormal phenomenon can be obtained from specific finite element modeling of the wave-defect interaction..5 A mode.5..5 S mode..5 S mode.9mhz A mode.9 MHz Aplitude (v) -.5 (v) -.5 -. -. -.5 -.5 -.2 2 4 5 6 7 8 9 Time ( µ s) -.2 2 4 5 6 7 8 9 Time (µs) FIGURE 9. Through transmission ultrasound signal from (a) PVDF sectioned annular array transducer, (b) PZT disc transducer. 685

CONCLUSIONS Theoretical predictions and experimental validation of the importance of mode selection in guided wave based SHM are clearly illustrated in this study. Much purer mode excitation and receiving can be achieved for example with a PVDF sectioned circular array than single PZT disc transducer. Correlation between wave mode reflection and defect depth and size are studied, which gives a guideline for real monitoring system design. For the four modes used in the experiment, A (.5MHz) and S (.9 MHz) has good echo-depth-size linear correlation. However, A (2. MHz) is more sensitive to surface defects. S mode at 2.MHz is very dispersive, the wave package is elongated and the amplitude comparably small. REFERENCES. X. Zhao, C. Kwan and K. M. Luk, 6 th WCNDT, Montreal, Canada 24 2. T. Hay, PHD dissertation, Aspects of Guided Waves in Structural Health Monitoring, Pennsylvania State University, 24. R.S. C. Monkhouse, PW Wilcox, M.J.S. Lowe, R. P. Dalton and P. Cawley, Smart materials and Structures, 9, 4-9, (2). 4. J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge university press, Cambridge, 999 5. Auld, B.A., Acoustic Fields and Waves in Solids, Volume, John Wiley & Sons, Inc., (97). 686