Driver or Pre -driver Amplifier for Doherty Power Amplifiers

Similar documents
Driver or Pre -driver General Purpose Amplifier

2 W High Gain Power Amplifier for Cellular Infrastructure InGaP GaAs HBT

3.8 GHz Linear Power Amplifier and BTS Driver High Efficiency/Linearity Amplifier

2 W High Gain Power Amplifier for Cellular Infrastructure InGaP GaAs HBT

Characteristic Symbol Value (2) Unit R JC 57 C/W

Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier

2 W High Gain Power Amplifier for Cellular Infrastructure InGaP GaAs HBT

Enhancement Mode phemt

Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier

Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier

Enhancement Mode phemt

Enhancement Mode phemt

Enhancement Mode phemt

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier

Characteristic Symbol Value (2) Unit R JC 92.0 C/W

Heterojunction Bipolar Transistor Technology (InGaP HBT) Broadband High Linearity Amplifier

Heterojunction Bipolar Transistor Technology (InGaP HBT) High Efficiency/Linearity Amplifier

RF Power GaN Transistor

RF Power GaN Transistor

RF Power GaN Transistor

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifiers

Advanced Doherty Alignment Module (ADAM)

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF LDMOS Wideband Integrated Power Amplifiers

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

Advanced Doherty Alignment Module (ADAM)

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power GaN Transistor

Heterostructure Field Effect Transistor (GaAs HFET) Broadband High Linearity Amplifier

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF LDMOS Wideband Integrated Power Amplifier

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

RF LDMOS Wideband Integrated Power Amplifier

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

Heterojunction Bipolar Transistor (InGaP HBT) Broadband High Linearity Amplifier

RF LDMOS Wideband Integrated Power Amplifier

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifiers

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband Integrated Power Amplifier MHVIC2115R2. Freescale Semiconductor, I. The Wideband IC Line SEMICONDUCTOR TECHNICAL DATA

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband 2-Stage Power Amplifiers

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

Using a Linear Transistor Model for RF Amplifier Design

Test Methodology. Characteristic Symbol Min Typ Max Unit. V GS(th) Vdc. V GS(Q) Vdc. V DS(on)

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF LDMOS Wideband 2-Stage Power Amplifiers

Gallium Arsenide PHEMT RF Power Field Effect Transistor

RF Power LDMOS Transistor N Channel Enhancement Mode Lateral MOSFET

RF Power LDMOS Transistors N Channel Enhancement Mode Lateral MOSFETs

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power GaN Transistor

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

400 MHz to 4000 MHz ½ Watt RF Driver Amplifier ADL5324

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

50 MHz to 4.0 GHz RF/IF Gain Block ADL5602

RF LDMOS Wideband Integrated Power Amplifiers

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

Characteristic Symbol Value Unit Thermal Resistance, Junction to Case. Test Conditions

RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs

ARCHIVE INFORMATION MW4IC2230MBR1 MW4IC2230GMBR1. Freescale Semiconductor. Technical Data. Document Number: MW4IC2230 Rev.

RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET

RF Power LDMOS Transistor N Channel Enhancement Mode Lateral MOSFET

RF LDMOS Wideband Integrated Power Amplifiers

RF LDMOS Wideband Integrated Power Amplifiers

Watts W/ C Storage Temperature Range T stg 65 to +150 C Operating Junction Temperature T J 200 C. Test Conditions MRF9085SR3/MRF9085LSR3

RF LDMOS Wideband Integrated Power Amplifiers

RF Power Field Effect Transistor Array N-Channel Enhancement-Mode Lateral MOSFET

RF Power LDMOS Transistors N--Channel Enhancement--Mode Lateral MOSFETs

RF Power GaN Transistor

Transcription:

Technical Data Driver or Pre -driver Amplifier for Doherty Power Amplifiers The MMG30301B is a 1 W high gain amplifier designed as a driver or pre--driver for Doherty power amplifiers in wireless infrastructure equipment operating in the 900 to 4300 MHz frequency range. Because of its versatile design, the device may also be used in a variety of general purpose amplifier applications, including those at frequencies from 900 to 4300 MHz. Features P1dB: 30.1 dbm @ 2140 MHz Gain: 16.2 db @ 2140 MHz Designed as a Doherty PA driver or pre--driver 5 V single supply, 258 ma current SOT--89 package 50 ohm operation with minimal external matching Document Number: MMG30301B Rev. 0, 10/2016 900 4300 MHz, 16.2 db @ 2140 MHz 30.1 dbm BTS DRIVER AMPLIFIER SOT -89 Table 1. Load Pull Performance (1) Characteristic Symbol 900 MHz 1900 MHz 2140 MHz 2600 MHz 3350 MHz Unit Maximum Available Gain MAG 24.1 17.9 16.9 15.2 13.3 db P out @ 1dB Compression P1dB 30.0 (2) 30.0 (2) 30.1 30.4 30.1 dbm Table 2. Maximum Ratings Rating Symbol Value Unit Supply Voltage V CC 6 V Supply Current I CC 480 ma RF Input Power P in 23 dbm Storage Temperature Range T stg 65 to +150 C Junction Temperature T J 175 C Table 3. Thermal Characteristics Thermal Resistance, Junction to Case Case Temperature 91 C, 5 Vdc, 280 ma, no RF applied Characteristic Symbol Value (3) Unit R θjc 17 C/W 1.,T A =25 C, CW. 2. Maximum allowable current not to exceed 480 ma. 3. Refer to AN1955,Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/rf and search for AN1955. 2016 NXP B.V. 1

Table 4. Electrical Characteristics (V CC = 5 Vdc, 2140 MHz, T A =25 C, 50 ohm system, in NXP Application Circuit) Characteristic Symbol Min Typ Max Unit Small--Signal Gain (S21) G p 15.8 16.2 db Power Output @ 1dB Compression P1dB 30.1 dbm Input Return Loss (S11) IRL 11.8 db Output Return Loss (S22) ORL 13.8 db Noise Figure NF 3.7 db Supply Current I CC 240 258 280 ma Supply Voltage V CC 5 V Table 5. Functional Pin Description Pin Number Pin Function 2 1 RF in 2 Ground 3 RF out /DC Supply 1 2 3 Figure 1. Functional Diagram Table 6. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD 22--A114) 1B Charge Device Model (per JESD 22--C101) C3 Table 7. Moisture Sensitivity Level Test Methodology Rating Package Peak Temperature Unit Per JESD22--A113, IPC/JEDEC J--STD--020 1 260 C Table 8. Ordering Information Device Tape and Reel Information Package T1 Suffix = 1,000 Units, 12 mm Tape Width, 7--inch Reel SOT--89 2

P out (MAX AVG.), MAXIMUM AVERAGE OUTPUT POWER (dbm) 32 31 30 29 28 27 Table 9. ACPR (LTE 10 MHz, ACPR = 48 dbc) f (MHz) P out (dbm) ACPR = 48 dbc Gain (db) I CC (ma) 2140 20.5 16.5 300 2600 19.2 14.4 278 3500 19.3 12.7 262 4150 20.7 10.7 265 26 500 1000 1500 2000 2500 3000 3500 Note: Maximum allowable current not to exceed 480 ma. Figure 2. Maximum Average Output Power 3

50 OHM APPLICATION CIRCUIT: 2110 2170 MHz, 5 VOLT OPERATION 2 RF INPUT 1 2 3 R1 C1 Z1 L2 Z2 C6 RF OUTPUT C2 L1 C5 C3 C4 V DD Z1 Z2 0.19 0.02 Microstrip 0.22 0.02 Microstrip Figure 3. Test Circuit Schematic Table 10. Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 1.5 pf Chip Capacitor GJM0225C1E1R5WB Murata C2 0.5 pf Chip Capacitor GJM0225C1ER50WB Murata C3 0.01 μf Chip Capacitor GRM188B11E103MA Murata C4 1 μf Chip Capacitor GRM1555C81E105ME Murata C5 0.7 pf Chip Capacitor GJM0225C1ER70WB Murata C6 1.1 pf Chip Capacitor GJM0225C1E1R1WB Murata L1 10 nh Chip Inductor 0603CS-10NX Coilcraft L2 1 nh Chip Inductor 0402CS-1N0X Coilcraft R1 0 Ω, 1 A Chip Resistor ERJ2GE0R00X Panasonic PCB Rogers R04350B, 0.010, ε r =3.66 M128499 MTL 4

50 OHM APPLICATION CIRCUIT: 2110 2170 MHz, 5 VOLT OPERATION M128499 V CC RF IN RF OUT R1 C1 C4 C3 C6 C2 L1 L2 C5 SOT--89--3E Rev. 0 PCB actual size: 1.3 1.46. Figure 4. Test Circuit Component Layout Table 10. Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 1.5 pf Chip Capacitor GJM0225C1E1R5WB Murata C2 0.5 pf Chip Capacitor GJM0225C1ER50WB Murata C3 0.01 μf Chip Capacitor GRM188B11E103MA Murata C4 1 μf Chip Capacitor GRM1555C81E105ME Murata C5 0.7 pf Chip Capacitor GJM0225C1ER70WB Murata C6 1.1 pf Chip Capacitor GJM0225C1E1R1WB Murata L1 10 nh Chip Inductor 0603CS-10NX Coilcraft L2 1 nh Chip Inductor 0402CS-1N0X Coilcraft R1 0 Ω, 1 A Chip Resistor ERJ2GE0R00X Panasonic PCB Rogers R04350B, 0.010, ε r =3.66 M128499 MTL (Test Circuit Component Designations and Values table repeated for reference.) 5

50 OHM TYPICAL CHARACTERISTICS: 2110 2170 MHz, 5 VOLT OPERATION 19 3 G p, SMALL--SIGNAL GAIN (db) 18 17 16 15 14 2100 40 C 85 C 25 C 2120 2140 2160 2180 2200 IRL, INPUT RETURN LOSS (db) 6 9 12 15 85 C 25 C 18 40 C 21 2100 2120 2140 2160 2180 2200 Figure 5. Small -Signal Gain (S21) versus Frequency and Temperature Figure 6. Input Return Loss (S11) versus Frequency and Temperature 9 ORL, OUTPUT RETURN LOSS (db) 12 15 18 21 85 C 40 C 24 2100 2120 2140 2160 2180 Figure 7. Output Return Loss (S22) versus Frequency and Temperature 25 C 2200 6

50 OHM TYPICAL CHARACTERISTICS: 2110 2170 MHz, 5 VOLT OPERATION NF, NOISE FIGURE (db) 8 7 6 5 4 3 G ps, POWER GAIN (db) 18 17 16 15 14 V CC = 5 Vdc, f = 2140 MHz, CW 85 C 25 C 40 C 2 1500 1700 1900 2100 2300 2500 13 20 22 24 26 28 30 32 Figure 8. Noise Figure Figure 9. Power Gain versus Output Power and Temperature I CC, COLLECTOR CURRENT (ma) 320 300 280 260 240 V CC = 5 Vdc, f = 2140 MHz Single--Carrier W--CDMA 3GPP TM1 Unclipped 25 C 85 C 40 C 220 10 12 14 16 18 20 Figure 10. Collector Current versus Output Power and Temperature ACPR, ADJACENT CHANNEL POWER RATIO (dbc) 44 47 50 53 56 59 62 V CC = 5 Vdc, f = 2140 MHz Single--Carrier W--CDMA 3GPP TM1 Unclipped 40 C 25 C 85 C 65 22 10 12 14 16 18 20 22 Figure 11. Single -Carrier W -CDMA Adjacent Channel Power Ratio versus Output Power and Temperature 7

50 OHM APPLICATION CIRCUIT: 1805 1880 MHz, 5 VOLT OPERATION 2 RF INPUT R1 C1 Z1 1 2 3 Z2 Z3 C6 RF OUTPUT C2 L1 C5 C3 C4 V DD Z1 Z2 Z3 0.115 0.02 Microstrip 0.18 0.02 Microstrip 0.2 0.02 Microstrip Figure 12. Test Circuit Schematic Table 11. Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 1.3 pf Chip Capacitor GJM0225C1E1R3WB Murata C2 3.9 pf Chip Capacitor GJM0225C1E3R9WB Murata C3 1000 pf Chip Capacitor GCM1555R71E103KA37 Murata C4 0.1 μf Chip Capacitor GRM1555R61A104KA01D Murata C5 3.3 pf Chip Capacitor GJM0225C1E3R3WB Murata C6 100 pf Chip Capacitor GRM1555C1H101JA01 Murata L1 10 nh Chip Inductor 0603CS-10NX Coilcraft R1 0 Ω, 1 A Chip Resistor ERJ2GE0R00X Panasonic PCB Rogers R04350B, 0.010, ε r =3.66 M128499 MTL 8

50 OHM APPLICATION CIRCUIT: 1805 1880 MHz, 5 VOLT OPERATION M128499 V CC RF IN RF OUT R1 C1 C4 C3 C6 C2 L1 C5 SOT--89--3E Rev. 0 PCB actual size: 1.3 1.46. Figure 13. Test Circuit Component Layout Table 11. Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 1.3 pf Chip Capacitor GJM0225C1E1R3WB Murata C2 3.9 pf Chip Capacitor GJM0225C1E3R9WB Murata C3 1000 pf Chip Capacitor GCM1555R71E103KA37 Murata C4 0.1 μf Chip Capacitor GRM1555R61A104KA01D Murata C5 3.3 pf Chip Capacitor GJM0225C1E3R3WB Murata C6 100 pf Chip Capacitor GRM1555C1H101JA01 Murata L1 10 nh Chip Inductor 0603CS-10NX Coilcraft R1 0 Ω, 1 A Chip Resistor ERJ2GE0R00X Panasonic PCB Rogers R04350B, 0.010, ε r =3.66 M128499 MTL (Test Circuit Component Designations and Values table repeated for reference.) 9

50 OHM TYPICAL CHARACTERISTICS: 1805 1880 MHz, 5 VOLT OPERATION 20 5 G p, SMALL--SIGNAL GAIN (db) 19 18 17 16 15 1750 1790 1830 1870 1910 1950 IRL, INPUT RETURN LOSS (db) 10 15 20 25 30 35 1750 1790 1830 1870 1910 1950 Figure 14. Small -Signal Gain (S21) Figure 15. Input Return Loss (S11) 6 20 ORL, OUTPUT RETURN LOSS (db) 8 10 12 14 16 18 1750 1790 1830 1870 1910 1950 Figure 16. Output Return Loss (S22) G ps, POWER GAIN (db) 19 18 17 16 15 14 20 V CC = 5 Vdc, f = 1840 MHz, CW 22 24 26 28 30 Note: Maximum allowable current not to exceed 240 ma Figure 17. Power Gain versus Output Power 32 I CC, COLLECTOR CURRENT (ma) 380 360 340 320 300 280 260 240 12 Single--Carrier W--CDMA @ f = 1840 MHz LTE 10 MHz @ f = 1840 MHz 14 16 18 20 22 24 26 ACPR, ADJACENT CHANNEL POWER RATIO (dbc) 30 34 38 42 46 50 54 58 62 12 LTE 10 MHz @ f = 1840 MHz 14 16 Single--Carrier W--CDMA @ f = 1840 MHz 18 20 22 24 26 Figure 18. Collector Current versus Output Power Figure 19. Adjacent Channel Power Ratio versus Output Power 10

50 OHM APPLICATION CIRCUIT: 1880 1920 MHz, 5 VOLT OPERATION 2 RF INPUT R1 C1 Z1 1 2 3 Z2 Z3 C6 RF OUTPUT C2 L1 C5 C3 C4 V DD Z1 Z2 Z3 0.105 0.02 Microstrip 0.164 0.02 Microstrip 0.14 0.02 Microstrip Figure 20. Test Circuit Schematic Table 12. Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 1.2 pf Chip Capacitor GJM0225C1E1R2WB Murata C2 3.3 pf Chip Capacitor GJM0225C1E3R3WB Murata C3 1000 pf Chip Capacitor GCM1555R71E103KA37 Murata C4 0.1 μf Chip Capacitor GRM1555R61A104KA01D Murata C5 2.7 pf Chip Capacitor GJM0225C1E2R7WB Murata C6 100 pf Chip Capacitor GRM1555C1H101JA01 Murata L1 10 nh Chip Inductor 0603CS-10NX Coilcraft R1 0 Ω, 1 A Chip Resistor ERJ2GE0R00X Panasonic PCB Rogers R04350B, 0.010, ε r =3.66 M128499 MTL 11

50 OHM APPLICATION CIRCUIT: 1880 1920 MHz, 5 VOLT OPERATION M128499 V CC RF IN RF OUT R1 C1 C4 C3 C6 C2 L1 C5 SOT--89--3E Rev. 0 PCB actual size: 1.3 1.46. Figure 21. Test Circuit Component Layout Table 12. Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 1.2 pf Chip Capacitor GJM0225C1E1R2WB Murata C2 3.3 pf Chip Capacitor GJM0225C1E3R3WB Murata C3 1000 pf Chip Capacitor GCM1555R71E103KA37 Murata C4 0.1 μf Chip Capacitor GRM1555R61A104KA01D Murata C5 2.7 pf Chip Capacitor GJM0225C1E2R7WB Murata C6 100 pf Chip Capacitor GRM1555C1H101JA01 Murata L1 10 nh Chip Inductor 0603CS-10NX Coilcraft R1 0 Ω, 1 A Chip Resistor ERJ2GE0R00X Panasonic PCB Rogers R04350B, 0.010, ε r =3.66 M128499 MTL (Test Circuit Component Designations and Values table repeated for reference.) 12

50 OHM TYPICAL CHARACTERISTICS: 1880 1920 MHz, 5 VOLT OPERATION 19 0 G p, SMALL--SIGNAL GAIN (db) 18 17 16 15 14 1750 IRL, INPUT RETURN LOSS (db) 5 10 15 20 25 1800 1850 1900 1950 2000 2050 1750 1800 1850 1900 1950 2000 2050 Figure 22. Small -Signal Gain (S21) Figure 23. Input Return Loss (S11) 5 20 ORL, OUTPUT RETURN LOSS (db) 10 15 20 25 30 35 40 1750 1800 1850 1900 1950 2000 Figure 24. Output Return Loss (S22) 19 18 17 16 15 V CC = 5 Vdc, f = 1900 MHz, CW 14 2050 20 22 24 26 28 30 32 G ps, POWER GAIN (db) Note: Maximum allowable current not to exceed 480 ma. Figure 25. Power Gain versus Output Power I CC, COLLECTOR CURRENT (ma) 380 360 340 320 300 280 260 240 12 V CC = 5 Vdc, @ f = 1900 MHz, LTE 10 MHz 14 16 18 20 22 24 26 Figure 26. Collector Current versus Output Power ACPR, ADJACENT CHANNEL POWER RATIO (dbc) 30 34 38 42 46 50 54 58 V CC = 5 Vdc, f = 1900 MHz, LTE 10 MHz 62 12 14 16 18 20 22 24 26 Figure 27. Adjacent Channel Power Ratio versus Output Power 13

50 OHM APPLICATION CIRCUIT: 2570 2620 MHz, 5 VOLT OPERATION 2 RF INPUT C1 Z1 Z3 C2 1 2 3 Z2 C7 RF OUTPUT L1 C3 L2 C6 C5 C4 V DD Z1 Z2 Z3 0.115 0.02 Microstrip 0.26 0.02 Microstrip 0.12 0.02 Microstrip Figure 28. Test Circuit Schematic Table 13. Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C7 100 pf Chip Capacitors GRM1555C1H101JA01 Murata C2 22 pf Chip Capacitor GRM1555C1H220GA01 Murata C3 3.3 pf Chip Capacitor GJM0225C1E3R3WB Murata C4 0.01 μf Chip Capacitor GRM188B11E103MA19L Murata C5 1 μf Chip Capacitor GRM1555C81E105ME15 Murata C6 2.7 pf Chip Capacitor GJM0225C1E2R7WB Murata L1 1 nh Chip Inductor LL1005-FHL1N0S Toko L2 10 nh Chip Inductor 0603CS-10NX Coilcraft PCB Rogers R04350B, 0.010, ε r =3.66 M128499 MTL 14

50 OHM APPLICATION CIRCUIT: 2570 2620 MHz, 5 VOLT OPERATION M128499 V CC RF IN RF OUT C1 L1 C5 C4 C7 C2 C3 L2 C6 SOT--89--3E Rev. 0 PCB actual size: 1.3 1.46. Figure 29. Test Circuit Component Layout Table 13. Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C7 100 pf Chip Capacitors GRM1555C1H101JA01 Murata C2 22 pf Chip Capacitor GRM1555C1H220GA01 Murata C3 3.3 pf Chip Capacitor GJM0225C1E3R3WB Murata C4 0.01 μf Chip Capacitor GRM188B11E103MA19L Murata C5 1 μf Chip Capacitor GRM1555C81E105ME15 Murata C6 2.7 pf Chip Capacitor GJM0225C1E2R7WB Murata L1 1 nh Chip Inductor LL1005-FHL1N0S Toko L2 10 nh Chip Inductor 0603CS-10NX Coilcraft PCB Rogers R04350B, 0.010, ε r =3.66 M128499 MTL (Test Circuit Component Designations and Values table repeated for reference.) 15

50 OHM TYPICAL CHARACTERISTICS: 2570 2620 MHz, 5 VOLT OPERATION 15 0 G p, SMALL--SIGNAL GAIN (db) 14 3 13 12 11 10 2500 2540 2580 2620 2660 Figure 30. Small -Signal Gain (S21) IRL, INPUT RETURN LOSS (db) 6 9 12 15 2700 2500 2540 2580 2620 2660 2700 Figure 31. Input Return Loss (S11) 0 16 ORL, OUTPUT RETURN LOSS (db) 3 6 9 12 15 2500 2550 2600 2650 2700 G ps, POWER GAIN (db) 15 14 13 12 11 V CC = 5, Vdc, f = 2600 MHz, CW 10 20 22 24 26 28 30 32 Figure 32. Output Return Loss (S22) Figure 33. Power Gain versus Output Power I CC, COLLECTOR CURRENT (ma) 380 360 340 320 300 280 260 58 V CC = 5 Vdc, LTE 10 MHz @ f = 2600 MHz 240 62 V CC = 5 Vdc, LTE 10 MHz @ f = 2600 MHz 12 14 16 18 20 22 24 26 12 14 16 18 20 22 24 26 Figure 34. Collector Current versus Figure 35. Adjacent Channel Power Ratio versus Output Power Output Power ACPR, ADJACENT CHANNEL POWER RATIO (dbc) 30 34 38 42 46 50 54 16

50 OHM APPLICATION CIRCUIT: 2620 2690 MHz, 5 VOLT OPERATION 2 RF INPUT C1 Z1 Z3 C2 1 2 3 Z2 C7 RF OUTPUT L1 C3 L2 C6 C5 C4 V DD Z1 Z2 Z3 0.115 0.02 Microstrip 0.265 0.02 Microstrip 0.09 0.02 Microstrip Figure 36. Test Circuit Schematic Table 14. Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C7 100 pf Chip Capacitors GRM1555C1H101JA01 Murata C2 22 pf Chip Capacitor GRM1555C1H220GA01 Murata C3 3.3 pf Chip Capacitor GJM0225C1E3R3WB Murata C4 0.01 μf Chip Capacitor GRM188B11E103MA19L Murata C5 1 μf Chip Capacitor GRM1555C81E105ME15 Murata C6 2.4 pf Chip Capacitor GJM0225C1E2R4WB Murata L1 1 nh Chip Inductor LL1005-FHL1N0S Toko L2 10 nh Chip Inductor 0603CS-10NX Coilcraft PCB Rogers R04350B, 0.010, ε r =3.66 M128499 MTL 17

50 OHM APPLICATION CIRCUIT: 2620 2690 MHz, 5 VOLT OPERATION M128499 V CC RF IN RF OUT C1 L1 C2 C5 C4 C7 C3 L2 C6 SOT--89--3E Rev. 0 PCB actual size: 1.3 1.46. Figure 37. Test Circuit Component Layout Table 14. Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C7 100 pf Chip Capacitors GRM1555C1H101JA01 Murata C2 22 pf Chip Capacitor GRM1555C1H220GA01 Murata C3 3.3 pf Chip Capacitor GJM0225C1E3R3WB Murata C4 0.01 μf Chip Capacitor GRM188B11E103MA19L Murata C5 1 μf Chip Capacitor GRM1555C81E105ME15 Murata C6 2.4 pf Chip Capacitor GJM0225C1E2R4WB Murata L1 1 nh Chip Inductor LL1005-FHL1N0S Toko L2 10 nh Chip Inductor 0603CS-10NX Coilcraft PCB Rogers R04350B, 0.010, ε r =3.66 M128499 MTL (Test Circuit Component Designations and Values table repeated for reference.) 18

50 OHM TYPICAL CHARACTERISTICS: 2620 2690 MHz, 5 VOLT OPERATION 16 0 G p, SMALL--SIGNAL GAIN (db) 15 14 13 12 11 10 2550 2590 2630 2670 2710 2750 Figure 38. Small -Signal Gain (S21) IRL, INPUT RETURN LOSS (db) 3 6 9 12 15 18 2550 2590 2630 2670 2710 2750 Figure 39. Input Return Loss (S11) 0 15 ORL, OUTPUT RETURN LOSS (db) 3 6 9 12 15 18 2550 2590 2630 2670 2710 2750 G ps, POWER GAIN (db) 14 13 12 11 V CC = 5 Vdc, f = 2655 MHz, CW 10 20 22 24 26 28 30 32 Figure 40. Output Return Loss (S22) Figure 41. Power Gain versus Output Power I CC, COLLECTOR CURRENT (ma) 380 360 340 320 300 280 260 Single--Carrier W--CDMA @ f = 2655 MHz LTE 10 MHz @ f = 2655 MHz 240 14 16 18 20 22 24 26 Figure 42. Collector Current versus Output Power ACPR, ADJACENT CHANNEL POWER RATIO (dbc) 30 34 38 42 46 50 LTE 10 MHz @ f = 2655 MHz 54 Single--Carrier W--CDMA 58 @ f = 2655 MHz 62 14 16 18 20 22 24 26 Figure 43. Adjacent Channel Power Ratio versus Output Power 19

50 OHM APPLICATION CIRCUIT: 3400 3600 MHz, 5 VOLT OPERATION 2 RF INPUT R1 C1 1 2 3 C5 Z1 Z2 C7 RF OUTPUT C2 L1 C6 C4 C3 V DD Z1 Z2 0.165 0.02 Microstrip 0.105 0.02 Microstrip Figure 44. Test Circuit Schematic Table 15. Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 0.3 pf Chip Capacitor GJM0225C1ER30WB Murata C2 0.8 pf Chip Capacitor GJM0225C1ER80WB Murata C3 1000 pf Chip Capacitor GCM1555R71E103KA37 Murata C4 0.1 μf Chip Capacitor GRM1555R61A104KA01D Murata C5, C6 1.5 pf Chip Capacitors GJM0225C1E1R5WB Murata C7 10 pf Chip Capacitor GRM1555C1H100GA01 Murata L1 6.8 nh Chip Inductor 0603CS-6N8X Coilcraft R1 0 Ω, 1 A Chip Resistor ERJ2GE0R00X Panasonic PCB Rogers R04350B, 0.010, ε r =3.66 M128499 MTL 20

50 OHM APPLICATION CIRCUIT: 3400 3600 MHz, 5 VOLT OPERATION M128499 V CC RF IN RF OUT R1 C4 C3 C7 C1 C2 L1 C5 C6 SOT--89--3E Rev. 0 PCB actual size: 1.3 1.46. Figure 45. Test Circuit Component Layout Table 15. Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 0.3 pf Chip Capacitor GJM0225C1ER30WB Murata C2 0.8 pf Chip Capacitor GJM0225C1ER80WB Murata C3 1000 pf Chip Capacitor GCM1555R71E103KA37 Murata C4 0.1 μf Chip Capacitor GRM1555R61A104KA01D Murata C5, C6 1.5 pf Chip Capacitors GJM0225C1E1R5WB Murata C7 10 pf Chip Capacitor GRM1555C1H100GA01 Murata L1 6.8 nh Chip Inductor 0603CS-6N8X Coilcraft R1 0 Ω, 1 A Chip Resistor ERJ2GE0R00X Panasonic PCB Rogers R04350B, 0.010, ε r =3.66 M128499 MTL (Test Circuit Component Designations and Values table repeated for reference.) 21

50 OHM TYPICAL CHARACTERISTICS: 3400 3600 MHz, 5 VOLT OPERATION 14 0 G p, SMALL--SIGNAL GAIN (db) 13 12 11 10 9 8 7 3300 3350 3400 3450 3500 3550 3600 3650 3700 IRL, INPUT RETURN LOSS (db) 5 10 15 20 25 30 3300 3350 3400 3450 3500 3550 3600 3650 3700 Figure 46. Small -Signal Gain (S21) Figure 47. Input Return Loss (S11) 0 14 ORL, OUTPUT RETURN LOSS (db) 3 6 9 12 15 18 3300 3350 3400 3450 3500 3550 3600 Figure 48. Output Return Loss (S22) 3650 3700 G ps, POWER GAIN (db) 13 12 11 10 9 V CC = 5 Vdc, f = 3500 MHz, CW 8 18 20 22 24 26 28 30 32 Figure 49. Power Gain versus Output Power I CC, COLLECTOR CURRENT (ma) 280 275 270 265 260 255 250 245 58 V CC = 5 Vdc, LTE 10 MHz @ f = 3500 MHz 240 62 V CC = 5 Vdc, LTE 10 MHz @ f = 3500 MHz 12 14 16 18 20 22 24 26 12 14 16 18 20 22 24 26 Figure 50. Collector Current versus Figure 51. Adjacent Channel Power Ratio versus Output Power Output Power ACPR, ADJACENT CHANNEL POWER RATIO (dbc) 30 34 38 42 46 50 54 22

1.90 3.00 2X 45 4.35 2X 1.25 0.85 3X 0.70 2X 1.50 Figure 52. PCB Pad Layout for SOT -89A M30301 AWLYWZ Figure 53. Product Marking 23

PACKAGE DIMENSIONS 24

25

26

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes AN1955: Thermal Measurement Methodology of RF Power Amplifiers Software.s2p File Development Tools Printed Circuit Boards To Download Resources Specific to a Given Part Number: 1. Go to http://www.nxp.com/rf 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu FAILURE ANALYSIS At this time, because of the physical characteristics of the part, failure analysis is limited to electrical signature analysis. In cases where NXP is contractually obligated to perform failure analysis (FA) services, full FA may be performed by third party vendors with moderate success. For updates contact your local NXP Sales Office. The following table summarizes revisions to this document. REVISION HISTORY Revision Date Description 0 Oct. 2016 Initial Release of Data Sheet 27

How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including typicals, must be validated for each customer application by customer s technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/salestermsandconditions. NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. E 2016 NXP B.V. Document Number: MMG30301B 28 Rev. 0, 10/2016