Solving Electromagnetic Interference (EMI) with Ferrites

Similar documents
Application of Soft Ferrite Material: from EMC to RFID

Our Position on Quality and the Environment...I.F.C. Introduction...2 Magnetic Properties of Fair-Rite Materials...4 Fair-Rite Materials...

CABLE SHIELDING CHO-SORB EMI Ferrites

What is an Inductor? Token Electronics Industry Co., Ltd. Version: January 16, Web:

FERRITE CORES 2012 CATALOG

Ferrite EMI Noise Filtering

TOROID : FT,T & BALUN

Categorized by the type of core on which inductors are wound:

application note Philips Magnetic Products Cable Shielding Philips Components

Our Position on Quality And the Environment

Electro-Magnetic Interference and Electro-Magnetic Compatibility (EMI/EMC)

CMC 14 Common Mode Chokes Series

Looking for magnetic parts? Low Permeability Nanocrystalline Cores Nanophy. Material on design Permeability on demand

GLOSSARY OF TERMS FLUX DENSITY:

MAGNETIC PRODUCTS. SMD Beads and Chokes

Ferroxcube Soft Ferrites (MnZn - NiZn) Company Introduction

Design Considerations

EMI Cores ESD-R-H Toroidal Cores for Round Cables for Low & High Frequency & High Heat Resistance (with case) Applications

EMI AND BEL MAGNETIC ICM

Components. Véronique Beauvois, Ir Copyright 2015 Véronique Beauvois, ULg

EMI Cores ESD-R-B Toroidal Cores for Round Cables for Low & High Frequency (with snail-shaped case) Applications

Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies

Waveforms for Stimulating Magnetic Cores

2.0 EMI INTERFERENCE SUPPRESSION AND EMC ELECTROMAGNETIC COMPATIBILITY

RFI and Ferrites. Jim Brown K9YC Audio Systems Group, Inc. Santa Cruz. Primary Interference Mechanisms

Shielded Power Inductors

Overview. Applications. Benefits. EMI Cores ESD-SR Snap-on Cores for Round Cables for Low & High Frequency (with case)

V I S H A y I n T E R T E C H n O l O G y, I n C. In D u C T O R S In S T R u C TIO n A l INDuCtOR 101 Gu ID E w w w. v i s h a y.

MAGNETIC POWDER CORES

Applications ESD- FPD Series Form Type Applicable Cable Clamp Type

EMC Refresh Presented by Sylvain LE BRAS Würth Elektronik eisos France

Iron Powder Core Selection For RF Power Applications. Jim Cox Micrometals, Inc. Anaheim, CA

SMALLER-FASTER- OW R CO$T

Suppression Techniques using X2Y as a Broadband EMI Filter IEEE International Symposium on EMC, Boston, MA

Harald Klingbeil GSI Helmholtzzentrum für Schwerionenforschung GmbH. Contents

SMALLER-FASTER- OW R CO$T

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction.

Inductor Glossary. Token Electronics Industry Co., Ltd. Version: January 16, Web:

Electromagnetic Compatibility

Experience the Power of Confidence

EMI Filters Demystified. By William R. Bill Limburg February 21, 2018 Phoenix Chapter, IEEE EMC Society

Systems Engineering. Passive Components. v1.2 March itic.

Amorphous Magnetic Components & Applications

Multilayer Chip Beads

Differential-Mode Emissions

Powder Cores MPP / High Flux / High Flux Prime / Sendust / Power Flux / Ultra Flux / Special Shape Core / SMD Metal Core 东部电子材料有限公司

VDM Magnifer Material Data Sheet No August 2000 Edition

INTRODUCTION TO CONDUCTED EMISSION

Employing Reliable Protection Methods for Automotive Electronics

COMPONENTS MODULES CORES

Introduction EMC. Filter parameters. Definition of EMC / EMI. X-Capacitor. Sources of EMI. Coupling mechanism. Y-Capacitor.

Rhombus Industries Inc.

High Quality Mag-Amp Cores

TRAFTOR WINDINGS CHANGING THE RULES TOROIDAL INDUCTORS & TRANSFORMERS SOLUTIONS PROVIDER AND MANUFACTURER

Overview. Benefits. Applications. Turns and Impedance Characteristics. Core Material and Effective Frequency Range

HOME APPLICATION NOTES

Experience the Power of Confidence

FUNDAMENTALS OF EMC. Candace Suriano John Suriano

FILTERS & SUPPRESSION

Chapter 12 Digital Circuit Radiation. Electromagnetic Compatibility Engineering. by Henry W. Ott

Design Considerations

TOROIDAL CORES : IRON POWDER CORES

7. EMV Fachtagung. EMV-gerechtes Filterdesign. 23. April 2009, TU-Graz. Dr. Gunter Winkler (TU Graz) Dr. Bernd Deutschmann (Infineon Technologies AG)

-Thermo-set plastic coated parts can withstand a minimum breakdown voltage of 1000 Vrms, uniformly applied across the 'C' dimension of the toroid.

RF Inductor Series. Electronics Tech. Direct Electronics Industry Co., Ltd. Version: July 23, 2018

Ferrites VE3KL A spinning electron works like a gyroscope Gyro frequency tells all. 1/28/2017 David Conn VE3KL 1

Understanding and Eliminating RF Interference

GTEM cell simplifies EMC test

Ferrite for Switching Power Supplies Summary

ARNSW Balun Day. Balun construction

Electromagnetic interference at the mains ports of an equipment

EMC Overview. What is EMC? Why is it Important? Case Studies. Examples of calculations used in EMC. EMC Overview 1

3 GHz Wide Frequency Model of Surface Mount Technology (SMT) Ferrite Bead for Power/Ground and I/O Line Noise Simulation of High-speed PCB

Common myths, fallacies and misconceptions in Electromagnetic Compatibility and their correction.

RF Inductor Series. Token Electronics Industry Co., Ltd. Version: February 24, Web:

Ferrites for High Frequency Noise Suppression Chapter 9

Iron Powder Cores for High Q Inductors By: Jim Cox - Micrometals, Inc.

Multilayer ferrites with in-rush current capability

AltiumLive 2017: Component selection for EMC

EMI/EMC Components - Data Line Filters

Using Ferrites for High Frequency Noise Suppression

Soft Magnetics Application Guide

11 Myths of EMI/EMC ORBEL.COM. Exploring common misconceptions and clarifying them. MYTH #1: EMI/EMC is black magic.

FISCHER CUSTOM COMMUNICATIONS, INC.

-Thermo-set plastic coated parts can withstand a minimum breakdown voltage of 1000 Vrms, uniformly applied across the 'C' dimension of the toroid.

via cable Route of signal interferences Shielding against radiation

MAGNETOSCOP Measurement of magnetic field strengths in the range 0.1 nanotesla to 1 millitesla

Trees, vegetation, buildings etc.

Designing external cabling for low EMI radiation A similar article was published in the December, 2004 issue of Planet Analog.

Output Filtering & Electromagnetic Noise Reduction

Powder Cores. Molypermalloy High Flux

SIMULATION of EMC PERFORMANCE of GRID CONNECTED PV INVERTERS

ELECTRICAL FILTERS. (Command Control Communications Computer & Intelligence) E 3 LINE FILTERS EMI LEMP NEMP HEMP TEMPEST

MAGNETIC POWDER CORES

Measuring technique to characterize magnetic components & cores. JC Sun Munich, WBG conference

POWDER CORES. Molypermalloy High Flux Kool Mµ XFlux Kool Mµ MAX

Electromagnetic and Radio Frequency Interference (EMI/RFI) Considerations For Nuclear Power Plant Upgrades

Filters And Waveform Shaping

Specification for Conducted Emission Test

HI-Physix Laboratory, L-83, Sector-1, DSIDC Industrial Area, Bawana, Delhi. Discipline Electronics Testing Issue Date

Transcription:

Solving Electromagnetic Interference (EMI) with Ferrites What are ferrites? How do ferrites help Suppress EMI? How to chose proper ferrite and component Material Characteristics Material and Core Selection Frequency, bias, turns, temperature, size Cable cores and PCB level components 1

What Is A Ferrite? Ferrite is a ceramic material formed by reacting metal oxides into a magnetic material. - Soft magnetic material is one that can be both easily magnetized and demagnetized, so that it can store or transfer magnetic energy in alternating or other changing wave forms CHEMICAL COMPOSITION (metal oxides) + (iron oxide) (MnO + ZnO) (NiO + ZnO) (MgO + ZnO) + (Fe2O3) = + (Fe2O3) = + (Fe2O3) = Manganese - Zinc Nickel - Zinc Magnesium - Zinc 2

Definitions EMI Electromagnetic Interference Electromagnetic emissions from a device or system that interfere with the normal operation of another device or system. EMC Electromagnetic Compatibility The ability of a device or system to function without error in its intended electromagnetic environment. 3

EMI Suppression Sources of EMI Digital System Clock Pulses SMPS Oscillators Medical Equipment Microwave Equipment Radio & TV Frequency Converters Electronic Ballasts Switch Gear (contractors, relays) Household Appliances Power Supplies and Battery Chargers Motor Commutation Ignition Systems Victims (Susceptible) Radio & TV Receivers Modems Engine Control Modules Data transmission systems Medical Equipment Computer

Properties of Ferrites EMI Suppression A frequency dependant impedance that provides attenuation Formulations optimized for frequency bands Ferrites absorb EMI energy - dissipate as small amount of heat Powder compaction allows for a multitude of shapes High permeability concentrates magnetic filed in core allowing for a dense overall package High resistivity provides electrical isolation between multiple lines and minimizes eddy current losses 5

How Ferrites Are Used To Reduce Noise Noise Source Path Load (victim) Attenuation = 20 log 10 (Z s +Z sc + Z L ) Z s Z sc Z L (Z s + Z L ) db Z s Z sc Z L = Source impedance = Suppressor Core impedance = Load impedance 6

7

Magnetic Properties of Ferrite Materials Property Unit Symbol 75 73 31 43 44 46 61 Initial Permeability @B < 10 gauss ui 5000 2500 1500 800 500 500 125 gauss B 4300 3900 3400 2900 3000 3000 2350 Flux Density mt 430 390 340 290 300 300 235 @ Field Strength oersted H 5 5 5 10 10 10 15 A/m 400 400 400 800 800 800 1200 Residual Flux Density gauss Br 1400 1500 2500 1300 1100 1900 1200 mt 140 150 250 130 110 190 120 Resistivity Ω cm p 300 100 3000 1x10 5 1x10 9 1x10 8 1x10 8 Curie Temperature C Tc >140 >160 >130 >130 >160 >140 >300 Recommended Frequency Range 20-20 - 20 - EMI Suppression MHz < 30 < 30 < 500 250 250 250 > 200 8

B(gauss) Material Characteristics 43 Material 3000 2500 2000 1500 1000 500 0-500 -1000-1500 -2000-2500 -3000 B B R u i H C -10.00-8.00-6.00-4.00-2.00 0.00 2.00 4.00 6.00 8.00 10.00 H(oersted) B S H 43 Material Property Unit Symbol Value Initial Permeability m i 800 @ B < 10 gauss Flux Density gauss B 2900 @ Field Strength oersted H 10 Residual Flux Density gauss B r 1300 Coercive Force oersted H c.45 Temperature Coefficient of %/ C 1.25 Initial Permeability (20-70 C) Loss Factor 10-6 tand/m i 250 @ Frequency MHz 1.0 Curie Temperature C T c >130 Resistivity W cm r 1 10 5 Recommended Frequency Range MHz 20-250

Z=R s +jwl s R s =wl o m s wl s =wl o m s = X L L o =.0461 N 2 Ht log 10 ( OD ) 10-8 [ H ] ID [Dim mm] 10

Common-Mode vs Differential-Mode Common-Mode Currents Noise Currents in phase (same direction) in the conductor pair. Usually found where radiated noise attaches itself to the conductor. Differential-Mode Currents Can be Functional (desired) currents or Noise currents or combination of both. 11

Common-Mode Choke I D I D Differential Mode (functional) Currents Fluxes cancel * no inductance (impedance) * no effect on currents * core will not saturate with high I D currents Common Mode Currents I C I C Fluxes Add * inductance (impedance) in series with conductor * effectively blocking Common Mode currents 12

Differential Mode Application Ferrite Bead Provide selective attenuation of high frequency signals and not effect lower freq functional current Affects both Differential and Common Mode signals D C Core can saturate at high levels of (low frequency) current 13

IMPEDANCE IS AFFECTED BY: Frequency DC Bias Temperature Flux Density Turns 14

Complex Permeability vs. Frequency 10000 m s ' 73 Material 2500 µ MnZn 1000 m s ' 43 Material 800 µ NiZn 1000 100 m s', ms" 100 m s " m s', m s" 10 m s " 10 1 1E+4 1E+5 1E+6 1E+7 1E+8 1E+9 Frequency (Hz) 1 1E+5 1E+6 1E+7 1E+8 1E+9 Frequency (Hz) 15

Z, R S, X L (ohm) Impedance vs. Frequency 325 300 275 250 225 200 175 150 125 100 75 50 25 0 800 perm 0431164181 Round Cable Snap-It (1 turn) Z R S X L 1E+6 1E+7 1E+8 1E+9 Frequency (Hz)

Suppression Materials Comparison 75 (MnZn 5000 Perm.) 31 (MnZn 1500 Perm.) 73 (MnZn 2500 Perm.) 43/44 (NiZn 800/500 Perm.) 46 (MgZn 500 Perm.) 17 61 (NiZn 125).1 1 10 100 1000 Frequency (MHz)

18 26xx000301 Bead 3.5mm x 1.3mm x 0.6 mm

Z (W) Suppression Cable Comparison 120 Optimized for 100 khz to 1 GHz 100 125 perm 61 Material 80 1500 perm 31 Material 60 800 perm 43 Material 40 5000 perm 75 Material 500 perm 46 Material 20 0 100,000 1,000,000 10,000,000 100,000,000 1,000,000,000 Frequency (Hz) 19

5000 perm 1500 perm 800 perm Low Frequencies 100kHz-30MHZ (75 Material) Part Number A B C 2675540002 2675102002 Lower & Broadband Frequencies 1-300 MHz (31 Material) Part Number A B C 2631540002 2631102002 14.3 ±0.45 0.562 25.9 ±0.75 1.02 6.35 ±0.25 0.25 12.8 ±0.25 0.505 28.6 ±0.75 1.125 28.6 ±0.80 1.125 Wt. (g) H (Oe) Broadband Frequencies 25-300 MHz (43 Material) Part Number A B C 2643540002 2643102002 14.3 ±0.45 0.562 25.9 ±0.75 1.02 14.3 ±0.45 0.562 25.9 ±0.75 1.02 6.35 ±0.25 0.25 12.8 ±0.25 0.505 6.35 ±0.25 0.25 12.8 ±0.25 0.505 28.6 ±0.75 1.125 28.6 ±0.80 1.125 Impedance (Ω) 1 MHz 5 MHz 10 MHz+ 25 MHz+ 100 MHz+ 250 MHz 17.7 0.43 35 91 119 181 300 280 28.6 ±0.75 1.125 28.6 ±0.80 1.125 Wt. (g) H (Oe) 55 0.22 31 79 103 156 260 280 Wt. (g) Impedance (Ω) 200 khz 500 khz+ 1 MHz+ 2 MHz+ 5 MHz 17.7 0.43 30 80 133 154 95 55 0.22 30 83 120 70 54 H (Oe) Impedance (Ω) 10 MHz+ 25 MHz+ 100 MHz+ 250 MHz 17.7 0.43 105 171 250 255 55 0.22 91 145 235 275 125 perm Higher Frequencies 200-1000 MHz (61 Material) Part Number A B C 2661540002 2661102002 14.3 ±0.45 0.562 25.9 ±0.75 1.02 6.35 ±0.25 0.25 12.8 ±0.25 0.505 28.6 ±0.75 1.125 28.6 ±0.80 1.125 Wt. (g) H (Oe) Impedance (Ω) 100 MHz 250 MHz+ 500 MHz+ 1000 MHz 17.7 0.43 205 295 370 350 55 0.22 190 300 380 400 20

Z(Ohms) Impedance vs. Frequency with DC Bias 800 perm 2743021447 Surface Mount Bead 120 100 H= (0.4 p N I ) / l e 0A 80.2A 60 40 20.5A 1A 2A 5A 0 1E+06 1E+07 1E+08 1E+09 22 Frequency(Hz)

Z(W) Material Comparison w/ DC Bias 300 27--009112 Bead On Lead IMPEDANCE vs. FREQUENCY with No BIAS 250 125 perm 61-0A 2500 perm 73-0A 800 perm 43-0A 200 150 100 50 0 1E+6 1E+7 1E+8 1E+9 Frequency (Hz) 23

Z(W) Material Comparison w/ DC Bias 300 27--009112 Bead On Lead IMPEDANCE vs. FREQUENCY WITH DC BIAS 250 125 perm 61-0A 2500 perm 73-0A 800 perm 43-0A 200 61-2A 150 100 43-2A 50 73-2A 0 1E+6 1E+7 1E+8 1E+9 Frequency (Hz) 24

Percent Original Impedance(%) Percent Original Impedance(%) Percent Original Impedance(%) 2500 perm 73 Material 100 80 60 40 25MHz 20 10MHz 0 0 1 2 3 4 5 6 7 8 9 10 H(oersted) 125 perm 61 Material 100 H= (0.4 p N I ) / l e [Oe] 100 90 80 70 60 50 40 30 20 10 0 800 perm 43 Material 50MHz 25MHz 100MHz 0 1 2 3 4 5 6 7 8 9 10 H(oersted) 80 250MHz l e =.508 cm N=1 I = 2 H=4.95 O e 60 % Original Z 40 20 0 100MHz 0 1 2 3 4 5 6 7 8 9 10 H(oersted) @ 25MHz 2500 perm 73 12% 800 perm 43 32% 125 perm 61 40%

Z(W) 300 Material Comparison w/ DC Bias 27--009112 Bead On Lead IMPEDANCE vs. FREQUENCY WITH DC BIAS 250 61-0A 200 73-0A 43-0A 150 61-2A 100 43-2A 50 73-2A 0 1E+6 1E+7 1E+8 1E+9 Frequency (Hz) 26 l e =.508 cm N=1 I = 2 H=4.95 O e % Original Z Z @ 25MHz measured @ 25MHz 0Adc 2Adc % Original 2500 perm 73 12% 200 25 13% 800 perm 43 32% 142 36 25% 125 perm 61 40% 110 50 45%

5000 perm 1500 perm 800 perm Low Frequencies 100kHz-30MHZ (75 Material) Part Number A B C 2675540002 2675102002 Lower & Broadband Frequencies 1-300 MHz (31 Material) Part Number A B C 2631540002 2631102002 14.3 ±0.45 0.562 25.9 ±0.75 1.02 6.35 ±0.25 0.25 12.8 ±0.25 0.505 28.6 ±0.75 1.125 28.6 ±0.80 1.125 Wt. (g) H (Oe) Broadband Frequencies 25-300 MHz (43 Material) Part Number A B C 2643540002 2643102002 14.3 ±0.45 0.562 25.9 ±0.75 1.02 14.3 ±0.45 0.562 25.9 ±0.75 1.02 6.35 ±0.25 0.25 12.8 ±0.25 0.505 6.35 ±0.25 0.25 12.8 ±0.25 0.505 28.6 ±0.75 1.125 28.6 ±0.80 1.125 Impedance (Ω) 1 MHz 5 MHz 10 MHz+ 25 MHz+ 100 MHz+ 250 MHz 17.7 0.43 35 91 119 181 300 280 28.6 ±0.75 1.125 28.6 ±0.80 1.125 Wt. (g) H (Oe) 55 0.22 31 79 103 156 260 280 Wt. (g) Impedance (Ω) 200 khz 500 khz+ 1 MHz+ 2 MHz+ 5 MHz 17.7 0.43 30 80 133 154 95 55 0.22 30 83 120 70 54 H (Oe) Impedance (Ω) 10 MHz+ 25 MHz+ 100 MHz+ 250 MHz 17.7 0.43 105 171 250 255 55 0.22 91 145 235 275 125 perm Higher Frequencies 200-1000 MHz (61 Material) Part Number A B C 2661540002 2661102002 14.3 ±0.45 0.562 25.9 ±0.75 1.02 6.35 ±0.25 0.25 12.8 ±0.25 0.505 28.6 ±0.75 1.125 28.6 ±0.80 1.125 Wt. (g) H (Oe) Impedance (Ω) 100 MHz 250 MHz+ 500 MHz+ 1000 MHz 17.7 0.43 205 295 370 350 55 0.22 190 300 380 400 27

Percent Original Impedance [%] Impedance vs. Temperature 125 43 Material 125 61 Material 100 75 50 50MHz 25MHz 100MHz 100 75 50 100MHz 250MH 25 25 0-40 -20 0 20 40 60 80 100 120 140 Temperature o C 0-40 -20 0 20 40 60 80 100 120 140 Temperature o C 28

Amplitude Permeability vs. Flux Density 800 perm 43 Material m a 6000 5000 4000 3000 2000 1000 0 0 500 1000 1500 2000 2500 B (gauss) Measured on a.690"/.390"/.230" toroid at 10kHz. 25 o C 29

Z (ohm) The Effect of Turns on Impedance 1800 1500 perm 0431164181 Round Cable Snap-It 1620 1440 1260 1080 N=3 900 720 540 360 180 N=2 N=1 0 1E+6 1E+7 1E+8 1E+9 Frequency (Hz) 30

5000 perm 75 - Low Frequency Suppression Cable Components Optimized for 100kHz to 30MHZ 31

New Low Frequency Suppression Cable Snap-Its Optimized for 100kHz to 30MHZ 5000 perm 75 Snap-It Cores Dimensions (mm) Typical Impedance (1 Turn) Solid Equivalent Part Number Max Cable Dia A B C 500 khz 1MHz 5MHz 0475181651 4.90 12.80 5.10 25.10 35 66 110 2675023002 0475164281 6.30 20.00 6.60 39.40 49 102 110 2675540002 0475178281 8.70 21.50 9.00 39.40 46 87 74 2675665702 0475167281 9.85 23.70 10.15 39.40 47 92 67 2675626402 0475164181 12.70 31.00 13.05 39.40 58 102 50 2675102002 0475176451 18.00 38.60 18.35 47.50 92 130 66 3 x 2675821502 32

µ' / µ'' 10000 5000 perm 75 Material Complex Permeability <-------------optimal range for suppression ---------> µ' 1000 100 µ'' 10 10,000 100,000 1,000,000 10,000,000 Frequency (Hz)

Z (ohms) Comparison of 75 and 31 Material Cable Cores (max cable diameter 8.70 mm) 150 125 2675665702 0475178281 0431178281 5000 perm 75 solid 1500 perm 31 Snap-It 100 75 5000 perm 75 Snap-It 50 25 0 100,000 1,000,000 Frequency (Hz) 10,000,000 100,000,000

Z (ohms) Comparison of 75 and 31 Material Cable Cores (max cable diameter 12.70 mm) 150 125 2675102002 0475164181 0431164181 75 solid 5000 perm 31 Snap-It 1500 perm 100 75 50 75 Snap-It 5000 perm 25 0 100,000 1,000,000 Frequency (Hz) 10,000,000 100,000,000

Z- ohms 5000 perm 0475178281 with N=1, 3 and 5 turns 3000 2500 2000 N=5 1500 1000 N=3 500 N=1 0 100,000 1,000,000 10,000,000 100,000,000 Frequency (Hz)

Product Range EMI Suppression Products Cable Components Round Cable EMI Suppression Cores 75, 31, 43, 46, 61 12Ω to 380Ω 3.0 ID Round Cable Snap-Its 75, 31, 43/44, 46, 61 12Ω to 435Ω 1.00 ID [ NEW 1.40 ID, 31, core only]

Board Level SMD ferrites Chip Beads SM Beads Package sizes 0402, 0603, 1206, 1806, 1812 Y Std, Z High, H GHz Impedance Rated at 100MHz 10Ω to 2000Ω Current Rated 100mA to 6A Package sizes.184 x.120 up to.58 x.27 DM & CM 73(<50MHz), 43/44 (25-300MHz), 61 & 52 (250MHz-1GHz) Impedance Rated at 1MHz to 1GHz 9Ω to 600Ω Current Rated 5A (to 10A) 38

Material Matters 0603 size 120Ω +/-25% Y Std speed vs Z High Speed vs H GHz Speed 39

Z(Ohms) 0603 size 120Ω Y Std speed 400mA Device 2506031217Y0 180 160 140 120 100 80 60 40 0A 100mA 200mA 400mA 20 0 1E+06 1E+07 1E+08 1E+09 40 Frequency(Hz)

Z(Ohms) 0603 size 120Ω z High speed 450mA Device 2506031217Z0 350 300 250 200 150 100 50 0A.2A.45A 0 1E+06 1E+07 Frequency(Hz) 1E+08 1E+09 41

Z(Ohms) 0603 size 120Ω H GHZ speed 200mA Device 2506031217H0 900 800 700 600 500 200mA 400 100mA 300 0mA 200 100 0 1E+07 1E+08 1E+09 1E+10 42 Frequency(Hz)

2506031217Y0 (Blue) vs 2506031217Z0 (Black) vs 2506031217H0 (Red) 900 800 700 600 500 400 300 200 100 Material Matters 0 900 800 700 600 500 400 300 200 100 0 1E+7 1E+8 1E+9 1E+10 Frequency (Hz) 2506031217Y0 (Blue) vs 2506031217Z0 (Black) vs 2506031217H0 (Red) with 200 madc 1E+07 1E+08 1E+09 1E+10 Frequency(Hz)

Size Matters all 120Ω 0402 to 1812 packages Y Std Speed 44

Size Matters all 120Ω 0402 to 1812 packages w/ bias 45

Chip Beads 0805 600Ω vs 1206 600Ω Y Std speed vs SM Bead.43 x.20 600Ω 44 material 46

Chip Beads 0805 600Ω vs 1206 600Ω vs SM Bead.43 x.20 600Ω Y Std speed Size Matters 44 material 47

Product Range: EMI Suppression Products Board Components SM Beads 73, 43, 44, 52, 61 12Ω to 600Ω.2 x.1 x.1 to.6 x.3 x.2 Current 5A (>15 w/duty cycle) Differential and Common Mode Chip Beads 0402 to 1812 Y, Z, H 8Ω to2000ω 50mA to 6A

Review - Desirable Material Properties For EMI Suppression Materials optimized for optimum impedance in the intended frequency range High permeability at the low frequency range (high u ) Low permeability at high frequency range (high u ) Resistance to dc-bias (lower perm, larger size) Good thermal stability (Z vs. T) High Curie Temperature (Tc) 49

50