Generation of 15-nJ pulses from a highly efficient, low-cost. multipass-cavity Cr 3+ :LiCAF laser

Similar documents
Low-cost, single-mode diode-pumped Cr:Colquiriite lasers

Ultrafast Optical Physics II (SoSe 2017) Lecture 8, June 2

Module 4 : Third order nonlinear optical processes. Lecture 24 : Kerr lens modelocking: An application of self focusing

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 2, NO. 3, SEPTEMBER

Recent Progress in Pulsed Optical Synchronization Systems

Fundamental Optics ULTRAFAST THEORY ( ) = ( ) ( q) FUNDAMENTAL OPTICS. q q = ( A150 Ultrafast Theory

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology*

Soliton stability conditions in actively modelocked inhomogeneously broadened lasers

Special 30th Anniversary

Vertical External Cavity Surface Emitting Laser

Quantum-Well Semiconductor Saturable Absorber Mirror

Designing for Femtosecond Pulses

Development of near and mid-ir ultrashort pulse laser systems at Q-Peak. Evgueni Slobodtchikov Q-Peak, Inc.

Femtosecond pulse generation

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity

Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr 4þ :YAG laser

Tunable GHz pulse repetition rate operation in high-power TEM 00 -mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking

GENERATION OF FEMTOSECOND PULSED FROM TI:SAPPHIRE OSCILLATOR ABSTRACT INTRODUCTION

taccor Optional features Overview Turn-key GHz femtosecond laser

A new picosecond Laser pulse generation method.

Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode

FOR A LONG TIME, it was believed that the use of a

Passive mode-locking performance with a mixed Nd:Lu 0.5 Gd 0.5 VO 4 crystal

High-Power Femtosecond Lasers

Review of MPS Solid State Laser Systems

High-power operation of Tm:YLF, Ho:YLF and Er:YLF lasers

High-Power, Passively Q-switched Microlaser - Power Amplifier System

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

References and links Optical Society of America

High Power and Energy Femtosecond Lasers

Controllable harmonic mode locking and multiple pulsing in a Ti:sapphire laser

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers

How to build an Er:fiber femtosecond laser

80-fs Nd:silicate glass laser pumped by a singlemode 200-mW diode

High power VCSEL array pumped Q-switched Nd:YAG lasers

Fiber-laser-pumped Ti:sapphire laser

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

Extremely simple device for measuring 1.5-µm ultrashort laser pulses

1. INTRODUCTION 2. LASER ABSTRACT

G. Norris* & G. McConnell

External-Cavity Tapered Semiconductor Ring Lasers

All-fiber, all-normal dispersion ytterbium ring oscillator

A CW seeded femtosecond optical parametric amplifier

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers

Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier

Dispersion Effects in an Actively Mode-Locked Inhomogeneously Broadened Laser

Low-threshold femtosecond Nd:glass laser

PICOSECOND AND FEMTOSECOND Ti:SAPPHIRE LASERS

The Realization of Ultra-Short Laser Sources. with Very High Intensity

Heriot-Watt University

Yb-doped Mode-locked fiber laser based on NLPR Yan YOU

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C

GRENOUILLE.

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

First published on: 22 February 2011 PLEASE SCROLL DOWN FOR ARTICLE

Temporal coherence characteristics of a superluminescent diode system with an optical feedback mechanism

Locked Multichannel Generation and Management by Use of a Fabry Perot Etalon in a Mode-Locked Cr:Forsterite Laser Cavity

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators

Single-frequency operation of a Cr:YAG laser from nm

Wavelength switching using multicavity semiconductor laser diodes

Optical Isolator Tutorial (Page 1 of 2) νlh, where ν, L, and H are as defined below. ν: the Verdet Constant, a property of the

High resolution cavity-enhanced absorption spectroscopy with a mode comb.

High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals

Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL

Directly Chirped Laser Source for Chirped Pulse Amplification

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Ultra-stable flashlamp-pumped laser *

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Faraday Rotators and Isolators

Fabrication of Photorefractive Grating With 800 nm Femtosecond Lasers in Fe: LiNbO 3 and Rh:BaTiO 3 Crystals

A continuous-wave Raman silicon laser

Status on Pulsed Timing Distribution Systems and Implementations at DESY, FERMI and XFEL

High-power, high-energy diode-pumped Tm:YLF-Ho:YLF laser

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics

Testing with Femtosecond Pulses

High Energy Non - Collinear OPA

Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability

Lecture 08. Fundamentals of Lidar Remote Sensing (6)

Instruction manual and data sheet ipca h

Intra-cavity gain shaping of mode-locked Ti:Sapphire laser oscillations

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

Self-organizing laser diode cavities with photorefractive nonlinear crystals

Widely tunable Yb:KYW laser with a volume Bragg grating

6.1 Thired-order Effects and Stimulated Raman Scattering

High-power semiconductor lasers for applications requiring GHz linewidth source

High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system

E. U. Rafailov Optoelectronics and Biomedical Photonics Group School of Engineering and Applied Science Aston University Aston Triangle Birmingham

Solitary pulse shaping dynamics in cavity-dumped laser oscillators

Transcription:

Generation of 15-nJ pulses from a highly efficient, low-cost multipass-cavity Cr 3+ :LiCAF laser Umit Demirbas 1, Alphan Sennaroglu 1-2, Franz X. Kärtner 1, and James G. Fujimoto 1 1 Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 2 Laser Research Laboratory, Department of Physics, Koç University, Rumelifeneri, Sariyer, 34450 Istanbul, Turkey jgfuji@mit.edu Abstract We describe the generation of enhanced pulse energies and intensities using an extended multipass-cavity (MPC) Cr 3+: LiCAF laser, pumped by inexpensive, single spatial mode laser diodes. A semiconductor saturable absorber was used to initiate and sustain stable modelocked operation. The MPC reduced the pulse repetition rate to the 10 MHz level, scaling pulse energies and intensities. With only 540 mw of absorbed pump power, 98-fs pulses with energies of 9.9 nj and peak powers of ~101 kw, corresponding to 95 mw of average power at a repetition rate of 9.58 MHz, were generated. By increasing the intracavity negative dispersion, 310-fs pulses with energies of 15.2-nJ and peak powers of 49 kw, corresponding to 160 mw of average power at 10.51 MHz repletion rate, were also generated. These results demonstrate that low cost MPC Cr 3+ -doped colquiriite lasers can generate pulse energies and intensities comparable to those achieved by more expensive Ti:Sapphire laser technology. OCIS Codes: 140.3460: Lasers; 140.4050: Mode-locked lasers; 140.3580: Lasers, solidstate; 140.3480: Lasers, diode pumped; 140.3600: Lasers, tunable; 140.5680: Rare earth and transition metal solid-state lasers 1

Cr 3+ -doped colquiriite gain media such as Cr 3+ :LiCAF, Cr 3+ :LiSAF and Cr 3+ :LiSGaF can be directly diode-pumped near 650 nm and enable the development of low-cost and highly efficient lasers operating near 800 nm [1-11]. Furthermore, the broad gain bandwidths of these media enable the generation of pulses as short as 10 fs [5, 7]. Possible laser diode pump sources include diode arrays [4], broad-stripe single-emitter diodes [3, 7-9, 11] as well as single transverse-mode diodes [6, 10, 11]. The peak powers obtainable from colquiriite media can be increased by scaling the output energy and/or reducing the pulsewidths. To date, the highest peak power obtained from a diode pumped Cr 3+ :Colquiriite laser was 45 kw (50 fs, 2.27 nj pulses at 150 MHz), using a 15-W laser diode array to pump a Cr:LiSAF laser [4]. We recently reported the generation of 67-fs pulses with energies and peak powers up to 2.5 nj and 37 kw, respectively, from a Cr 3+ :LiCAF laser pumped by five 1-W broad-stripe diodes [9]. Using four, low-cost, single-mode pump diodes with a total absorbed power of 570 mw, 72-fs pulses were generated at a repetition rate of 127 MHz, corresponding to pulse energies of 1.4 nj and peak powers of 19.5 kw [10]. Although higher peak powers can be obtained with multimode diode pumping [4, 9], single mode pumping has the advantages of lower cost, better matching between pump and laser modes, significantly lower lasing thresholds, reduced thermal effects and higher efficiency [10, 11]. For example, mode-locked optical-to-optical conversion efficiencies of 28% have been demonstrated with single-mode diode pumping [10], whereas only 6% and 7.5% efficiency could be obtained with arrays [4], and broad-stripe single-emitter diodes, respectively [9]. Furthermore, for single mode diode pumping, no cooling is needed for the pump diodes or laser crystal, enabling compact and portable systems. However, since the pump powers available from single mode diodes are limited, pulse energies are lower. To overcome this limitation, the output energy can be scaled up by extending the laser cavity length to lower the pulse repetition rate. If the average output power is nearly constant, 2

lowering the repetition rate leads to higher output energies provided that additional dispersion is introduced to balance the nonlinearities. Multipass cavities (MPC) can be used to extend the cavity lengths with a relatively compact mirror configuration [6, 12]. MPCs have previously been applied to a Cr:LiSAF laser to obtain 39-fs, 0.75 nj pulses at a repetition rate of 8.6 MHz [6]. The pulse energy obtained in [6] was limited by the fact that high-power single-mode diodes and low-loss resonator optics were not available at the time. In this Letter, we describe the generation of enhanced pulse energies and intensities using a low cost, MPC femtosecond Cr 3+ :LiCAF laser pumped by four 150-mW singlemode laser diodes. Mode locking was initiated and sustained with a semiconductor saturable absorber mirror (SESAM) [13], also referred to as a saturable Bragg reflector (SBR) [14], which enabled stable and robust mode-locked operation. In mode-locked operation, 98-fs, 9.9-nJ pulses with a peak power of ~101 kw, corresponding to 95 mw of average power were obtained at 9.58 MHz repetition rate, were generated. In addition, 310-fs, 15.2-nJ pulses with a peak power of ~49 kw, corresponding to 160 mw of average power at 10.51 MHz repetition rate, were generated using increased intracavity dispersion. The optical-to-optical conversion efficiency was 15.8% and 26.7%, for the 98-fs and 310-fs configurations, respectively. To the best of our knowledge, these are the highest peak powers and pulse energies obtained from any Cr 3+ :Colquiriite laser to date. The pulse energies and peak intensities are comparable to femtosecond Ti:Sapphire lasers operating with ~1 W of average output powers. This suggests that diode pumped MPC Cr 3+ :Colquiriite lasers can be an attractive low cost alternative to more expensive Ti:Sapphire technology for applications in nonlinear optics, pump probe spectroscopy, amplifier seeding and multiphoton microscopy [15]. The demonstration of MPC cavities using Cr 3+ :LiCAF is challenging because its gain is significantly lower than that of Ti:Sapphire. Therefore, low loss mirrors, with reflectivity 3

approaching 99.99%, must be used. In this study, we focused on Cr:LiCAF because it enables the generation of shorter wavelengths than Cr:LiSAF and Cr:LiSGaF and also affords higher energy storage. The results here establish the feasibility for MPC pulse energy scaling in Cr:LiSAF and Cr:LiSGaF which have higher gains and are less sensitive to intracavity loss. Figure 1 shows the experimental setup for the short and the extended-cavity (MPC) Cr 3+ :LiCAF laser. Four, linearly-polarized, 660-nm single-mode diodes, costing only $150 each, (VPSL-0660-130-X-5-G, Blue Sky Research) were used as the pump (D1-D4). The diode outputs were collimated using 4.5-mm focal length lenses, coupled via polarizing beam splitter cubes (PBSs), and then focused inside the crystal using 65-mm focal length lenses. The short cavity was a standard astigmatically compensated, x-fold laser resonator, similar to that described in [10]. The continuous-wave (cw) resonator for the short cavity consisted of two curved pump mirrors (M1 and M2, R=75 mm), a flat end high reflector (M4), and a flat output coupler (OC). Pump mirrors (M1-M2) had a transmission >95% at the pump wavelength ( 660-nm) and had a reflectivity >99.9% from 740 to 860 nm. Arm lengths of 35 cm (OC arm) and 50 cm were used to obtain an estimated laser mode size of 20 μm x 28 μm (sagittal x tangential) inside the Cr:LiCAF crystal, which has a refractive index of n~1.4. The gain medium was a 2.5-mm-long, 1.5-mm-tall, Brewster-cut, 11% Cr-doped Cr 3+ :LiCAF crystal (from VLOC, Inc.). The crystal absorbed >98% of the incident pump for both polarizations, corresponding to a total of 540 mw of pump power. In cw laser experiments with the short cavity, the highest output power was 271 mw, obtained using a 0.85% output coupler, with a slope efficiency of 54%. Measuring the lasing thresholds with 7 different output couplers, we estimated the round trip loss of the short cavity to be 0.43 ± 0.1%. The cavity length was extended by removing the high reflecting end mirror M4 and adding a q-preserving MPC consisting of a flat (M5) and curved (M6, R=4 m) high reflector. 4

The separation between the MPC mirrors was 1 m, resulting in an angular advance of 60 per round trip on each MPC mirror. Beam injection and extraction were achieved by using notches in the mirrors. Because of the notches on the MPC mirrors, 6 full round trips were not completed. To complete the 6 round trips, which are required to preserve the q-parameter of the returning beam, we used an additional curved mirror (M7, R=4m) placed after M6. The beam exiting M6 was folded by M7 and retro-reflected by a flat end high reflector (M8) at a distance of 1 m from M7. This arrangement preserves the beam q-parameter, as described previously [12]. From the cw lasing data, the insertion loss of the MPC was estimated to be 0.35% ± 0.1. With the addition of the MPC, the high reflector arm length increased from 0.5 m to 12.5 m (0.5 m + 2x6x1 m), which reduced the repetition rates to 10-11 MHz. Finally, the optimum output coupling for the extended cavity increased to 3%, where we obtained 213 mw of cw output power with a slope efficiency of 48%. Note that, despite the additional 24 bounces introduced by the MPC cavity, the cw power only decreased from 271 mw to 213 mw, which was possible with the use of low loss MPC mirrors (R 99.99%). For mode-locked operation, additional mirror bounces (6 bounces on M9 and M10 and 2 bounces on M11) were used to provide the necessary group velocity dispersion (GVD). Except for the pump mirrors, output coupler, the GTI mirror (M11) and M12, all the optics used in the cavity were chirped mirrors with a GVD of -40 ±5 fs 2 per bounce from 730 to 870 nm. The GTI mirror (M11) had a GVD of -550 ±100 fs 2 per bounce from 775 to 815 nm. Mirrors M9-M11 were required to provide additional negative GVD, since the dispersion provided by the MPC mirrors was not sufficient. The additional mirrors, M9 to M11, could be eliminated and a simpler cavity design achieved if higher dispersion MPC mirrors with a GVD of -80fs 2 were used. The estimated total round-trip cavity dispersion was -2000 ±300 fs 2 (775-815 nm). A SESAM/SBR with a low nonsaturable loss ( 0.5%) was used to initiate and sustain mode locking [9, 10]. A curved mirror (M12) with R=60 cm was used to 5

focus onto the SESAM/SBR. Mode locking was not self starting and required slight tapping on the SESAM/SBR holder, but once initiated, the mode-locked laser was immune to environmental fluctuations. When mode-locked at the full pump power (~540 mw), the laser produced 9.92 nj pulses with 95 mw average power at a 9.58 MHz repetition rate (using a 2.4% output coupler). Figure 2 shows the measured optical spectra and autocorrelation. The main part of the spectra centered around 782.7 nm has a FWHM of 6.75 nm, which supports 95.5 fs Fourier limited pulses, assuming a sech 2 pulse shape. The autocorrelation has 151.3 fs FHWM, corresponding to a 98 fs pulse for sech 2 pulse shape. The time bandwidth product was 0.323, close to the transform limit of 0.315. The corresponding peak power of the pulses was 101 kw. The side lobe in the spectra around 809 nm was due to GVD oscillations introduced by the GTI mirror, and similar oscillations were also observed with the GTI mirror in the short cavity. Despite this limitation, the GTI mirror has the advantage that it can provide large dispersion. Achieving similar amounts of dispersion ( -550 fs 2 ) from standard DCMs would require 13 to 14 bounces. This would increase loss and limit pulse energies, especially when using a low-gain medium such as Cr:LiCAF Pulse energies were limited by the onset of modelocking instabilities which produced wings on the autocorrelation (due to multiple pulsing). We believe that these instabilities arise from two photon absorption (TPA) in the SESAM/SBR. Increasing the spot size on the SESAM/SBR reduces the two photon absorption, but also trades off the effective saturable absorber cross section, making initiation of modelocking more difficult. Operating the laser with longer pulses reduces the two photon absorption. A re-designed SESAM/SBR with a larger dynamic working range, should enable the generation of pulses with higher peak powers. When the dispersion of the cavity was increased to -4000 ±500 fs 2 by using more GTI bounces, we obtained 310-fs, 15.2 nj pulses with peak powers of ~49 kw, corresponding 6

to 160 mw average power at 10.51 MHz repetition rate. For this case, a curved mirror with R = 15 cm was used to focus on the SESAM/SBR, and mode locking was self starting. Figure 3 shows the spectrum and the autocorrelation, taken with the 2.4% output coupler at full pump power (~540 mw). This time the spectrum was narrower and was not affected by the nonlinear GVD from the GTI mirror, so a smooth spectrum could be obtained. The time bandwidth product was 0.325, close to the transform limit of 0.315 for sech 2 pulses. In conclusion, enhanced pulse energies and intensities were generated using an MPC Cr 3+ :LiCAF laser pumped by single-mode laser diodes. Pulse energies of 10 to 15 nj and peak intensities of 50 to 100 kw were achieved which, to our knowledge, are the highest generated from Cr:Colquiriite lasers to date. The MPC produced a ~10x enhancement in pulse energy by reducing laser repetition rate from 100 MHz to 10 MHz. Many applications in nonlinear optics depend on pulse energy and intensity. The reduced repetition rate may also be helpful for applications which are sensitive to average power or thermal effects, such as pump probe spectroscopy or multiphoton microscopy. The pulse energies achieved here are comparable to those obtained from femtosecond Ti:Sapphire lasers at 1 W average power. These results demonstrate that single-mode diode pumped MPC Cr 3+ :Colquirite lasers can be an attractive and low cost alternative to Ti:Sapphire technology. We thank Yu Gu for help and acknowledge support by the National Science Foundation (ECS-0456928 and ECS-0501478), Air Force Office of Scientific Research (FA9550-040-1-0046 and FA9550-040-1-0011) and the Scientific and Technical Research Council of Turkey (Tubitak, 104T247). 7

References (titles not included) 1. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, IEEE J. Quant. Electron. 24, 2243 (1988). 2. J. M. Evans, D. E. Spence, W. Sibbett, B. H. T. Chai, and A. Miller, Optics Letters 17, 1447 (1992). 3. P. M. W. French, R. Mellish, J. R. Taylor, P. J. Delfyett, and L. T. Florez, Optics Letters 18, 1934 (1993). 4. D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, Applied Physics B-Lasers and Optics 65, 235 (1997). 5. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipocs, Optics Letters 22, 1716 (1997). 6. R. P. Prasankumar, Y. Hirakawa, A. M. J. Kowalevicz, F. X. Kærtner, J. G. Fujitimo, and W. H. Knox, Optics Express 11, 1265 (2003). 7. P. Wagenblast, R. Ell, U. Morgner, F. Grawert, and F. X. Kartner, Optics Letters 28, 1713 (2003). 8. A. Isemann and C. Fallnich, Optics Express 11, 259 (2003). 9. U. Demirbas, A. Sennaroglu, A. Benedick, A. Siddiqui, F. X. Kartner, and J. G. Fujimoto, Optics Letters 32, 3309 (2007). 10. U. Demirbas, A. Sennaroglu, F. X. Kartner, and J. G. Fujimoto, Optics Letters 33, 590 (2008). 11. U. Demirbas, A. Sennaroglu, F. X. Kartner, and J. G. Fujimoto, JOSA B (2009 in press). 12. A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, IEEE J. Quant. Electron. 40, 519 (2004). 8

13. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derau, Ieee Journal of Selected Topics in Quantum Electronics 2, 435 (1996). 14. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, Ieee Journal of Selected Topics in Quantum Electronics 2, 454 (1996). 15. S. Sakadžić, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kartner, and J. G. Fujimoto, Optics Express, vol. 16, pp. 20848 20863, (2008). 9

References (titles included) [1] S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, "Licaalf6- Cr-3+ - a Promising New Solid-State Laser Material," Ieee Journal of Quantum Electronics, vol. 24, pp. 2243-2252, Nov 1988. [2] J. M. Evans, D. E. Spence, W. Sibbett, B. H. T. Chai, and A. Miller, "50-fs pulse generation from a self-mode-locked Cr:LiSrAlF6 laser," Optics Letters, vol. 17, pp. 1447-1449, 1992. [3] P. M. W. French, R. Mellish, J. R. Taylor, P. J. Delfyett, and L. T. Florez, "Mode- Locked All-Solid-State Diode-Pumped Crlisaf Laser," Optics Letters, vol. 18, pp. 1934-1936, Nov 1993. [4] D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, "High-average-power diode-pumped femtosecond Cr:LiSAF lasers," Applied Physics B-Lasers and Optics, vol. 65, pp. 235-243, Aug 1997. [5] I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipocs, "14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift," Optics Letters, vol. 22, pp. 1716-1718, 1997. [6] R. P. Prasankumar, Y. Hirakawa, A. M. J. Kowalevicz, F. X. Kærtner, J. G. Fujitimo, and W. H. Knox, "An extended cavity femtosecond Cr:LiSAF laser pumped by low cost diode lasers," Optics Express, vol. 11, pp. 1265-1269, 2003. [7] P. Wagenblast, R. Ell, U. Morgner, F. Grawert, and F. X. Kartner, "Diode-pumped 10-fs Cr3+: LiCAF laser," Optics Letters, vol. 28, pp. 1713-1715, Sep 2003. 10

[8] A. Isemann and C. Fallnich, "High-Power Colquiriite Laser with high slope efficiencies pumped by broad-area laser diodes.," Optics Express, vol. 11, pp. 259-264, 2003. [9] U. Demirbas, A. Sennaroglu, A. Benedick, A. Siddiqui, F. X. Kartner, and J. G. Fujimoto, "Diode-pumped, high-average power femtosecond Cr +3 :LiCAF laser," Optics Letters, vol. 32, pp. 3309-3311, 2007. [10] U. Demirbas, A. Sennaroglu, F. X. Kartner, and J. G. Fujimoto, "Highly efficient, low-cost femtosecond Cr 3+ :LiCAF laser pumped by single-mode diodes," Optics Letters, vol. 33, pp. 590-592, 2008. [11] U. Demirbas, A. Sennaroglu, F. X. Kartner, and J. G. Fujimoto, "Comparative investigation of diode pumping for continuous-wave and mode-locked Cr 3+ :LiCAF lasers " JOSA B, vol. 26, pp. 1-16, 2009. [12] A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, "Compact femtosecond lasers based on novel multipass cavities," Ieee Journal of Quantum Electronics, vol. 40, pp. 519-528, May 2004. [13] U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derau, "Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," Ieee Journal of Selected Topics in Quantum Electronics, vol. 2, pp. 435-453, Sep 1996. [14] S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, "Modelocking ultrafast solid-state lasers with saturable Bragg reflectors," Ieee Journal of Selected Topics in Quantum Electronics, vol. 2, pp. 454-464, SEP 1996. [15] S. Sakadžić, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kartner, and J. G. Fujimoto, "Multi-photon microscopy with a low- 11

cost and highly efficient Cr:LiCAF laser," Optics Express, vol. 16, pp. 20848 20863, 2008. 12

Figure Captions Figure 1: (Color online) Schematic for the short and extended-cavity (MPC) single mode diode pumped Cr 3+ :LiCAF laser. Figure 2: (Color online) Optical spectra and background-free intensity autocorrelation for the 98-fs, 9.92 nj pulses ( 101 kw peak power), corresponding to 95 mw average output power at 9.58 MHz repetition rate. Figure 3: (Color online) Optical spectra and autocorrelation for the 310-fs, 15.2-nJ pulses ( 49 kw peak power), corresponding to 160 mw of average output power at 10.51 MHz repetition rate. 13

Figure 1 (two column width) HR D2 HR PBS f=65 mm M1 M2 (75 mm) (75 mm) Cr:LiCAF f=65 mm HR PBS D4 HR D1 M3 M4 (short cavity HR) M5 (flat MPC) OC D3 M6 (4m MPC) M9 M11 (GTI) M8 (long cavity HR) M10 M7 (4m) SESAM/SBR M12 (60 cm) 14

Figure 2 1 1.00 τ 98 fs Intensity (au) _ 0.75 0.5 0.25 6.75 nm SHG Intensity (au) 0.75 0.50 0.25 0 760 780 800 820 Wavelength (nm) 0.00-400 -200 0 200 400 Delay (fs) 15

Figure 3 1 1.00 τ 310 fs Intensity (au) _ 0.75 0.5 0.25 2.2 nm SHG Intensity (au)_ 0.75 0.50 0.25 0 786 790 794 798 802 Wavelength (nm) 0.00-1200 -600 0 600 1200 Delay (fs) 16