Phase Centre Calibration of the Galileo Satellite Navigation Antenna

Similar documents
Phase Centre Calibration of the Galileo Satellite Navigation Antenna

ESOC s Multi-GNSS Processing

GNSS Integrity Monitoring

Quality of GRACE Orbits Using the Reprocessed IGS Products

VLBI and DDOR activities at ESOC

Introduction to Galileo PRS

WHU s developments for the MGEX precise products and the GNSS ultra-rapid products

Guorong Hu & Michael Moore Geodesy Section, Geoscience Australia

Galileo Performance Update Rafael Lucas European Space Agency

Splinter Meeting of the IGS Antenna Working Group

Issues Related to the Use of Absolute GPS/GLONASS PCV Models

Millimetre Spherical Wave Antenna Pattern Measurements at NPL. Philip Miller May 2009

ANTEX Considerations for Multi-GNSS Work

VLBI processing at ESOC

ICG WG-B Achievements on Interoperable GNSS Space Service Volume (SSV) November, 2016 Sochi, Russian Federation

Multi-Technique Reprocessing and Combination using Space-Ties

GPS-Galileo Time Offset (GGTO) Galileo Implementation Status and Performance. Jörg Hahn

Geo++ White Paper. Comparison and Analysis of BLOCK II/IIA Offsets from Antenna Field Calibrations

Titelmaster. Antenna properties

Real-Time and Multi-GNSS Key Projects of the International GNSS Service

Modelling GPS Observables for Time Transfer

CALIBRATING GNSS SATELLITE ANTENNA GROUP-DELAY VARIATIONS USING SPACE AND GROUND RECEIVERS

The EU Satellite Navigation programmes status Applications for the CAP

Absolute Antenna Calibration

Evaluation of Potential Systematic Bias in GNSS Orbital Solutions

BeiDou Orbit Determination Processes and Products in JPL's GDGPS System

Monitoring the Ionosphere and Neutral Atmosphere with GPS

The Geodetic Reference Antenna in Space (GRASP): A Mission to Enhance the Terrestrial Reference Frame

GNSS Programme. Overview and Status in Europe

Field experience with future GNSS ranging signals (a review). A.Simsky, J.-M. Sleewaegen, W. De Wilde Septentrio, Belgium

STABILITY OF GLOBAL GEODETIC RESULTS

Multi-technique combination at observation level with NAPEOS

Galileo. 7th ITFS, Rome, Italy, 3-5 November Dr. Stefan Bedrich. Kayser-Threde GmbH Wolfratshauser Str Munich

Attitude Determination by Means of Dual Frequency GPS Receivers

Galileo Open Service Navigation Message

Characterization of GOCE GPS Antennas

COMPARISON BETWEEN BROADCAST AND PRECISE ORBITS: GPS GLONASS GALILEO AND BEIDOU. A. Caporali and L. Nicolini University of Padova, Italy

Chapter 6 Part 3. Attitude Sensors. AERO 423 Fall 2004

ION GNSS 2011 FILLING IN THE GAPS OF RTK WITH REGIONAL PPP

Multi-Constellation GNSS Precise Point Positioning using GPS, GLONASS and BeiDou in Australia

Satellite Laser Retroreflectors for GNSS Satellites: ILRS Standard

Simulation Results of Alternative Methods for Formation Separation Control

EUROPEAN GNSS (GALILEO) INITIAL SERVICES NAVIGATION SOLUTIONS POWERED BY E U R O P E OPEN SERVICE QUARTERLY PERFORMANCE REPORT

RTK in Industry and Practical Work

GFZ Analysis Centre: Multi-GNSS Processing and Products

Large Impedance Ground Plane Reference Station Antenna: Basics of Design and Field Test Results

Relative positioning with Galileo E5 AltBOC code measurements

ESA Proposal for Multi GNSS Ensemble Time MGET. Werner Enderle Erik Schoenemann

The CNI Open Source Satellite Simulator based on OMNeT++

PARIS Ocean Altimeter

GPS Geodetic Reference System WGS 84

Bernhard Hofnlann-Wellenhof Herbert Lichtenegger Elmar Wasle. GNSS - Global Navigation Satellite Systenls. GPS, GLONASS, Galileo, and nl0re

Multisystem Real Time Precise-Point-Positioning, today with GPS+GLONASS in the near future also with QZSS, Galileo, Compass, IRNSS

Relative Navigation, Timing & Data. Communications for CubeSat Clusters. Nestor Voronka, Tyrel Newton

ExoMars and Beyond. Thales Alenia Space. Feb 28th, 9:00 AM. Follow this and additional works at:

About compliance of GLONASS S/C retroreflectors system with the requirements of International Laser Ranging Service standard

CH GPS/GLONASS/GALILEO/SBAS Signal Simulator. General specification Version 0.2 Eng. Preliminary

CDAAC Ionospheric Products

Multi-GNSS / Multi-Signal code bias determination from raw GNSS observations

GNSS Ionosphere Analysis at CODE

Multipath and Atmospheric Propagation Errors in Offshore Aviation DGPS Positioning

KOMPSAT-2 Orbit Determination using GPS SIgnals

Integer Ambiguity Resolution for Precise Point Positioning Patrick Henkel

Biomass, a polarimetric interferometric P-band SAR mission

GNSS Modernisation and Its Effect on Surveying. Short range GNSS phase-based positioning is limited by multipath

Navigation Innovation and Support Programme (NAVISP): a new ESA programme in Navigation to foster innovation and competitiveness of European industry

debris manoeuvre by photon pressure

A New Approach for Field Calibration of Absolute Antenna Phase Center Variations

Introduction to Aerospace Engineering

Scalable Front-End Digital Signal Processing for a Phased Array Radar Demonstrator. International Radar Symposium 2012 Warsaw, 24 May 2012

SLR residuals to GPS / GLONASS and combined GNSS-SLR analysis

GNSS Signal Structures

Radiation Pattern of Waveguide Antenna Arrays on Spherical Surface - Experimental Results

GLObal Navigation Satellite System (GLONASS)

On the Plane Wave Assumption in Indoor Channel Modelling

Galileo Information Center for Latin America / Application of the ISMR Query Tool in the analysis of Ionospheric Scintillation from Galileo Satellites

IGS workshop 2018 Multi-GNSS through Global Collaboration Datum: 29 October - 2 November 2018 Plats: Wuhan, China Deltagare: Tong Ning (I0101)

GPS Technical Aspects

From Passive to Active Control Point Networks Evaluation of Accuracy in Static GPS Surveying

Current status of Quasi-Zenith Satellite System. Japan Aerospace Exploration Agency QZSS Project Team

Testing of GNSS Dual-Frequency with Smartphones

Terrestrial Reference Frame Realization from Combined GPS/LEO Orbit Determination

Status of the ACES mission

GNSS Analysis with Galileo Observations in the Subnetwork of the BEK Analysis Centre

Preparing for the Future The IGS in a Multi-GNSS World

ECE 6390: Satellite Communications and Navigation Systems TEST 1 (Fall 2010)

King AbdulAziz University. Faculty of Environmental Design. Geomatics Department. Mobile GIS GEOM 427. Lecture 3

Fundamentals of GPS for high-precision geodesy

CONVERGENCE TIME IMPROVEMENT OF PRECISE POINT POSITIONING

Posicionamento por ponto com. Posicionamento por satélite UNESP PP 2017 Prof. Galera

3D-Map Aided Multipath Mitigation for Urban GNSS Positioning

Notes 21 Introduction to Antennas

The Interoperable Global Navigation Satellite Systems Space Service Volume

RADIOMETRIC TRACKING. Space Navigation

PSInSAR validation by means of a blind experiment using dihedral reflectors

GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) ECE 2526E Tuesday, 24 April 2018

Basics of Satellite Navigation an Elementary Introduction Prof. Dr. Bernhard Hofmann-Wellenhof Graz, University of Technology, Austria

RECOMMENDATION ITU-R S *

GPS (GNSS) Telecom Time Now and Future 2011 Telcordia-NIST-ATIS Workshop on Synchronization in Telecommunications Systems May 10-12, 2011

Linear Wire Antennas. EE-4382/ Antenna Engineering

Transcription:

Phase Centre Calibration of the Galileo Satellite Navigation Antenna IGS workshop 2017, Paris (France) Antennas & Biases Session F. Gonzalez (ESA) M. Söllner (Airbus) E. Schönemann (ESA) F. Dilssner (ESA) 05/07/2017 ESA UNCLASSIFIED - For Official Use

Summary 1. Introduction 2. Metadata information to correct phase measurements Antenna Phase Centre Offset (PCO) Antenna Phase Centre Variation (PCV) Antenna - User direction (attitude) Antenna Reference Point (ARP) Centre of Mass (CoM) 3. Galileo Metadata and IGS 4. Conclusions ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 2

Introduction Galileo Antenna Metadata (θ,φ) Phase Centre Variation (E1, E5a, E5b, E5, E6) Phase Centre Offset (E1, E5a, E5b, E5, E6) Static Antenna Reference Point Centre of Mass Dynamic ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 3

Introduction IGS Antenna data Dynamic Static Phase Centre Variation Ionosphere-free (E1-E5a) (θ,φ) Phase Centre Offset (E1, E5a, E5b, E5, E6) Antenna Reference Point Phase Centre Variation (E1, E5a, E5b, E5, E6) Static Centre of Mass Dynamic ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 4

Antenna - types Two antenna types GSAT01xx - EADS CASA GSAT02xx - Thales Alenia ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 5

Antenna chamber calibration Individual for each navigation antenna by manufacturer Directional in azimuth (Φ) and nadir (θ) Each single frequency bands (E1, E5a, E5b, E5, E6) ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 6

Antenna Phase Centre offset (PCO) Farfield Sphere Segment with Radius r around MRP C MRP (α) from measurements in constant distance from MRP Delay pattern C FF on farfield sphere in distance r around MRP: C α, r = C α ( ) ( ) r FF MRP + R(α) r R(α 2 ) Range from PCO to sphere around MRP: " R α = r d! rˆ α ( ) ( ) R(α 1 ) PCO d MRP C dx = C dy = C dz = MRP MRP ( θ, ϕ) 2 2 sin θ cos ϕ MRP ( θ, ϕ) sinθ cosϕ sinθ sinϕ 2 2 sin θ sin ϕ ( θ, ϕ) cosθ C ( θ, ϕ) MRP 2 2 ( cos θ cosθ ) cosθ PCO: Find d, where R(θ) is most similar to C FF (θ,r)!! 2! Minimize res( d ) = ( C ( ) ( ) 2 PCO α, d CPCO α, d " " with C α, d = C α + d! rˆ α PCO ( ) ( ) ( ) MRP < > (weighted) averaging over α (field of view) Note, α represents the observation direction (off-axis angle θ and azimuth angle ϕ) ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 7

Antenna Phase Center Variation (PCV) Azimuthal values [0,360 ] Zenith values from 0 to 14 (GSAT01) and 20 (GSAT02) All 5 single frequencies GALILEO-1 E11 E101 2011-060A TYPE / SERIAL NO CHAMBER ESA 1 09-FEB-12 METH / BY / # / DATE 2.0 DAZI 0.0 14.0 1.0 ZEN1 / ZEN2 / DZEN 5 # OF FREQUENCIES GALILEO-2 E18 E201 2014-050A TYPE / SERIAL NO CHAMBER ESA 1 12-FEB-16 METH / BY / # / DATE 5.0 DAZI 0.0 20.0 0.5 ZEN1 / ZEN2 / DZEN 5 # OF FREQUENCIES ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 8

Antenna Phase Center Variation (PCV) Azimuthal values [0,360 ] Zenith values from 0 to 14 (GSAT01) and 20 (GSAT02) All 5 single frequencies (e.g. E1 signal). 4 2 GSAT0101 (IOV) GSAT0201 (FOC) 0 [millimetres] 2 4 6 8 0 2 4 6 8 10 12 14 16 18 20 ESA UNCLASSIFIED - For Official Use Nadir angle [deg] ESA 05/07/2017 Slide 9

Antenna - PCV Azimuthal components (GSAT01) ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 10

Antenna - User direction (attitude) Azimuthal correction requires Satellite yaw modeling (e.g. GSAT0101) Orientation accuracy better than ground antennas 1 1 Source: F.Dilssner, Galileo IOV Spacecraft Metadata and Its Impact on Precise Orbit Determination, EGU2017 ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 11

Antenna Reference Point Antenna integrated on body frame Physical point on the satellite [mm] X Y Z GSAT01 1375.5 600.0 1100.5 GSAT02 140.0 0.0 1215.0 ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 12

Centre of Mass dry measurement in stow ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 13

Centre of Mass tank filling ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 14

Centre of Mass Solar array deployment ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 15

Centre of Mass - Values Dynamic information. Value after any maneuver sent to ILRS Agreement between S/C well below 1 cm +X [mm] GSAT01 1206.0 1205.8 1205.6 1205.4 1205.2 1205.0 695 696 696 697 697 698 698 Mass [Kg] +X [mm] 320 310 300 290 280 270-01 -02 GSAT02 260 650 660 670 680 690 700 710 720 Mass [Kg] ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 16

Metadata versus IGS Galileo (GSAT_wwww.atx) IGS (IGS14.atx) Source Measured on ground Estimated in space Types Frequencies Data-static Per single Satellite Single Frequency (E1,E5a,E5b,E5,E6) PCV PCO (θ,φ) PCO - ARP ARP - SRF per family (IOV,FOC-L3,FOC) Ionosphere-free (E1-E5a) PCV PCO (θ) Data-dynamic CoM - SRF PCO CoM Attitude Normal + Modified Normal Frame Satellite Reference Frame Antex ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 17

Metadata versus IGS Accuracy of estimated in space affected by models accuracy (e.g. SRP) Estimated in Space using NAPEOS versus measured on ground 0.035 0.2 0.03 0.15 0.025 0.1 0.02 0.05 Metre 0.015 0.01 0.005 0-0.005-0.01 101 102 103 201 202 203 204 205 206 207 208 X Y Metre 0-0.05-0.1-0.15-0.2-0.25 101 102 103 201 202 203 204 205 206 207 208 Z ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 18

Summary and conclusions Calibrated Metadata for Galileo antenna phase center corrections Antenna Phase Centre Offset (PCO), Variation (PCV) and Reference Point (ARP) Satellite Centre of Mass (CoM) and Attitude (user direction) Benefit Tie GNSS phase measurements consistently to the spacecraft CoM Especially relevant for GNSS-based realization of terrestrial scale, independent of SLR/VLBI Galileo is the first GNSS disclosing the full range of metadata for each antenna and carrier frequency Radial antenna offsets for other GNSS become accessible without the need to adopt any external scale Status GSAT01 released during Initial Service Declaration (Dec-2016) GSAT02 under release process. Recommendation ANTEX format update to handle COM / ARP Location https://www.gsc-europa.eu/support-to-developers/galileo-iov-satellite-metadata#2 https://ilrs.cddis.eosdis.nasa.gov/missions/satellite_missions/current_missions/ga01_com.html ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 19

THANKS for your attention ESA UNCLASSIFIED - For Official Use ESA 05/07/2017 Slide 20