OPTICAL BENCH DEVELOPMENT FOR LISA

Similar documents
7th International LISA Symposium

Martin Gohlke 1,2, Thilo Schuldt 1,3, Dennis Weise 1, Jorge Cordero 1,3, Achim Peters 2, Ulrich Johann 1, and Claus Braxmaier 1,3

Picometer Interferometry and its Application in Dilatometry and Surface Metrology

LISA and SMART2 Optical Work in Europe

Testbed for prototypes of the LISA point-ahead angle mechanism

International Conference on Space Optics October 2016

LISA. Gerhard Heinzel Rencontres de Moriond, La Thuile, Max-Planck Institut für Gravitationsphysik Albert Einstein Institut

Designing Optical Layouts for AEI s 10 meter Prototype. Stephanie Wiele August 5, 2008

Stability of a Fiber-Fed Heterodyne Interferometer

LISA AIV/T. N. Dinu Jaeger ARTEMIS. [joint work with APC and CNES]

Back-Reflected Light and the Reduction of Nonreciprocal Phase Noise in the Fiber Back-Link on LISA

Picometer stable scan mechanism for gravitational wave detection in space

The AEI 10 m Prototype. June Sina Köhlenbeck for the 10m Prototype Team

Some Progress In The Development Of An Optical Readout System For The LISA Gravitational Reference Sensor

Lasers for LISA: overview and phase characteristics

Optical Telescope Design Study Results

Laser interferometry for future satellite gravimetry missions

Installation and Characterization of the Advanced LIGO 200 Watt PSL

The VIRGO injection system

LISA ON TABLE : AN OPTICAL SIMULATOR FOR LISA

The LTP interferometer aboard SMART-2

Manufacturing, testing and alignment of Sentinel-2 MSI telescope mirrors

1.6 Beam Wander vs. Image Jitter

arxiv: v1 [physics.ins-det] 5 Nov 2014

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

Experimental demonstration of weak-light laser ranging and data communication for LISA

Results from the Stanford 10 m Sagnac interferometer

Analog phase lock between two lasers at LISA power levels

Alignment control of GEO 600

3.0 Alignment Equipment and Diagnostic Tools:

Optical generation of frequency stable mm-wave radiation using diode laser pumped Nd:YAG lasers

Final Report for IREU 2013

arxiv: v3 [physics.ins-det] 25 Sep 2017

Compte rendu LISA: AIV/T

Absolute distance interferometer in LaserTracer geometry

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and

Large-Area Interference Lithography Exposure Tool Development

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA

The VIRGO detection system

Virgo status and commissioning results

The VIRGO suspensions

Difrotec Product & Services. Ultra high accuracy interferometry & custom optical solutions

Periodic Error Correction in Heterodyne Interferometry

HYPER Industrial Feasibility Study Final Presentation Hyper Technology Road Map

arxiv: v1 [gr-qc] 16 Nov 2009

Techniques for the stabilization of the ALPS-II optical cavities

A LATERAL SENSOR FOR THE ALIGNMENT OF TWO FORMATION-FLYING SATELLITES

Optical Signal Processing

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS

la. Smith and C.P. Burger Department of Mechanical Engineering Texas A&M University College Station Tx

F. Barillot Cedrat Technologies MEFISTO Design & tests of a demonstrator for filet compensation mechanism

LTP: The LISA Technology Package aboard LISA Pathfinder

3D Optical Motion Analysis of Micro Systems. Heinrich Steger, Polytec GmbH, Waldbronn

COATS: compact optical 5DoF attitude sensor for space applications

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

Advanced Virgo commissioning challenges. Julia Casanueva on behalf of the Virgo collaboration

LISA Gravitational Reference Sensors

A Fast Phase meter for Interferometric Applications with an Accuracy in the Picometer Regime

Sub-millimeter Wave Planar Near-field Antenna Testing

A gravitational wave is a differential strain in spacetime. Equivalently, it is a differential tidal force that can be sensed by multiple test masses.

Jones matrix analysis of high-precision displacement measuring interferometers

HIGH STABILITY LASER FOR INTERFEROMETRIC EARTH GRAVITY MEASUREMENTS

Swept Wavelength Testing:

Use of Computer Generated Holograms for Testing Aspheric Optics

Optical design of shining light through wall experiments

Polarization Sagnac interferometer with a common-path local oscillator for heterodyne detection

ADALAM Sensor based adaptive laser micromachining using ultrashort pulse lasers for zero-failure manufacturing D2.2. Ger Folkersma (Demcon)

Wavefront Sensor for the ESA-GAIA Mission

Optical Communications and Networking 朱祖勍. Sept. 25, 2017

J. C. Wyant Fall, 2012 Optics Optical Testing and Testing Instrumentation

Wave Front Detection for Virgo

Agilent 10705A Single Beam Interferometer and Agilent 10704A Retroreflector

CHARA AO Calibration Process

Improving a commercially available heterodyne laser interferometer to sub-nm uncertainty

Deep phase modulation interferometry for test mass measurements on elisa

Assembly and Experimental Characterization of Fiber Collimators for Low Loss Coupling

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Kennedy Thorndike on a small satellite in low earth orbit

Development of C-Mod FIR Polarimeter*

Interferometer signal detection system for the VIRGO experiment. VIRGO collaboration

OPSENS WHITE-LIGHT POLARIZATION INTERFEROMETRY TECHNOLOGY

PoS(PhotoDet 2012)051

Improving seismic isolation in Advanced LIGO using a ground rotation sensor

Development of a Low-order Adaptive Optics System at Udaipur Solar Observatory

RECOMMENDATION ITU-R SA Protection criteria for deep-space research

arxiv: v1 [gr-qc] 10 Sep 2007

Angular Drift of CrystalTech (1064nm, 80MHz) AOMs due to Thermal Transients. Alex Piggott

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

OPSENS WHITE-LIGHT POLARIZATION INTERFEROMETRY TECHNOLOGY

Congress Best Paper Award

Design of the cryo-optical test of the Planck reflectors

SA210-Series Scanning Fabry Perot Interferometer

7th Edoardo Amaldi Conference on Gravitational Waves (Amaldi7)

Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager)

How to Build a Gravitational Wave Detector. Sean Leavey

The performance of the CHEOPS On-Ground calibration system

Wavelength Control and Locking with Sub-MHz Precision

Experimental Test of an Alignment Sensing Scheme for a Gravitational-wave Interferometer

Thoughts on noise in LISA What do we learn from LPF? M Hewitson LISA Consortium Meeting Paris 13th October 2015

This is how PI Does Measuring - Part I

Transcription:

ICSO 2010 OPTICAL BENCH DEVELOPMENT FOR LISA L. d Arcio 5, J. Bogenstahl 3, M. Dehne 3, C. Diekmann 3, E. D. Fitzsimons 2, R. Fleddermann 3, E. Granova 3, G. Heinzel 3, H. Hogenhuis 4, C. J. Killow 2, M. Perreur-Lloyd 2, J. Pijnenburg 4, D. I. Robertson 2, A. Shoda 3, A. Sohmer 1, A. Taylor 2, M. Tröbs 3, G. Wanner 3, H. Ward 2, and D. Weise 1 1 EADS Astrium GmbH - Satellites, 88039 Friedrichshafen, Germany 2 University of Glasgow, Glasgow G12 8QQ, Scotland, UK 3 Albert Einstein Institute, Callinstrasse 38, 30167 Hannover, Germany 4 TNO Science & Industry, P.O. Box 155, 2600 AD Delft, The Netherlands 5 ESA/ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands Abstract For observation of gravitational waves at frequencies between 30 µhz and 1 Hz, the LISA mission will be implemented in a triangular constellation of three identical spacecraft, which are mutually linked by laser interferometry in an active transponder scheme over a 5 million kilometer arm length. On the end point of each laser link, remote and local beam metrology with respect to inertial proof masses inside the spacecraft is realized by the LISA Optical Bench. It implements furthermore various ancillary functions such as point-ahead correction, acquisition sensing, transmit beam conditioning, and laser redundancy switching. A comprehensive design of the Optical Bench has been developed, which includes all of the above mentioned functions and at the same time ensures manufacturability on the basis of hydroxide catalysis bonding, an ultrastable integration technology already perfected in the context of LISA s technology demonstrator mission LISA Pathfinder. Essential elements of this design have been validated by dedicated pre-investigations. These include the demonstration of polarizing heterodyne interferometry at the required Picometer and Nanoradian performance levels, the investigation of potential non-reciprocal noise sources in the so-called backlink fiber, as well as the development of a laser redundancy switch breadboard. I. INTRODUCTION The Laser Interferometer Space Antenna (LISA) is a cooperative space mission of ESA and NASA, aiming at the detection and observation of gravitational waves in a measurement band between 30 µhz and 1 Hz, in complement to ground-based gravitational wave detectors. LISA will be implemented in a constellation of three identical spacecraft at the corners of an equilateral triangle with a 5 million kilometer arm length, which is trailing Earth in a heliocentric orbit. Each spacecraft carries two free-falling reference targets, known as Proof Masses (PMs), defining the end points of the individual arms (Fig. 1). The passage of a gravitational wave causes minute fluctuations in the distance between the two proof masses of each arm, which are observed by heterodyne laser interferometry, that mutually links the three spacecraft in an active transponder scheme [1]. To allow for an independent technical optimization and decoupled verification of the individual functional elements of the metrology chain, the PM-to-PM interferometry on each interferometer arm is separated into two local and one long-arm measurement (Fig. 1): Relative motion of each PM with respect to its associated Optical Bench (OB) is detected by the PM Optical Readout (PM ORO) interferometer, while distance fluctuations between the two OBs of each interferometer arm are detected by the Science Interferometer. In this strapdown architecture, each OB thus serves as the common fiducial reference for on-ground combination of all interferometric signals in a procedure known as Time Delay Interferometry (TDI). This effectively synthesizes a huge virtual interferometer from the metrology data collected over the entire constellation.

ICSO 2010 Fig. 1. Left: Schematic of the LISA constellation. Each corner of the constellation triangle is delimited by the so-called Optical Assembly, which serves the two associated interferometer arms. Right: Strap-Down Architecture. The proof-mass-to-proof-mass metrology on each arm is decomposed into essentially two local and one long arm measurement. As illustrated in Fig. 2, each OB interfaces optically on one side with the Gravitational Reference Sensor, and on its other side with an afocal telescope. Inside a contamination control enclosure, the Gravitational Reference Sensor houses the associated Proof Mass, a 46 mm3 Gold-Platinum cube with a mass of 1.96 kg, which is electrostatically suspended in its rotational and lateral degrees of freedom. For optimization of the optical link budget on the long arm interferometry, the telescope provides an optical magnification of 80 to yield an external pupil of 400 mm diameter at the PM center of mass. It processes transmitted (TX) and received (RX) beam in opposite directions under a small point-ahead angle, required due to the non-negligible light travel time of approx. 16 s between the spacecraft [1]. Telescope Subsystem, Optical Bench, and Gravitational Reference Sensor are isostatically supported from a common interface ring to form the so-called Moving Optical Subassembly (MOSA), the main optical instrument of LISA. Each LISA spacecraft accommodates two identical MOSAs as part of the Optical Assembly, in which they can be individually rotated about a vertical pivot axis for precision pointing toward their respective remote counterpart. II. OVERVIEW OF OPTICAL BENCH FUNCTIONS AND REQUIRED PERFORMANCE The LISA OB supports a total of 4 interferometers, which are based on polarizing heterodyne interferometry in Mach-Zehnder-like configuration (Fig. 3). A total of three slightly separated continuous-wave, narrow linewidth laser frequencies near 1064 nm are processed on the OB to generate the associated heterodyne beat signals: RX: Laser light with a power of approx. 230 pw, received from the remote spacecraft in form of a plane wave, and clipped to a diameter of 5 mm by a dedicated aperture stop on the OB. Due to varying Doppler shifts caused by orbital dynamics, the observed RX frequency is continuously changing, so that beat frequencies in the range 2-19 MHz need to be accommodated on the OB. Fig. 2. Left: Optical Assembly. Right: Each Optical Assembly consists of two identical Moving Optical Subassemblies (MOSAs), which can be fine-pointed to the location of their associated remote spacecraft.

ICSO 2010 Fig. 3. Optical Bench layout. Both standard and polarization beam splitters use wedged plate substrates made from Fused Silica, in order to minimize sources of spurious ghost beams. The optical elements will be integrated by a combination of hydroxide catalysis bonding [2] and adhesive bonding [3]. TX: Laser light with a power of approx. 1.2 W, delivered to the OB by singlemode, polarization maintaining fiber from the local Nd:YAG NPRO laser. While a small fraction is used for local interferometry, most of this light passes over the TX Aperture Stop and the Point-Ahead Angle Mechanism to be injected into the telescope for transmission to the remote spacecraft. LO: Laser light obtained from the TX laser on the second OB of the spacecraft via the so-called Backlink Fiber. This singlemode, polarization maintaining fiber allows to establish a phase reference between the two independent TX lasers on board each spacecraft, by carrying their light in opposite directions between the two OBs. In the Science Interferometer, the phase of the weak RX beam is detected by mixing it with a fraction of the TX beam. This particular choice, known as non-frequency swap configuration, makes the Science Interferometer robust against stray light from the high power TX beam, if operated in balanced detection. All local interferometry employs particular combinations of TX and LO beams, to realize the previously mentioned PM ORO, the PAAM Metrology for detection of piston noise in the TX path, as well as a reference phase measurement. Apart from these interferometers, the LISA OB includes two further types of detectors: an Acquisition Sensor aiding initial acquisition of the RX beam over a larger field of view, and a Power Monitor for observation and active stabilization of the TX optical power. For detection of beam pointing with Nanoradian precision, all interferometers on the LISA OB employ Differential Wavefront Sensing [4, 5]. This is realized by a spatially resolved phase measurement through the use of RF bandwidth Quadrant Photodetectors (QPDs). In order to decouple translation and tilt metrology as far as possible, dedicated imaging systems will be implemented in front of each QPD (Fig. 4). This approach, applied here to the best of our knowledge for the first time in an ultraprecise interferometric system, in particular minimizes pathlength measurement noise generated by pointing jitter of the measurement beams. Nonetheless, such pointing jitter, originating from residual attitude dynamics of the spacecraft and the Proof Mass, remains one of the significant noise sources within the LISA system. The allowable pathlength measurement noise for LISA is generally expressed in form of a single-link budget from local to remote proof mass on

ICSO 2010 Fig. 4. Left: Lens mounting concept providing all required degrees of freedom in combination with hydroxide catalysis bonding. Middle: Interferometric Detector Assembly, comprising imaging system and Quadrant Photodetector. Right: Prototype QPD employing an InGaAs photodiode with an active diameter of 1 mm. each arm, in direct correspondence to the strap-down concept introduced above. From the total single-link noise budget of s 4 pm 2.8 mhz 12 1+, (1) f Hz where f is the frequency of the spectral noise component, the following allocations may be mapped to contributions from the Optical Bench Subsystem: Error Source Long Arm Interferometry (including full TX and RX paths on the OB) Proof Mass Optical Readout (per Proof Mass) Coupling of Spacecraft Attitude Dynamics to RX piston on Science Interferometer Coupling of Spacecraft Attitude Dynamics to TX piston in far field Coupling of Proof Mass Attitude Dynamics to PM ORO piston Total Budget for a single OB Allocation @ 5 mhz 8.72 pm/ Hz 1.42pm/ Hz 1.20 pm/ Hz 1.20 pm/ Hz 1.06 pm/ Hz 9.06 pm/ Hz The allocations above for Long Arm Interferometry and Proof Mass Optical Readout refer to the pathlength measurement noise for static measurement beams, i. e. they do not include contributions from pointing jitter, which are covered by the remaining entries. The mostdominant noise source is shot noise in the long arm interferometry, with a contribution of approx. 8.13 pm/ Hz. III. BREADBOARD STUDIES The local Nd:YAG laser providing the TX beam is backed by an identical second unit, which is operated in cold redundancy. Each of these two lasers has a separate fiber connection to a Fiber Switching Unit (FSU) on the associated OB, which implements free beam redundancy switching between the two inputs. As illustrated in Fig. 5, this is realized by combining the output of the associated fiber collimators at a polarizing plate beam splitter, and correction of the polarization by rotation of a half wave plate, with subsequent polarization cleanup in a second non-absorptive polarizer. Essential novel features of the FSU have been investigated and validated by development and realization of dedicated breadboards. Beam collimation to an extremely low rms wavefront error of about λ/37 has been demonstrated by prototyping a so-called Fiber Mounted Assembly (FMA), and combining it with an aspherical collimating lens made from Fused Silica, which was precision aligned by use of a hexapod (Fig. 5). This result thus provides a proof of feasibility for achieving the required beam quality of λ/30 in the TX beam, which ensures compliance to the noise allocation for coupling of spacecraft attitude dynamics to TX piston in the far field, as quoted in the above noise budget. Wave plate rotation within the FSU is performed on the basis of piezo-activated slip-stick motion in a specifically developed FSU Actuator (Fig. 6), which has been fully qualified both with respect to sub-µradian pointing reproducibility and environmental load cases. A second type of mechanism installed on the OB is the PointAhead Angle Mechanism (PAAM), of which a fully validated prototype is illustrated in Fig. 7. While maintaining

ICSO 2010 Fig. 5. Left: Fiber Switching Unit, comprising a Dual FIOS Assembly for combination of the two redundant fiber inputs, the FSU Actuator (FSUA), and subsequent Polarization Cleanup Optics. Middle: Breadboard of a Fiber Injector Optical Subassembly (FIOS), consisting of the Fiber Mounted Assembly (FMA) and a collimating lens. Right: Beam quality obtained from this FIOS. picometer pathlength stability within the measurement band, it allows a single-axis adjustment of the out-ofplane point-ahead angle, which exhibits a quasi-periodic variation with a one-year period due to orbital dynamics [1]. An active correction is required, since the variation with an amplitude of approx. ±6 µrad is significantly larger than the far-field beam width of 3.1 µrad FWHM. IV. EXPERIMENTAL VALIDATION OF METROLOGY PRINCIPLES The metrology principles fundamental to the architecture of the Optical Bench as outlined above have been validated by a number of targeted experimental studies, of which a selection is addressed in the following. Since the performance of polarizing heterodyne interferometry can principally be limited by periodic nonlinearities and other effects potentially not present in a polarization-insensitive setup, a particular focus has been a quantitative comparison between these two beam routing alternatives at representative performance levels. A specific interferometric setup was devised for this purpose, comprising a polarizing as well as a non-polarizing Mach-Zehnder interferometer observing effectively identical measurement paths, as illustrated in Fig. 8. The interferometer core was integrated on a Clearceram-HS baseplate using hydroxide-catalysis bonding. Since the measurement performance curves depicted in Fig. 8 show no significant differencebetween the polarizing and the non-polarizing interferometer, and are all very close to a noise level of 1 pm/ Hz, the principal applicability of polarizing heterodyne interferometry for LISA is thus demonstrated. The Backlink Fiber transporting the TX light from the two OBs on board each spacecraft in opposite directions has to be fully reciprocal, i. e. the fiducialerror resulting from a difference in the two counter-propagating optical paths is required to remain below 1 pm/ Hz within the LISA measurement band. This crucial property of the Backlink Fiber has been validated as schematically illustrated in Fig. 9. The setup employs again a quasimonolithic, fully bonded interferometer on a Zerodur baseplate, which mimics the actual situation on the LISA OB as far as possible. Essential to demonstrating a reciprocity to picometer level in this experiment has been the application of so-called normalized straylight correction using balanced detection, as well as a subtraction of pathlength noise correlated with excessive environmental temperature fluctuations. Taking into account results from further on-going experiments, including in particular the principal validation Fig. 6. FSUA Breadboard on a Zerodur test carrier. Fig. 7. Point-Ahead Angle Mechanism.

ICSO 2010 Displacement noise (m/hz) 10 8 10 9 10 10 10 11 10 12 Pol w/ SL, DWS Corr. NonPol w/ SL, DWS Corr. Pol NonPol Null 5 pm Displacement 1 pm Level 10 13 10 4 10 3 10 2 10 1 10 0 Frequency (Hz) Fig. 8. Left: Experimental setup for performance verification of polarizing heterodyne interferometry. Right: Measurement performance obtained in a noise measurement, with static measurement mirror M3. of the interferometric imaging approach, it may be concluded that the basic metrology principles to be applied on the LISA OB are principally validated, so that in a next step an Elegant Breadboard of the LISA OB will be fully designed and realized on the basis of these. REFERENCES [1] D. Weise, P. Marenaci, P. Weimer, M. Berger, H. R. Schulte, P. Gath, and U. Johann. Opto-mechanical architecture of the LISA instrument. In ICSO Conference Proceedings, 2008. [2] E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli. Hydroxide-catalysis bonding for stable optical systems for space. Class. Quantum Grav., 22:S257, 2005. [3] S. Ressel, M. Gohlke, D. Rauen, T. Schuldt, W. Kronast, U. Mescheder, U. Johann, D. Weise, and C. Braxmaier. Ultrastable assembly and integration technology for ground- and space-based optical systems. Applied Optics, 49(22):4296, 2010. [4] E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward. Automatic alignment of optical interferometers. Applied Optics, 33(22):5041, 1994. [5] E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward. Experimental demonstration of an automatic alignment system for optical interferometers. Applied Optics, 33(22):5037, 1994. modulation bench 80 MHz + 811.69 Hz 80 MHz - 811.69 Hz vacuum REF Meas1 Meas2 S/W PM pathlength noise (m/hz) 10 7 10 8 10 9 10 10 10 11 10 12 Non reciprocity 10 0 Non rec straylight corr. Non rec, normalized strayl. corr. Non rec straylight & DWS corrected 10 1 Non rec straylight, DWS and temp corrected 5 pm Requirement 1 pm Requirement Phase read out limit 10 2 10 13 10 4 10 3 10 2 10 1 10 10 0 6 Frequency (Hz) 10 3 10 4 10 5 phase noise (rad/hz) Fig. 9. Left: Experimental setup for investigation of non-reciprocities iin the backlink fiber. Right: Measured non-reciprocity.