An Enclosure Design for TEBM35C10-4 BMR Loudspeaker Driver

Similar documents
A Guide to Reading Transducer Specification Sheets

Quadra 10 Available in Black and White

BIG 3 WAY SPEAKER: INTEGRATION OF BASS AND MIDRANGER DRIVERS. 3D Acoustics Research, January

The Naim Balanced Mode Radiator The Naim Ovator Bass Driver

The CVEN speakers were designed by the Vibe Research and Development team of UK and European engineers headed by company founder Carl Venables.

Quadra 15 Available in Black and White

The Mimir. Enclosure and stuffing. Drive units

Low frequency section: 500 Watts continuous 1,000 Watts program 2,000 Watts peak

C7: Speaker Components

FINEBox. Non-Linear High Power Box Design Program For Hi-Fi, PA and Micro loudspeakers T U T O R I A L

Quadra 12 Available in Black and White

BETA-8A American Standard Series

FA28. Dual 8 inch Coaxial Loudspeaker. product specification. Performance Specifications 1

CMS401e. Product Description

SPECS. Impulse (4 and 8 ohm) Two-Way Weather-Resistant Injection-Molded Speaker System SPECIFICATIONS. Built under U.S.

RD75, RD50, RD40, RD28.1 Planar magnetic transducers with true line source characteristics

OCV 6. Product Description. Features. Applications

CX15N351 COAXIAL DATASHEET

BETA-8A American Standard Series

Product Description. Features. Applications

VQ 60. Product Description. Features. Applications

V12. Product Description. Features. Applications

JBL s New LSR Mid-Field Monitors

BETA-10A American Standard Series

Tower Mains. A new breed of Main Monitors

Electro-Voice S40. Full Range Compact Speaker System 160 Watts Power Handling Available is Black or White

Maximizing LPM Accuracy AN 25

LAB12 Professional Series

FINEBox T U T O R I A L

not overpower the audience just below and in front of the array.

ViRAY. with DDP Dual Diaphragm Planar-wave-driver Technology. Compact 3-way symmetrical line array system. DDP Technology

Technical Note Volume 3, Number 2A. The New JBL LSR6300 Series Studio Monitors. 1. Introduction: 2. The Linear Spatial Reference (LSR) Concept:

DELTA-12LFA American Standard Series

PROFESSIONAL. EdgeMax EM90 and EM180 In-Ceiling Loudspeakers. Design Guide

Low Frequency Section: 98.0 db SPL, (2.83 V input) High Frequency Section: db SPL, (2.83 V input)

FreeSpace DS 16F VA TECHNICAL DATA SHEET. loudspeaker. Key Features. Product Overview. Technical Specifications

SSE S5 SPECIFICATIONS

EQUIVALENT THROAT TECHNOLOGY

IT Series Woofers and Compression Drivers

CVS 4. Product Description. Features. Applications

DX896. Dual 8 inch Coaxial Loudspeaker. product specification SERIES. Performance Specifications 1

DELTA-15LFA American Standard Series

FA22. Dual 12 inch Coaxial Loudspeaker. product specification. Performance Specifications 1

ONLINE TUTORIALS. Log on using your username & password. (same as your ) Choose a category from menu. (ie: audio)

VX 8.2. Product Description. Features. Applications

Progressive Transition TM (PT) Waveguides

KAPPA-15A American Standard Series

The study on the woofer speaker characteristics due to design parameters

FA12ac. Self-Powered 12 inch Coaxial Loudspeaker. product specification. Performance Specifications 1

Di6DC. Product Description. Features. Applications

AQ12. architectual. Compact, full-range system. features. applications. w w w w w

A White Paper on Danley Sound Labs Tapped Horn and Synergy Horn Technologies

CX896-MT inch Coaxial Loudspeaker, 70 V. product specification SERIES. Performance Specifications 1

iw6 DS Product Description Features Applications

JBL Professional Application Note. Loudspeaker Array Low-Frequency Pattern Control using Filtered Array Technology

AM404. architectual. Large format mid/high horn. features. applications

Sound engineering course

North D25-06S. High performance silk dome tweeter for cabinets six to ten inches in width

FLOATING WAVEGUIDE TECHNOLOGY

SSE 26 SPECIFICATIONS

Because of the inherent midrange coloration of any "W -horn design, the recommended crossover frequency is 300Hz or lower.

The NEO8 and NEO8 PDR high performance wideband, planar-magnetic transducers

L1 Model 1S TECHNICAL DATA SHEET. portable line array system. Key Features. Product Overview. Technical Specifications

Design of a Line Array Point Source Loudspeaker System

BLACK WIDOW SUPER STRUCTURE

Panaray 402 Series II TECHNICAL DATA SHEET. loudspeaker. Key Features. Product Overview. Technical Specifications

StageSource L2m Compact, 2-Way Powered PA Speaker with Studio-Quality Sound

KILOMAX PRO 15A Professional Series

BETA-12A-2 American Standard Series

Di6. Product Description. Features. Applications

L1 Model I TECHNICAL DATA SHEET. portable line array system. AV-Concept - tlf web: Key Features.

SSE 10 SPECIFICATIONS

Di5DC. Product Description. Features. Applications

ENGINEERING STAFF REPORT. The JBL Model L40 Loudspeaker System. Mark R. Gander, Design Engineer

SSE 12 SPECIFICATIONS

iw62 TDC Product Description Features Applications

Di6 / Di6t. Product Description

iw6 TDC Product Description Features Applications

RoomMatch RM9060 TECHNICAL DATA SHEET. array module loudspeaker. Key Features. Product Overview. Technical Specifications

Goldmund White Paper SPEAKERS. The materials, manufacturing techniques, and design concepts behind Goldmund speakers

Panaray MB4 TECHNICAL DATA SHEET. modular bass loudspeaker. Key Features. Product Overview. Technical Specifications

American Standard Series

d anish sound technology

VLS 15. Technical Data Sheet. Product description. Features

The New 8260A Three-Way DSP Loudspeaker System. with Minimum Diffraction Coaxial (MDC ) Technology

FW inch Coaxial Cardioid Stage Monitor. product specification. Performance Specifications 1

The Woofer Tester 2. Precision Thiele-Small & RLC Measurement Simulation and Box Analysis. Web: Phone:

RX599-MT inch Coaxial Loudspeaker, 70 V. product specification SERIES. Performance Specifications 1

iw6 TDC Product Description Features Applications

PRELIMINARY. group S. MicroWedge MW12 Specifications 2-WAY FULL-RANGE STAGE MONITOR FEATURES DESCRIPTION. CONFIGURATION Subsystem

DVS 4 / DVS 4t. Features. Product Description. Applications

danish sound technology

Mobile Fidelity_Specifications

SUBCOMPACT MODELS. Passive 3-Way Line Array Element. Companion Cardioid-Arrayable Subwoofer

CMS601. Product Description. Features. Applications

RM28ac. Self-Powered Dual 8 inch Coaxial Reference Monitor. product specification. Performance Specifications 1

BETA-12LTA American Standard Series

ZX1i-90 2-Way Passive Speaker Install

8 inch Coaxial Loudspeaker

FX inch Coaxial Vocal Monitor. product specification SERIES. Performance Specifications 1

Transcription:

An Enclosure Design for TEBM35C10-4 BMR Loudspeaker Driver Introduction BMR is a patented loudspeaker technology that delivers true full range audio and wide directivity from a single drive unit. This is achieved by deterministic balancing of the modes to recover the ideal acoustic radiation characteristics of a flat, free panel. The TEBM35C10-4 is the latest addition to the BMR range, a small compact design whose high frequency output extends smoothly up to and beyond 20kHz. This driver is suitable for portable consumer and automotive applications. In this application note an enclosure is designed for the TEBM35C10-4 and a passive radiator (PR) is considered. Two box volumes are compared. Tuning of the PR to achieve smooth low-frequency response will be described. Extensive measurement was carried out on the prototypes, including measuring enclosure wall vibration. Lastly, the active equalization used to compensate for baffle step and tonal balancing will be discussed. Brief description of the driver Key Thiele-Small (TS) parameters of the TEBM35C10-4 BMR driver are listed in Table 1. These are smallsignal parameters where the diaphragm movement is minimal to maintain linear operation. Nonlinear effects on parameters such as Bl and Cms are not included. Users can import these small signal parameters and define a specific enclosure type in simulation design tools (e.g. AkAbak, LEAP-5, UniBox, WinSpeakerz) to predict performance, and perform iterative fine tuning. The TEBM35C10-4 BMR driver has very wide directivity (up to 1, see the TEBM35C10-4 datasheet for more information). In other words, its power response is smooth and extended, with minimal roll off with increasing frequency. These are crucial characteristics to obtain a natural listening experience in a room. Fs 145 Hz BL 1.94 Tm Cms 1.04 mm/n Mms 0.97 g Re 4.2 Ω Qts 0.86 Xmax-mech 8 mm peak-to-peak Table 1. Key TS parameters of TEBM35C10-4 BMR driver. 1

Enclosure design and Passive Radiator (PR) tuning A compact-sized enclosure is desired to demonstrate portability for a consumer application. In order to extend bass performance from this enclosure, a PR is considered. In contrast to a vented enclosure, using a PR allows very compact enclosures to be feasible. A vented enclosure may end up with a port length too long to fit inside the enclosure. The enclosure shape was chosen to be a rectangular cuboid instead of a cube. A cube will encourage coincident (degenerate) internal standing waves due to equal distance of any two perpendicular walls. Rectangular boxes will spread standing waves frequencies, resulting in a more natural sound. A few candidate rectangular boxes of similar volume but with differing dimensions were considered. The candidates were selected based on practical considerations for mounting the driver and PR and aesthetic balance. An Eigenfrequency study of the internal pressure modes was then conducted using COMSOL Multiphysics. The key results from this study were a set of modes for each candidate enclosure. The selected enclosure dimensions were chosen based on the enclosure that gave the most evenly spaced distribution of these internal pressure modes, option 2 (blue) in Fig. 1, thus minimizing mode clusters that could result in noticeable colouration of the sound. 650 Volume (cm^3) 648 646 644 642 640 638 636 634 632 630 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k if: Opt 1: 7.4 x 8.0 x 10.8cm if: Opt 3: 7.5 x 8.2 x 10.5cm if: Opt 2: 7.4 x 8.4 x 10.4cm if: Opt 4: 7.4 x 8.5 x 10.2cm Figure 1. FEA Eigenfrequency analysis of enclosure modes. Legends show inner dimensions in cm. Simulation of a 500 cc box and a 600 cc box was conducted to review difference in performance. A volume greater than 600cc was deemed too large for a portable demo. For each box volume, the PR was optimized. The compliance of the PR can be obtained from the stiffness of roll-surround. We used NBR shore 50A rubber for the surround. Typically value of the stiffness is 222N/m. Hence, the equivalent compliance is 4.5 mm/n. This is theoretical stiffness of surround used in simulation for optimizing PR s. The piston diameter and moving mass of passive radiator were both optimized for each enclosure volume considered. The optimization process aimed to achieve maximum response flatness whilst 2

ensuring safe peak excursion amplitude for the driver and passive radiator. The effective piston diameter of the PR for 500 cc and 600 cc box resulted in being 52 mm and 60 mm, respectively. Simulated (infinite baffle) on axis SPL of the speaker in an enclosure volume equal to 500 cc and 600 cc box for 1 W input power, at 1m is illustrated in Fig. 2. The corresponding moving mass of PR was 3.5 g (500 cc) and 4.2 g (600 cc). These were optimized values for each box volume. We can see that 600 cc box provides a significant 2 db additional SPL at 110 Hz. Hence, 600 cc acoustic volume was chosen. Outer dimensions are 11.0 x 9.2 x 8.0 cm, see Appendix 1 for more details. The dimensions are associated with Opt 2 inner dimensions shown in Fig. 1. 90 (db) Level, Sound pressure 85 65 60 55 50 45 40 50 100 200 500 1k 2k if: 500cc enclosure if: 600cc enclosure Figure 2. Simulated (infinite baffle) on-axis SPL with PR. Impedance of a TEBM35C10-4 at different signal levels (e.g. 1V, 2V, 5V) was measured. The software (LEAP-5) used the measured data to generate a non-linear model. Further explanation is given in next section. SPL based on this non-linear model for 1 W, 2 W and 10 W are shown in Fig 3. We can see there is a bump at about 200 Hz emerging for higher input power. Simulation predicated that the driver was driven into nonlinear region where force factor (Bl) and suspension stiffness were no longer constants. Most drivers of similar size exhibit similar Qts change. The sonic effect can be managed by active equalization discussed in the following section. It is important to note that the predicted non-linear behavior of the system as shown in figure 3 is very much a worst case scenario, and would not be observed with such severity when driven by real-world signals (e.g. music and speech material). Reference should be made to figure 9 where the system frequency response was measured over a similar range of input powers with a log chip type signal. Clearly the observed compression and Qts change is considerably more benign with this input signal, and a similar behavior is expected with typical music and speech. 3

100 (db) Level, Sound pressure 95 90 85 65 60 55 50 50 100 200 500 1k 2k if: 1W if: 10W if: 2W Figure 3. Simulated (infinite baffle) on-axis SPL of 600 cc box for 1 W, 2 W and 10 W input power. Driver and passive radiator peak excursion for 1 W and 10 W input power are illustrated in Fig. 4. A second-order Hz high-pass-filter (HPF) was employed to protect the system. Crossover frequency of the HPF was chosen empirically to balance low-frequency extension and driver excursion. As can be seen, driver excursion for 10 W is well under the mechanical limit of 4 mm peak. The HPF is a stage of the active equalizer. 2.5m (m) Amplitude, Excursion 2m 1.5m 1m 0.5m 0 10 20 50 100 200 500 1k 2k if: Driver at 1W if: Driver at 10W if: PR at 1W if: PR at 10W Figure 4. Driver and PR peak excursion of 600 cc box for 1 W and 10 W input power. Second-order Hz highpass filter employed. 4

Rear of Enclosure & PR Front of Enclosure & TEBM35C10-4 Figure 5. Outlook of 600 cc prototype. Outer/inner dimensions (WxHxD): 8.0 x 11.0 x 9.2 cm / 7.4 x 10.4 x 8.4 cm. Measurement and Equalization In order to minimize error between simulation and measurement, a PR sample was measured to get the actual moving mass and compliance. Deflection of the PR for added masses was measured by a laser displacement sensor (Panasonic HL-G108-A-CS). Results are given in table 2 below. Outer-half rollsurround of the PR is essentially not moving. Hence, the actual moving mass is 3.98 g. Disc (g) Inner-half surround Outer-half surround Moving mass (g) (g) (g) 3.57 0.41 0.78 3.57 + 0.41 = 3.98 Added mass (g) Compliance Measurement Deflection (mm) Compliance (mm/n) 5 0.16 3.27 10 0.32 3.27 20 0.68 3.47 40 1.41 3.60 50 1. 3.47 Mean value 3.41 5

Table 2. Measured moving mass and compliance of PR. TE-AN201601: Application Note TS parameters of a TEBM35C10-4 driver were measured as well. Conventional TS parameters were derived from impedance measurements at a single signal level. The parameters such as Bl, Cms are assumed constant throughout the operating range. In practice, they are strongly dependent on signal level or excursion. LEAP-5 developed an advanced driver model which can predict the driver s nonlinearity under large-signal condition. The model requires a set of driver s impedance and terminal voltage measured at different signal levels. The model uses more parameters, as shown in Fig. 6 to model a driver. Figure 6. LTD model of a TEBM35C10-4. Fig. 7 shows simulated impedance and measured impedance for the system. It can be seen simulation is closer to measurement when actual measured PR parameters were used. 6

20 (ohm) Amplitude, Impedance 18 16 14 12 10 8 6 4 2 0 50 100 200 500 1k 2k if: Measured if: Simulated with measured parameters if: Simulated with design parameters Figure 7. Comparison of measured and simulated system impedance. Near-field SPL of the driver and PR was measured and compared to simulation as depicted in Fig. 8. 115 (db) Level, Sound pressure 110 105 100 95 90 85 65 50 100 200 500 1k if: Driver - measured if: PR - measured if: Driver - simulated if: PR - simulated Figure 8. Near-field response of driver and PR comparing measurement with simulation. On-axis SPL for various input power levels was measured, and can be seen in Fig. 9. 7

Figure 9: Top: 1/3-octave on-axis 1m SPL for various input powers. Bottom: Impulse response. Since the input signal was LogChirp, the driver under test was not driven in to power compression scenario. As can be seen, SPL over 90 db/1w/1m was measured, very close to the linear prediction yet in contrast to around 85 db predicted by worst case non-linear simulation. The trend of baffle step as illustrated by a blue dash curve (in Fig. 9) is clearly seen. The bump between 100 Hz to 200 Hz was due to the floor and ceiling reflections. Note time-gate was not enabled in this graph. Reflection from floor and ceiling are circled in the impulse response. The boxes were made of ABS material. The side wall thickness is 3 mm whereas 6 mm is employed for front and back plates. Thicker front and back plates were used to minimize the strongest vibrations, as they occur on the faces where the driver and PR are mounted. Internal standing waves and wall vibrations will create coloration impairing sonic clarity. Near-field SPL of the wall is illustrated in Fig. 10. The data closely agreed with the output of an accelerometer attached to the wall. The green circled region shows the most critical vibrations occurring in the midrange output of the system. 8

-5 (db) Level, Acceleration (dbv) Sound pressure, Level (db) 120-10 115-15 110-20 105-25 100-30 95-35 90-40 85-45 -50-55 50 100 200 500 1k 2k 5k ifl: Accelerometer attached to wall ifr: Near-field SPL of wall Figure 10. Wall vibration measured by accelerometer and near-field SPL of side wall. To minimize the undesired wall vibration, an internal brace was added to the box. From near-field SPL measured in Fig. 11a, it can be seen the brace was effectively alleviating wall vibrations. 115 (db) Level, Sound pressure 110 105 100 95 90 85 65 50 100 200 500 1k 2k 5k if: Near-field SPL with internal brace if: Near-field SPL no brace Figure 11a. Near-field measurement of side wall showing effect of brace. The effect is also clearly observed in the far-field measurement shown in figure 11b. 9

100 (db) Level, Sound pressure 95 90 85 65 60 55 50 50 100 200 500 1k 2k 5k if: Far-field SPL with internal brace FC: Far-field SPL no brace Figure 11b. Far-field measurement of loudspeaker showing effect of brace. The laser displacement sensor was also used to measure excursion of the driver and PR (Fig. 12). -5 (db) Level, Peak excursion -10-15 -20-25 -30-35 -40-45 -50-55 20 50 100 200 500 1k if: Driver at 1V if: Driver at 2V if: PR at 1V if: PR at 2V Figure 12. Driver and PR peak excursion level for different input levels. Sensitivity of the laser sensor is 0.25V/mm. Based on the excursion data, we can readily obtain acceleration of the driver and PR for predicting pistonic SPL as shown in Fig. 13 (SPL is proportional to diaphragm acceleration). This is an indirect way to accurately observe low-frequency response in the absence of an anechoic chamber. It can be seen by comparing figures 3 & 13 that the prototype bass alignment and simulation give quite close agreement. 10

95 (db) Level Level (db) 90 85 65 60 55 65 50 60 45 55 40 50 35 45 30 50 100 200 500 1k FLC: Driver acceleration FRC: Complex summation of driver and PR FLC: PR acceleration Figure 13: SPL predicted from laser excursion measurement of driver and PR. Tectonic s wireless amplifier module (TEAM-DBA3-301) was used to provide equalization. The amplifier has sixteen fully-programmable digital biquad filters. Design of the filter is done in an Excel spreadsheet as shown in Fig. 14. A high-shelf filter, as shown in the figure, was used to address the baffle step. A band-stop filter was used to alleviate the low-frequency bump due to reflection and system Q. There were additional tweaks to contour the mid-high frequency band to give a pleasing balance with different types of music. Figure 14. TEAM-DBA3-301 wireless amplifier module and its software for EQ and downloading settings. 11

The final equalization response is depicted in Fig. 15. Coefficients of filters were obtained by the spreadsheet and downloaded to the amplifier board by the communication software Bongo. 10 (db) Level 5 0-5 -10-15 -20-25 -30-35 -40 20 50 100 200 500 1k 2k 5k 10k 20k if: EQ response for each channel Figure 15. Equalization frequency response. Far-field SPL before and after applying the EQ is shown in Fig. 16. The speaker was on top of a tripod. Sound absorbing materials were used to minimize reflections. Please contact Tectonic directly for further information on the TEAX-DBA3-301 amplifier module. 12

Baffle step Figure 16. Far-field measurement of speaker without EQ (green) and with EQ (red); 1/3-octave smoothed. The dashed line shows the predicted baffle step response. On-axis response on its own does not provide sufficient information to assess real listening experience. Making multiple measurements in different spatial locations is important to better understand the true acoustic radiation into a room. During EQ tuning, on-axis, off-axis (horizontal, vertical) and quasi-ground plane measurements were conducted. If a notch or bump appears in all the measurements, it is likely necessary to use an EQ stage to address it. We also need to measure at multiple signal levels to establish an appropriate Q, gain and bandwidth of an EQ stage. In general, high Q stage should be avoided. Polar response of the speaker is shown in Fig. 17. Top plate of the tripod was rotated to make off-axis angles from 0 to 90 degrees in 15 degrees step. It can be seen the speaker has excellent off-axis performance. Wide and smooth spatial dispersion is maintained beyond 16 khz. 13

Level (db) 0 +30-30 +60-60 90 50 30 10 +90 60 40 20 0 FC: 20 khz FC: 16 khz FC: 14 khz (deg) FC: 10 khz FC: 5 khz FC: 1 khz -90 Figure 17. Polar response of the prototype. Wide-angle-averaged response is illustrated in Fig. 18. The curve compared with a single on-axis SPL provides better understanding of a speaker performing in real listening environments. These two figures clearly demonstrate the advantages of Tectonic s BMR technology: full-range and wide-dispersion performance. 90 (db) Level, Sound pressure 85 65 60 55 50 45 40 50 100 200 500 1k 2k 5k 10k 20k F: Wide angle average (0-90deg), EQ, 1/3 octave smoothed Figure 18: Wide-angle averaged response (0 o 90 o ) 14

CONCLUSIONS AND SUMMARY This application note outlines the steps of developing an enclosure with PR for the TEBM35C10-4 BMR driver. It order to achieve smooth low-frequency response, parameters of passive radiator were carefully tuned in the design stage. In addition, the enclosure dimension was specifically chosen to diminish impairments of box modes. Test data of an actual driver and passive radiator were fed to simulation to improve accuracy. Baffle-step compensation and minor tweaks at certain bands to improve sonic performance were taken care with equalization implemented on the DSP of an amplifier module. Polar response, wide-angle-average response and on-axis response were measured to provide a comprehensive assessment of the prototype. For additional information on acoustic simulations based around your specific requirements, PR design and manufacture, please contact Tectonic Elements (sales@tectonicelements.com) or your local representative. 15

Appendix Appendix 1 Detailed dimensions of the 600 cc enclosure are shown in the following figures. TE-AN201601: Application Note Figure 19. Front-baffle dimensions (mm). Figure 20. Side-wall dimensions (wall thickness 3 mm). 16

Figure 21. Back-baffle dimensions (mm). 17