Measuring Temperature with an RTD or Thermistor

Similar documents
Measuring Temperature with an RTD or Thermistor

ni.com Sensor Measurement Fundamentals Series

Signal Conditioning Fundamentals for PC-Based Data Acquisition Systems

Webinar Organizers. Ryan Shea. Don Miller. Joe Ryan. Support Specialist. Applications Specialist. Product Manager. Precision Digital Corporation

FP-RTD-122. Features OPERATING INSTRUCTIONS. 8-Channel, 3-Wire RTD and Resistance Input Module

Analog Signal Conditioning Accessories

TBX-68S Isothermal Terminal Block

SCC-ACC01 Accelerometer Input Module

Strain Gauge Measurement A Tutorial

SCXI 8-Channel Isolated Analog Input Modules

Isolated Linearized 4-Wire RTD Input 5B35 FEATURES APPLICATIONS PRODUCT OVERVIEW FUNCTIONAL BLOCK DIAGRAM

VersaPoint I/O Module

SCXI Terminal Block

FP-RTD-124 AND CFP-RTD-124. Features. FieldPoint Operating Instructions. Eight-Channel Four-Wire RTD and Resistance Input Modules

SPECIFICATIONS FOR THE NI PXI/PCI-4060

Isolated, Linearized RTD Input 7B34 FEATURES APPLICATIONS PRODUCT OVERVIEW FUNCTIONAL BLOCK DIAGRAM

Making Basic Strain Measurements

Input Characteristics. Measurement Range. SPECIFICATIONS NI PXIe-4357

PACSystems* RX3i IC695ALG600-DD

PACSystems* RX3i IC695ALG600

Contents. Software Requirements

PRACTICAL DESIGN TECHNIQUES FOR SENSOR SIGNAL CONDITIONING

Isolated RTD Modules Product Specifications and Installation Data

C330 / C330X PC-Programmable Universal, 2-wire Transmitter

PACSystems* RX3i IC695ALG600-EE Universal Analog Input Module

CALIBRATION PROCEDURE PXIe-4302/4303 and TB-4302C 32 Ch, 24-bit, 5 ks/s or 51.2 ks/s Simultaneous Filtered Data Acquisition Module. ni.

NI PXI/PCI-5411/5431 Specifications

MECE 3320 Measurements & Instrumentation. Data Acquisition

NI 6731/6733 Specifications

Model 332 Temperature Controller

Multifunction Intelligent 4-wire Isolated Signal Conditioner

Practical RTD Interface Solutions

NI PXI-4461 Specifications

FP-RTD-122 and cfp-rtd-122

NI 6143 Specifications

CALIBRATION PROCEDURE NI PXIe-4330/4331. Contents

SCXITM SCXI-1581 User Manual

Keysight Technologies Achieve Accurate Resistance Measurements with the 34980A Multifunction Switch Measure Unit. Application Note

An Instrumentation System

Resistance Temperature Detectors (RTDs)

NI 6013/6014 Family Specifications

PROGRAMMABLE FIELD TEMPERATURE TRANSMITTER

A SMART METHOD FOR AUTOMATIC TEMPERATURE CONTROL

SCC-FV01 Frequency Input Module

Model 144H NEW. PC-Programmable Temperature Transmitter. Product Data Sheet

NI 6023E/6024E/6025E Family Specifications

8248AU. 4-Ch Isolated Amplifier with Optional Bridge Conditioning FEATURES TYPICAL APPLICATIONS

Isolated DIN Rail Mount Loop-Powered 2-Wire Signal Conditioners. DRLP Series

High Power Monolithic OPERATIONAL AMPLIFIER

NI PXI-2555 Specifications

NI PXI/PCI-5411/5431 Specifications

PXIe Contents. Required Software CALIBRATION PROCEDURE

DC MHZ PXI Differential Instrumentation Amplifier

A New Standard for Temperature Measurement in an Aviation Environment. Hy Grossman

Datasheet Platinum Resistance Pt100 In-head (Push Button) Temperature Transmitter TX203P mA output, default range supplied C

Designing Filters Using the NI LabVIEW Digital Filter Design Toolkit

High Power Monolithic OPERATIONAL AMPLIFIER

Thin Film Platinum Precision Temperature Sensor TYPE SA/SB/SC/SD SERIES

FP-RTD-122 AND CFP-RTD-122. Features. FieldPoint Operating Instructions. Eight-Channel Three-Wire RTD and Resistance Input Modules

NI DAQPad -6020E Family Specifications

ME-MultiSig 1.5E (ME-MUX32, ME-DEMUX32, ME-SIG32)

NI SCXI Specifications

Model 325 Temperature Controller

NI REM Remote I/O Overview DATASHEET. Temperature Input Module for Remote I/O

ni.com Sensor Measurement Fundamentals Series

USING THERMISTORS. Using thermistors with a YDOC ML-x17 Data Logger. Application Note Using Thermistors

NI PXI-2521 Specifications 40-Channel DPST Relay Module

Isolated, Linearized Thermocouple Input 5B47 FEATURES APPLICATIONS PRODUCT OVERVIEW

GE Fanuc IC695ALG600. Rx3i PacSystem

9/28/2010. Chapter , The McGraw-Hill Companies, Inc.

SLC 500 RTD/Resistance Input Modules

LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency Converters

Temperature References for Highest Accuracy Industrial Thermocouple Measurements

50W TO220 High Power Resistors

Discrete Component Phono PreAmp

High-precision process calibrator Model CED7000

12/4/ X3 Bridge Amplifier. Resistive bridge amplifier with integrated excitation and power conditioning. Logos Electromechanical

Modular Smart Interfaces

NI PXI-2557 Specifications

DRG-SC Series Signal Conditioners

NI PXI/PXIe-2527 Specifications

VXI-TB CHANNEL ISOTHERMAL TERMINAL BLOCK

SCC-DI01 Isolated Digital Input Module

EPHY-MESS GmbH phone: Berta-Cramer-Ring 1 fax: Wiesbaden Germany

NI 2865A 0.3 A Matrix Cards for NI SwitchBlock

SPT. Description. Features. Site-Programmable, Isolated Temperature Transmitter

NI 6040E Family Specifications

Signal Conditioning Amplifier

USB Dynamic Signal Acquisition

USB-TEMP-AI. USB-based High-Precision 8-Channel Temperature and Voltage Measurement. User's Guide

PXIe, 7½-Digit, ±1,000 V, Onboard 1.8 MS/s Isolated Digitizer, PXI Digital Multimeter

BNC/TC-2095 RACK-MOUNT ADAPTER

National Instruments Flex II ADC Technology The Flexible Resolution Technology inside the NI PXI-5922 Digitizer

NI PXIe Contents. Required Software CALIBRATION PROCEDURE. Dual-Output Programmable DC Power Supply

Burns Engineering Presents - FAQ s that we ll answer today. Acronyms and Terminology. Acronyms and Terminology. Q & A on Temperature Topics

SEM1600T RTD/TC/SLIDE WIRE SIGNAL CONDITIONER

Specifications for the NI PXI/PCI-6552/6551

ECET 211 Electric Machines & Controls Lecture 4-2 Motor Control Devices: Lecture 4 Motor Control Devices

HART Compatible Intelligent 2-wire DIN Rail Transmitters

USB-TEMP and TC Series USB-Based Temperature Measurement Devices

Transcription:

Application Note 046 Measuring Temperature with an RTD or Thermistor What Is Temperature? Qualitatively, the temperature of an object determines the sensation of warmth or coldness felt by touching it. More specifically, temperature is a measure of the average kinetic energy of the particles in a sample of matter, expressed in units of degrees on a standard scale. RTDs and Thermistors RTDs Resistance temperature detectors (RTDs) operate on the principle of changes in electrical resistance of pure metals and are characterized by a linear positive change in resistance with temperature. Typical elements used for RTDs include nickel (Ni) and copper (Cu), but platinum (Pt) is by far the most common because of its wide temperature range, accuracy, and stability. RTDs are constructed by one of two different manufacturing configurations. Wire-wound RTDs are constructed by winding a thin wire into a coil. A more common configuration is the thin-film element, which consists of a very thin layer of metal laid out on a plastic or ceramic substrate. Thin-film elements are cheaper and more widely available because they can achieve higher nominal resistances with less platinum. To protect the RTD, a metal sheath encloses the RTD element and the lead wires connected to it. RTDs are popular because of their excellent stability, and exhibit the most linear signal with respect to temperature of any electronic temperature sensor. They are generally more expensive than alternatives, however, because of the careful construction and use of platinum. RTDs are also characterized by a slow response time and low sensitivity; and because they require current excitation, they can be prone to self-heating. RTDs are commonly categorized by their nominal resistance at 0 C. Typical nominal resistance values for platinum thin-film RTDs include 100 Ω and 1000 Ω. The relationship between resistance and temperature is very nearly linear and follows the equation For < 0 C R T = R 0 [ 1 + αt + βt 2 + χt 3 ( T 100) ] For > 0 C R T = R 0 [ 1 + αt + βt 2 ] Where R T R 0 = resistance at temperature T = nominal resistance α, β, and χ are contants used to scale the RTD National Instruments and ni.com are trademarks of National Instruments Corporation. Product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your CD, or ni.com/patents. 340557C-01 2003 National Instruments Corporation. All rights reserved. April 2003

The resistance/temperature curve for a 100 W platinum RTD, commonly referred to as Pt100, is shown below: 400 300 Resistance (Ω) 200 100 0 100 300 0 300 600 900 Temperature ( C) Figure 1. Resistance-Temperature Curve for a 100 Ω Platinum RTD, α = 0.00385 The most common RTD is the platinum thin-film with an α of 0.385%/ C and is specified per DIN EN 60751. The α value depends on the grade of platinum used, and also commonly include 0.3911%/ C and 0.3926%/ C. The α value defines the sensitivity of the metallic element, but is normally used to distinguish between resistance/temperature curves of various RTDs. Table 1. Callendar-Van Dusen Coefficients Corresponding to Common RTDs Standard Temperature Coefficient (α) A B C DIN 43760 0.003850 3.9080 x 10 3 5.8019 x 10 7 4.2735 x 10 12 American 0.003911 3.9692 x 10 3 5.8495 x 10 7 4.2325 x 10 12 ITS-90 0.003926 3.9848 x 10 3 5.8700 x 10 7 4.0000 x 10 12 *For temperatures below 0 C only. C = 0.0 for temperatures above 0 C Thermistors Thermistors (thermally sensitive resistors) are similar to RTDs in that they are electrical resistors whose resistance changes with temperature. Thermistors are manufactured from metal oxide semiconductor material which is encapsulated in a glass or epoxy bead. Thermistors have a very high sensitivity, making them extremely responsive to changes in temperature. For example, a 2252 Ω thermistor has a sensitivity of 100 Ω/ C at room temperature. In comparison, a 100 Ω RTD has a sensitivity of 0.4 Ω/ C. Thermistors also have a low thermal mass that results in fast response times, but are limited by a small temperature range. Thermistors have either a negative temperature coefficient (NTC) or a positive temperature coefficient (PTC). The first has a resistance which decreases with increasing temperature and the latter exhibits increased resistance with increasing temperature. Figure 2 shows a typical thermistor temperature curve compared to a typical 100 Ω RTD temperature curve. Application Note 046 2 ni.com

Resistance (Ω) 10 M 1 M 100 k 10 k 1 k 100 10 Thermistor (2252 Ω at 25 C) RTD (PT 100 Ω) 200 150 100 50 0 50 100 150 200 250 300 350 400 Temperature ( C) Figure 2. Resistance versus Temperature for a Typical Thermistor and RTD RTD and Thermistor Measurement and Signal Conditioning Because RTDs and thermistors are resistive devices, you must supply them with an excitation current and then read the voltage across their terminals. If extra heat cannot be dissipated, I2R heating caused by the excitation current can raise the temperature of the sensing element above that of the ambient temperature. Self-heating will actually change the resistance of the RTD or thermistor, causing error in the measurement. The effects of self-heating can be minimized by supplying lower excitation current. The easiest way to connect an RTD or thermistor to a measurement device is with a 2-wire connection. I EX R L V 0 + R L R T Figure 3. Making a Two-Wire RTD/Thermistor Measurement With this method, the two wires that provide the RTD or thermistor with its excitation current are also used to measure the voltage across the sensor. Because of the low nominal resistance of RTDs, measurement accuracy can be drastically affected by lead wire resistance. For example, lead wires with a resistance of 1 Ω connected to a 100 Ω platinum RTD cause a 1% measurement error. National Instruments Corporation 3 Application Note 046

A 3-wire or 4-wire connection method can eliminate the effects of lead wire resistance. The connection places leads on a high impedance path through the measurement device, effectively eliminating error caused by lead wire resistance. It is not necessary to use a 3 or 4-wire connection method for thermistors because they typically have much higher nominal resistance values than RTDs. A diagram of a 4-wire connection is shown below. I EX R L1 + R L2 V 0 RL3 R T R L4 Figure 4. Making a 4-Wire RTD Measurement RTD and thermistor output signals are typically in the millivolt range, making them susceptible to noise. Lowpass filters are commonly used in RTD and thermistor data acquisition systems to effectively eliminate high frequency noise in RTD and thermistor measurements. For instance, lowpass filters are useful for removing the 60 Hz power line noise that is prevalent in most laboratory and plant settings. DAQ Systems for Measuring Temperature with RTDs and Thermistors Using SCXI with RTDs and Thermistors National Instruments SCXI is a signal conditioning system for PC-based data acquisition systems. An SCXI system consists of a shielded chassis that houses a combination of signal conditioning input and output modules, which perform a variety of signal conditioning functions. You can connect many different types of sensors, including RTDs and thermistors, directly to SCXI modules. The SCXI system can operate as a front-end signal conditioning system for PC plug-in data acquisition (DAQ) devices (PCI and PCMCIA) or PXI DAQ modules. Figure 5. SCXI Signal Conditioning System Application Note 046 4 ni.com

SCXI offers a variety of analog and digital signal conditioning modules for various types of signals, including RTDs and thermistors. Table 1 includes the features of SCXI modules that can be used for RTD and thermistor measurements. Number of Inputs 4 Amplifier Gains Filtering Options Table 2. SCXI Signal Conditioning Modules for RTDs and Thermistors SCXI-1121 1 to 2,000; jumper selectable 4 Hz or 10 khz Recommended starter kit for RTD or Thermistor SCXI DAQ System: 1. PCI-6052 DAQ board 2. SCXI-1000 chassis 3. SCXI-1349 cable assembly 4. SCXI modules and terminal blocks (See Table 1 above) 5. Refer to ni.com/sensors for recommended sensor vendors SCXI-1122 16 (devices in series) 8 (4-wire scanning mode) 1 to 2,000; jumper selectable 4 Hz or 4 khz; software-programmable Isolation 250 Vrms 480 Vrms n/a Excitation Values Recommended Terminal Block for RTDs/Thermistors 3.3 V, 10 V 0.15 ma, 0.45 ma SCXI-1320 or SCXI-1322 32 SCXI-1102 w/scxi-1581 1 or 100; software-programmable; selectable per channel 2 Hz 3.33 V 1 ma 0.100 ma SCXI-1322 SCXI-1300 or SCXI-1303 National Instruments Corporation 5 Application Note 046

Using SCC with RTDs and Thermistors National Instruments SCC provides portable, modular signal conditioning for DAQ systems. SCC modules can condition a variety of analog I/O and digital I/O signals. SCC DAQ systems include an SC-2345 Series shielded carrier, SCC modules, a cable, and a DAQ device. Figure 4 below illustrates an SC-2345 carrier with SCC modules. Figure 6. SC-2345 with SCC Modules The SCC-RTD01 RTD module accepts up to two RTD input signals from 2, 3, or 4-wire RTDs of the following types: Pt100 ( 100 to +850 C) Ni120 ( 80 to +320 C) Cu10 (0 to +260 C) The RTDs are excited by a 1 ma precision current source provided on the SCC-RTD01. The RTD inputs are filtered and passed into a differential amplifier with a gain of 25. The output of the amplifier passes through a 3-pole 30 Hz filter and is buffered to allow maximum scan rates. Because of the fixed gain of 25, the maximum input voltage is 400 mv. Red RTD Red Black 6 5 SCC-RTD01 I EX (1 ma) Black Red 4 3 CH(X) RTD Red Black 2 1 CH(X + 8) Black 4-Wire, 2 Channels Figure 7. Schematic of SCC-RTD01 Used in 4-Wire Mode Application Note 046 6 ni.com

Recommended Starter Kit for RTD or Thermistor SCC DAQ System: 1. PCI-6052 DAQ board 2. SC-2345 module carrier 3. SCC-RTD01 (1 per 2 RTDs/thermistors) 4. Refer to ni.com/sensors for recommended RTD and thermistor vendors National Instruments Corporation 7 Application Note 046

*340557B-01* 340557B-01 Apr03