HG1120 INERTIAL MEASUREMENT UNIT (IMU) Installation and Interface Manual

Similar documents
HG4930 INERTIAL MEASUREMENT UNIT (IMU) Performance and Environmental Information

IMU60 Inertial Measurement Unit

Know your energy. Modbus Register Map EM etactica Power Meter

BW-IMU200 Serials. Low-cost Inertial Measurement Unit. Technical Manual

Technical Manual. CruizCore R1350N Rev Copyright Microinfinity Co., Ltd.

OS3D-FG MINIATURE ATTITUDE & HEADING REFERENCE SYSTEM MINIATURE 3D ORIENTATION SENSOR OS3D-P. Datasheet Rev OS3D-FG Datasheet rev. 2.

CMPS09 - Tilt Compensated Compass Module

Date: January 16, 2003 Page 1 of 1

CMPS11 - Tilt Compensated Compass Module

Know your energy. Modbus Register Map EB etactica Power Bar

MGA103 Single Axis MEMS Gyro with Triaxial Accelerometer

High Performance Advanced MEMS Industrial & Tactical Grade Inertial Measurement Units

Application Note. Communication between arduino and IMU Software capturing the data

GPS-Aided INS Datasheet Rev. 2.6

Parameter Value Unit Notes

GPS-Aided INS Datasheet Rev. 2.3

An internal gyroscope minimizes the influence of dynamic linear acceleration on slope sensor readings.

INERTIAL LABS SUBMINIATURE 3D ORIENTATION SENSOR OS3DM

Data Acquisition Modules/ Distributed IO Modules

3DM -CV5-10 LORD DATASHEET. Inertial Measurement Unit (IMU) Product Highlights. Features and Benefits. Applications. Best in Class Performance

HG G B. Gyroscope. Gyro for AGV. Device Description HG G B. Innovation through Guidance. Autonomous Vehicles

X3M. Multi-Axis Absolute MEMS Inclinometer Page 1 of 13. Description. Software. Mechanical Drawing. Features

MG100 Single Axis MEMS Gyro

Embedded Navigation Solutions VN-300 User Manual

NetBiter I/O Extender 4RO 6RTD 8DIO - DAIO User Manual Revision 1.00

RIGOL. User s Guide. DS6000 Digital Oscilloscope Demo Board. July RIGOL Technologies, Inc.

SERIES VECTORNAV TACTICAL SERIES VN-110 IMU/AHRS VN-210 GNSS/INS VN-310 DUAL GNSS/INS

Citrus Circuits Fall Workshop Series. Roborio and Sensors. Paul Ngo and Ellie Hass

maxon document number:

Single Channel Loop Detector

Interfacing to External Devices

Product Information Using the SENT Communications Output Protocol with A1341 and A1343 Devices

Modern Robotics Inc. Sensor Documentation

isma-b-w0202 Modbus User Manual GC5 Sp. z o.o. Poland, Warsaw

LCC-10 Product manual

MicroMag2 2-Axis Magnetic Sensor Module

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station

GPS-Aided INS Datasheet Rev. 2.7

GPS-Aided INS Datasheet Rev. 3.0

Embedded Navigation Solutions. VN-200 User Manual. Firmware v Document Revision UM004 Introduction 1

ADMA. Automotive Dynamic Motion Analyzer with 1000 Hz. ADMA Applications. State of the art: ADMA GPS/Inertial System for vehicle dynamics testing

CoolEx User Manual 2008 XDIMAX LTD. Revision 1.0

PNI MicroMag 3. 3-Axis Magnetic Sensor Module. General Description. Features. Applications. Ordering Information

ROTRONIC HygroClip Digital Input / Output

Communications message formats

DeviceNet Connector. Address Switches. Diagnostic LEDs. I/O Connectors. Power Connectors

POSICHRON position sensor in a stainless steel pressure tube. Protection class IP68/IP69K

EnDat 2.2 Bidirectional Interface for Position Encoders

TACTICAL SERIES VECTORNAV INDUSTRIAL SERIES. Key Benefits Miniaturized surface mount & Rugged packaging. < 30 grams. Embedded Navigation Solutions

XL270 Series 270-Watt AC to DC Power Supplies Rev

InfraStruXure Manager v4.x Addendum: Building Management System Integration

BW-VG525 Serials. High Precision CAN bus Dynamic Inclination Sensor. Technical Manual

3DM-GX4-45 LORD DATASHEET. GPS-Aided Inertial Navigation System (GPS/INS) Product Highlights. Features and Benefits. Applications

H3-IMU High Performance Inertial Measurement Unit

Motion Reference Units

Inertial Systems. Ekinox Series TACTICAL GRADE MEMS. Motion Sensing & Navigation IMU AHRS MRU INS VG

Section 1. Fundamentals of DDS Technology

SOLAR-360 : 360 Inclinometer, RS232 or RS485 Output

Inertial Sensors. Ellipse 2 Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG

Inertial Sensors. Ellipse 2 Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG

ASC IMU 7.X.Y. Inertial Measurement Unit (IMU) Description.

UM7 DATASHEET INTRODUCTION FEATURES. Rev. 1.3 Released 10/27/2014

SCA100T-D07 2-AXIS HIGH PERFORMANCE ANALOG ACCELEROMETER

Motion Reference Units

AHRS400 Series User s Manual

Inertial Sensors. Ellipse Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG

Installation Instructions for the Transportation Attitude Reference System (TARS Series) Ruggedized Inertial Measurement Unit (IMU)

802.11g Wireless Sensor Network Modules

Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN)

Attitude and Heading Reference Systems

Absolute multi-turn hollow shaft encoder BOMH Dignalizer SSI

OBSOLETE. Digital Output, High Precision Angular Rate Sensor ADIS Data Sheet FEATURES GENERAL DESCRIPTION APPLICATIONS FUNCTIONAL BLOCK DIAGRAM

AMS0805WAH. CATALOG No.: AMS0805WAH. Motion Sensor Data Sheet Ver Advanced Material on Technology

Orbis true absolute rotary encoder

Mercury technical manual

Modbus communication module for TCX2: AEX-MOD

Sensors Fundamentals. Renesas Electronics America Inc Renesas Electronics America Inc. All rights reserved.

CT435. PC Board Mount Temperature Controller

Select datum Page backward in. parameter list

Master Op-Doc/Test Plan

Combinational Logic Circuits. Combinational Logic

Serial Communication AS5132 Rotary Magnetic Position Sensor

UNSTAR 传感与控制 TEL: FAX: szss AHRS300 Series User s Manual AHRS300CA- (DMU-AHRS) Revision 1.5

Characteristic Sym Notes Minimum Typical Maximum Units Operating Frequency Range MHz Operating Frequency Tolerance khz

Inertial Sensors. Ellipse Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG

Applications: Power generation, Cogeneration, Stationary power Large engines

Characteristic Sym Notes Minimum Typical Maximum Units Operating Frequency Range MHz. RF Chip Rate 11 Mcps RF Data Rates 1, 2, 5.

SA-320 Installation Guide SA-320. Installation Guide. Date: Mar, 2011 Version: 2.5. All Rights Reserved

Voltage regulator TAPCON 240

ASCII Programmer s Guide

SOLAR-2 : Dual Axis Inclinometer, RS232 or RS485 Output

Orientus Reference Manual

Characteristic Sym Notes Minimum Typical Maximum Units Operating Frequency Range MHz Operating Frequency Tolerance khz

ROM/UDF CPU I/O I/O I/O RAM

Installation Instructions for the Transportation Attitude Reference Sensor TARS Series

PROMUX Distributed MODBUS I/O Modules Catalog and Design Guide

Peripheral Sensor Interface for Automotive Applications

Automotive Sensor Signal Conditioner with LIN and PWM Interface

Fast Dynamic Parallel Data Interface for the NGD RF Driver

Features. Description. General Specifications. VS Series Inclinometer : Dual Axis, RS232 and Analogue Output

Transcription:

HG1120 INERTIAL MEASUREMENT UNIT (IMU) Installation and Interface Manual

HG1120 Installation and Interface Manual aerospace.honeywell.com/hg1120 2 Table of Contents 4 5 6 15 17 17 Honeywell Industrial Inertial Measurement Units Electrical Interface Mode and Communication Selection Asynchronous Protocol SPI Protocol CAN 2A/2B Protocol Mechnical Drawing and Installation Export Guidance Contact Us Table of Tables 5 7 8 8 9 9 9 10 10 11 12 12 12 Table 1. Connector Pin Description Table 2. Mode Selection Table 3. Control Message (0x04 Data Format) Table 4. Main Status Word Definition Table 5. Multiplexed Status Word Table 6. Gyro and Accelerometer BIT Status Table 7. Processor/Memory BIT Status Word Table 8. Inertial Message (0x05 Data Format) Table 9. Asynchronous Control Message (0x0C Data Format) Table 10. Asynchronous Inertial Message (0x0D Data Format) Table 11. SPI Control Message (0x04 Data Format) Table 12. SPI Inertial Message (0x05 Data Format) Table 13. SPI Control Message (0x0C Data Format)

HG1120 Installation and Interface Manual aerospace.honeywell.com/hg1120 3 Table of Tables 12 13 13 13 14 14 14 Table 14. SPI Inertial Message (0x0D Data Format) Table 15. CAN Control Message 1 Format Table 16. CAN Control Message 2 Format Table 17. CAN Control Message 3 Format Table 18. CAN Inertial Message 1 Format Table 19. CAN Inertial Message 2 Format Table 20. CAN Inertial Message 3 Format

HG1120 Installation and Interface Manual aerospace.honeywell.com/hg1120 4 Honeywell Industrial Inertial Measurement Units Honeywell produces No License Required (NLR) Inertial Measurement Units (IMU) for industrial applications including agricultural vehicles, robotics, survey, mapping, and stabilized systems. These IMUs are designed for industrial application and can be used on air, land, and sea. Honeywell began producing gyros in the 1940 s for the Honeywell C-1 autopilot and specifically began producing MEMS gyros and accelerometers in the early 2000 s. Honeywell s IMUs utilize proprietary Honeywell technology and leverage existing production and engineering infrastructure. Honeywell has deep and long lasting relations with many commercial customers and is carrying that philosophy and product pedigree into our NLR IMU line. Honeywell s forward looking product strategies ensure that our NLR IMUs fit your current and future needs. The HG1120 IMU is a device which measures angular rates, linear accelerations, and magnetic fields in a body mounted strap down configuration. The IMU provides compensated incremental angle and velocity data for navigation as well as angular rates and linear accelerations for control. The data is reported through a digital serial interface bus and is available in a variety of serial formats. The unit contains MEMS gyroscopes and accelerometers as well as the electronics and software necessary to deliver precision control and navigation information. The input axes form a right handed frame aligned with the IMU mounting frame.

HG1120 Installation and Interface Manual aerospace.honeywell.com/hg1120 5 Electrical Interface The pin assignments of the external system connector are shown below. Logic 0 corresponds to the CMOS low logic state. Logic 1 corresponds to the CMOS high logic state. Table 1. Connector Pin Description PIN # SIGNAL NAME INPUT/OUTPUT & SIGNAL TYPE SIGNAL FUNCTION 1 DIO3 Input - Device Configuration CMOS compatible logic 2 DIO4 Input Device Configuration 3 SPI_SCLK Input 4 SPI_MOSI Input 5 SPI_MISO Output 6 SPI_SS Input 7 DIO1 Input Device Configuration 8 RESET_N Input Device Configuration 9 DATA_RDY Output 10 DIO2 Input - Device Configuration No connect results in Logic 1. Active low for logic 0. No connect results in Logic 1. Active low for logic 0. SPI Clock SPI Master Out Slave In (MOSI) data. SPI Master In Slave Out (MISO) data SPI Slave Select (chip select), Default high, Active low No connect results in Logic 1. Active low for logic 0. Logic 0 applied for 15 milli-seconds will stop all processing. Upon logic 1, the IMU will restart as if power had been removed and re-applied. No connection is required. Data Ready on Rising Edge to Logic 1. @ Logic 1, maximum 500 micro-seconds. No connect results in Logic 1. Active low for logic 0. 11,12 VDD Input Power (3.0 5.5 VDC) The input voltage should monotonically increase at start with ripple < 30 mv P-P. The device draws < 0.4 Watts and 125 ma. 13 PWR_RTN Power Return Return path for input power. 14 DGND Signal Return Use this pin to reference digital signals. 15 PWR_RTN Power Return Return path for input power. 16 SER_DATA_OUT_H Output RS-422 Asynchronous High 17 No Connect N/A N/A 18 SER_DATA_OUT_L Output RS-422 Asynchronous Low 19-21 No Connect 22 CAN_L Bi-directional - ISO 11898-2 Can Bus Low 23 No Connect No Connect 24 CAN_H Bi-directional - ISO 11898-2 Can Bus High

HG1120 Installation and Interface Manual aerospace.honeywell.com/hg1120 6 Mode and Communication Selection The HG1120 supports the message protocols, data rates, and bandwidths, described in Table 2. The HG1120 can be configured by setting discrete inputs DIO1 through DIO4. These pins are only read upon reset or power up. State of the pins is shown in word 9 of the multiplexed status word. The first frame of serial output data after power-application will contain a fixed pattern of 0x55s in place of sensor data. Subsequent frames of serial output data will contain compensated sensor data. The control bandwidth in Table 2 describes the nominal - 90 phase point. The -3dB frequency is nominally 2x the -90 phase frequency. The bandwidth is exclusive of transmission delay. Control data consists of the angular rates, linear acceleration, magnetic, and IMU status words in message set {0x04, 0x05} and set {0x0C, 0x0D}. The angular and linear data is filtered and sampled at 1800 Hz. The 1800 Hz filtered angular and linear data is decimated for 600 Hz control data. The 300/100 Hz navigation data output consists of incremental (or delta ) angles and velocities as shown in message IDs 0x05 and 0x0D. The navigation data is unfiltered 1800 Hz sensor data which is summed to the navigation data rate (300 Hz or 100 Hz). Accurate attitude and position calculations require that all messages be received and used. Gyro and accelerometer residuals are calculated and carried forward to the next message for both navigation and control data. The serial output FIFO is loaded with the LS byte first and LS 16-bit word first. The sensor data (gyro, accelerometer, magnetometer, and temperature) are all signed 2 s complement integers.

HG1120 Installation and Interface Manual aerospace.honeywell.com/hg1120 7 Table 2. Mode Selection DIO4 DIO3 DIO2 DIO1 PROTOCOL CONTROL/NAV. DATA RATES CONTROL/INERTIAL MESSAGE FORMATS CONTROL DATA BANDWIDTH (-90 PHASE POINT) 1 1 1 1 ASYNC 1800/300 Hz 0x04/0x05 97 Hz Gyro 1 1 1 0 ASYNC 600/100 Hz 0x0C/0x0D 155 Hz Accelerometer 1 1 0 1 ASYNC 600/100 Hz 0x0C/0x0D 90Hz 1 1 0 0 ASYNC 600/100 Hz 0x0C/0x0D 50Hz 1 0 1 1 SPI 1800/300 Hz 0x04/0x05 97 Hz Gyro 1 0 1 0 SPI 600/100 Hz 0x0C/0x0D 155 Hz Accelerometer 1 0 0 1 SPI 600/100 Hz 0x0C/0x0D 90Hz 1 0 0 0 SPI 600/100 Hz 0x0C/0x0D 50Hz 0 1 1 1 CAN2A 600/100 Hz 11 Bit ID 90Hz 0 1 1 0 CAN2A 600/100 Hz 11 Bit ID 50Hz 0 1 0 1 CAN2B 600/100 Hz 29 Bit ID 90Hz 0 1 0 0 CAN2B 600/100 Hz 29 Bit ID 50Hz 0 0 1 1 SPARE NA NA NA 0 0 1 0 SPARE NA NA NA 0 0 0 1 SPARE NA NA NA 0 0 0 0 SPARE NA NA NA Asynchronous Protocol The asynchronous 1800/300 Hz data protocol is as specified in Table 3 Control Message (0x04) Format and Table 7 Inertial Message (0x05) Format. The asynchronous 600/100 Hz data protocol is as specified in Table 8 Control Message (0x0C) Format and Table 9 Inertial Message (0x0D) Format. The transmit baud rate will be 1Mbits/sec with 1 start bit, 8 data bits, 1 stop bit, and no parity.

HG1120 Installation and Interface Manual aerospace.honeywell.com/hg1120 8 Table 3. Control Message (0x04 Data Format) 1 IMU Address 1 N/A Constant 0x0E 2 Message ID 1 N/A Constant 0x04 3 Angular Rate X 2 2-20 * 1800 * 2/3 rad/sec/lsb 4 Angular Rate Y 2 2-20 * 1800 * 2/3 rad/sec/lsb 5 Angular Rate Z 2 2-20 * 1800 * 2/3 rad/sec/lsb 6 Linear Acceleration X 2 2-14 * 1800 * 2/3 0.3048 meters/sec 2 /LSB 7 Linear Acceleration Y 2 2-14 * 1800 * 2/3 0.3048 meters/sec²/lsb 8 Linear Acceleration Z 2 2-14 * 1800 * 2/3 0.3048 meters/sec²/lsb 9 Mag Field X 2 0.438404 Milli-gauss/LSB 10 Mag Field Y 2 0.438404 Milli-gauss/LSB 11 Mag Field Z 2 0.438404 Milli-gauss/LSB 12 Main Status Word 2 N/A See Table 4. 13 Multiplexed Status Word 2 N/A See Table 5. 14 Checksum Sum of all message data (positions 1 13 of this table), taken as 16 bit words, and summed without regard for rollover. Total Length 26 2 N/A // this pseudo code illustrates the checksum algorithm u16sum = 0; for (i=0; i<12; i++) // (26-2)/2=12 { u16sum += u16_msg_array[i]; } Checksum = u16_msg_array[12]; if (Checksum!= u16sum) {checksum error} Table 4. Main Status Word Definition BIT(S) PARAMETER VALUES 0-3 Multiplexed Status Word Counter See Table 5. 4 IMU OK 0=OK, 1=Failed 5 Sensor Board Initialization Successful 0=OK, 1=Failed 6 Accelerometer X Validity 0=OK, 1=Failed 7 Accelerometer Y Validity 0=OK, 1=Failed 8 Accelerometer Z Validity 0=OK, 1=Failed 9 Gyro X Validity 0=OK, 1=Failed 10 Gyro Y Validity 0=OK, 1=Failed 11 Gyro Z Validity 0=OK, 1=Failed 12 Magnetometer Validity 0=OK, 1=Failed 13 Power Up BIT Status (Latched) 0=OK, 1=Failed 14 Continuous BIT Status (Latched) 0=OK, 1=Failed 15 Power Up Test - Sets at start of serial data (~100 milliseconds) and clears before 300 milliseconds. 0=Normal, 1+Power Up Tests

HG1120 Installation and Interface Manual aerospace.honeywell.com/hg1120 9 Table 5. Multiplexed Status Word MUX WORD COUNTER CONTENTS (16 BITS) UNITS 0 Software Version Number Binary 1 Gyro and Accelerometer Status See Table 6 2 Gyro and Accelerometer BIT History (Latched Until Power is Cycled or Unit is Reset) 3 Magnetometer BIT Status Bits 3-8 of Mux Word Counter 1 will be latched if the individual BIT test counter reaches 15. The test counter is increased by 1 for a failure and then reduced by 1 if the failure clears. Bit 2 of Mux Word Counter 1 employs similar logic but the test counter limit is 5. Bits 3-15 are Honeywell use only. 0=OK, 1=Failed, applies to remaining bits. 4 Reserved Reserved 5 Processor/Memory BIT Status See Table 7 6 Processor/Memory BIT Status (Latched Until Power is Cycled or Unit is Reset) See Table 7 7 Accelerometer/Gyro Sensor Temperature ~0.0039 C/LSB, Not Calibrated 8 Magnetometer Temperature ~0.0039 C/LSB, Not Calibrated 9 DIO1-DIO4 Device Configuration Echo Bit 0: DIO 1 Bit 1: DIO 2 Bit 2: DIO 3 Bit 3: DIO 4 Bit 4-15: reserved 10-15 Reserved 0 Table 6. Gyro and Accelerometer BIT Status BIT(S) PARAMETER VALUES 0 Sensor Electronics 0=OK, 1=Failed 1 Sensor Data Ready 0=OK, 1=Failed 2 Temperature 0=OK, 1=Failed 3-5 Accelerometer X, Y, Z Health 0=OK, 1=Failed 6-8 Gyro X, Y, Z Health 0=OK, 1=Failed 9-15 Reserved 0=OK, 1=Failed Table 7. Processor/Memory BIT Status Word BIT(S) PARAMETER VALUES 0 Loop Completion Test 0=OK, 1=Failed 1 RAM Test 0=OK, 1=Failed 2 Coefficient Table CRC Test 0=OK, 1=Failed 3 Configuration Table CRC Test 0=OK, 1=Failed 4 Normal Mode SW CRC Test 0=OK, 1=Failed 5 Spare 0=OK, 1=Failed 6 Stack Overflow Test 0=OK, 1=Failed 7 Watchdog Timer Test 0=OK, 1=Failed 8 Processor Test 0=OK, 1=Failed 9-15 Reserved N/A

HG1120 Installation and Interface Manual aerospace.honeywell.com/hg1120 10 Table 8. Inertial Message (0x05 Data Format) 1 IMU Address 1 N/A Constant 0x0E 2 Message ID 1 N/A Constant 0x05 3-13 Control Data 22 N/A 14 Delta Angle X 4 2-34 radians/lsb Contents same as Message 0x04 Positions 3-13. 15 Delta Angle Y 4 2-34 16 Delta Angle Z 4 2-34 or equivalently, radians/second/hz/lsb 17 Delta Velocity X 4 2-28 0.3048 meters/sec/lsb 18 Delta Velocity Y 4 2-28 or equivalently, 19 Delta Velocity Z 4 2-28 0.3048 meters/sec 2 /Hz/LSB 20 Checksum Sum of all message data (positions 1-19 of this table), taken as 16 bit words, and summed without regard for rollover. Total 50 2 N/A // this pseudo code illustrates the checksum algorithm u16sum = 0; for (i=0; i<24; i++) // (50-2)/2=24 { u16sum += u16_msg_array[i]; } Checksum = u16_msg_array[24]; if (Checksum!= u16sum) {checksum error} Table 9. Asynchronous Control Message (0x0C Data Format) 1 IMU Address 1 N/A Constant 0x0E 2 Message ID 1 N/A Constant 0x0C 3 Angular Rate X 2 2-20 * 600 rad/sec/lsb 4 Angular Rate Y 2 2-20 * 600 rad/sec/lsb 5 Angular Rate Z 2 2-20 * 600 rad/sec/lsb 6 Linear Acceleration X 2 2-14 * 600 0.3048 meters/sec 2 /LSB 7 Linear Acceleration Y 2 2-14 * 600 0.3048 meters/sec 2 /LSB 8 Linear Acceleration Z 2 2-14 * 600 0.3048 meters/sec 2 /LSB 9 Mag Field X 2 0.438404 Milli-gauss/LSB 10 Mag Field Y 2 0.438404 Milli-gauss/LSB 11 Mag Field Z 2 0.438404 Milli-gauss/LSB 12 Main Status Word 2 N/A See Table 4 13 Detailed Multiplexed Status Word 2 N/A See Table 5 14 Checksum Sum of all message data (positions 1-13 of this table), taken as 16 bit words, and summed without regard for rollover. Total Length 26 2 N/A // this pseudo code illustrates the checksum algorithm u16sum = 0; for (i=0; i<12; i++) // (26-2)/2=12 { u16sum += u16_msg_array[i]; } Checksum = u16_msg_array[12]; if (Checksum!= u16sum) {checksum error}

HG1120 Installation and Interface Manual aerospace.honeywell.com/hg1120 11 Table 10. Asynchronous Inertial Message (0x0D Data Format) 1 IMU Address 1 N/A Constant 0x0E 2 Message ID 1 N/A Constant 0x0D 3-13 Control Data 22 N/A 14 Delta Angle X 4 2-33 radians/lsb Contents same as Message 0x0C Positions 3-13. 15 Delta Angle Y 4 2-33 16 Delta Angle Z 4 2-33 or equivalently, radians/second/hz/lsb 17 Delta Velocity X 4 2-27 0.3048 meters/sec/lsb 18 Delta Velocity Y 4 2-27 or equivalently, 19 Delta Velocity Z 4 2-27 0.3048 meters/sec 2 /Hz/LSB 20 Checksum Sum of all message data (positions 1-19 of this table), taken as 16 bit words, and summed without regard for rollover. Total 50 SPI Protocol 2 N/A // this pseudo code illustrates the checksum algorithm u16sum = 0; for (i=0; i<24; i++) // (50-2)/2=24 { u16sum += u16_msg_array[i]; } Checksum = u16_msg_array[24]; if (Checksum!= u16sum) {checksum error} The SPI 1800/300 Hz data protocol is as specified in Table 10 SPI Control Message and Table 11 Inertial Message. The SPI 600/100 Hz data protocol is as specified in Table 12 Control Message Format and Table 13 SPI Inertial Message. These messages are identical in content to the asynchronous HG1120 Control/Inertial messages except that Position 0 will be added and contain a 1 byte field containing the number of bytes of data (not including spare bytes) in the message. The SPI clock frequency must be at least 2 MHz or no faster than 9 Mhz. The SPI clock polarity and phase are set to one (1). SPI data order is MSB first. A 4-wire SPI implementation is used. The DATA_RDY signal must be used to synchronize your application to the data being produced to ensure a consistent data set. The DATA_RDY signal must trigger an SPI fetch, and the clock rate must be fast enough to fetch an entire message within the Control data rate (either 1800 or 600 Hz). The SPI_SS signal should be set, then the application should clock 408 (51*8) SPI bits before resetting the SPI_SS signal. The External SPI device will be coming in asynchronous to the Control/Inertial message sequence. Each SPI message in the Control/Inertial set will be a constant length. The Control message will have spare bytes at the end, NOT included in the checksum, to match the length of the Inertial Message.

HG1120 Installation and Interface Manual aerospace.honeywell.com/hg1120 12 Table 11. SPI Control Message (0x04 Data Format) 0 SPI Data Size 1 1 1-14 Control Data 26 N/A 15-20 Spare 24 None Total Length 51 Number of bytes of data in message items 1..14 = 26 See Message 0x04 Positions 1-14 Table 12. SPI Inertial Message (0x05 Data Format) 0 SPI Data Size 1 1 1-20 Control and Navigation Data 50 N/A Total Length 51 Number of bytes of data in message items 1..20 = 50 See Inertial Message 0x05 Positions 1-20 Table 13. SPI Control Message (0x0C Data Format) 0 SPI Message Data Size 1 1 1-14 Control Data 26 N/A 15-20 Spare 24 N/A None Total Length 51 Number of bytes of data in message items 1..14 = 26 See Control Message 0x0C Positions 1-14 Table 14. SPI Inertial Message (0x0D Data Format) 0 SPI Message Data Size 1 1 1-20 Control and Navigation Data 50 N/A Total Length 51 Number of bytes of data in message items 1..20 = 50 See Inertial Message 0x0D Format, Positions 1-20

HG1120 Installation and Interface Manual aerospace.honeywell.com/hg1120 13 CAN 2A/2B Protocol The baud rate for all CAN messages will be 1Mbits/sec. The software will place each entry of the Control and Inertial message onto the CAN Bus with the LS byte first and LS 16-bit word first. Messages will be in sequence {(C1 C2 C3 I1 I2 I3) (C1 C2 C3) (C1 C2 C3) (C1 C2 C3) (C1 C2 C3) (C1 C2 C3)} following the format of 5 consecutive control messages (C1 C2 C3), interleaved with one inertial message (C1 C2 C3 I1 I2 I3). Table 15. CAN Control Message 1 Format n/a Arbitration ID n/a n/a 11 bit = 0x0121 29 bit = 0x04924921 1 Angular Rate X 2 2-20 * 600 rad/sec/lsb 2 Angular Rate Y 2 2-20 * 600 rad/sec/lsb 3 Angular Rate Z 2 2-20 * 600 rad/sec/lsb 4 Main Status Word 2 N/A See Table 4 Table 16. CAN Control Message 2 Format n/a Arbitration ID n/a n/a 11 bit = 0x0122 29 bit = 0x04924922 1 Linear Acceleration X 2 2-14 * 600 0.3048 meters/sec 2 /LSB 2 Linear Acceleration Y 2 2-14 * 600 0.3048 meters/sec 2 /LSB 3 Linear Acceleration Z 2 2-14 * 600 0.3048 meters/sec 2 /LSB 4 Detailed Multiplexed Status Word 2 N/A See Table 5 Table 17. CAN Control Message 3 Format n/a Arbitration ID n/a n/a 11 bit = 0x126 29 bit = 0x04924926 1 Mag Field X 2 0.438404 Milli-gauss/LSB 2 Mag Field Y 2 0.438404 Milli-gauss/LSB 3 Mag Field Z 2 0.438404 Milli-gauss/LSB

HG1120 Installation and Interface Manual aerospace.honeywell.com/hg1120 14 Table 18. CAN Inertial Message 1 Format n/a Arbitration ID n/a n/a 11 bit = 0x123 29 bit = 0x04924923 1 Delta Angle X 4 2-33 radians/lsb 2 Delta Velocity X 4 2-27 0.3048 meters/sec/lsb Table 19. CAN Inertial Message 2 Format n/a Arbitration ID n/a n/a 11 bit = 0x124 29 bit = 0x04924924 1 Delta Angle Y 4 2-33 radians/lsb 2 Delta Velocity Y 4 2-27 0.3048 meters/sec/lsb Table 20. CAN Inertial Message 3 Format n/a Arbitration ID n/a n/a 11 bit = 0x125 29 bit = 0x04924925 1 Delta Angle Z 4 2-33 radians/lsb 2 Delta Velocity Z 4 2-27 0.3048 meters/sec/lsb

HG1120 Installation and Interface Manual aerospace.honeywell.com/hg1120 15 Mechanical Drawing and Installation The accelerometer and gyro sensors are mounted in a normally aligned, right-handed axis configuration that is nominally aligned with the IMU axes as shown in the figure below. If the X axis is pointed up away from the Earth s surface, the accelerometer reading will be positive. The HG1120 nominally weighs 54 grams. This device has been designed to meet stringent EMI and EMC requirements, and as such, the user should shield the I/O cabling and provide chassis ground connection to the IMU housing. IMUs are precision instruments which measure angular rate and linear acceleration across a broad temperature range. Because of their precision, users can interpret real motion (both angular and linear) as sensor noise. This noise can often be coupled mechanically through the mounting plate. Installation on a thin structure is generally not desirable. Placement at anti-nodes will minimize angular rotation and maximize linear displacement. Placement at nodes will maximize angular rotation and minimize linear displacement. The IMU should not be subjected to contact with any fuels, lubricants, solvents, or their vapors. A CAD compatible STP file is available from Honeywell upon request. Recommended mating connectors are SAMTECH part numbers FLE-112-01-G-DV or CLP-112-02-F-D or equivalent. The center of gravity and center of navigation are located at the approximate geometric center. X Z Y

HG1120 Installation and Interface Manual aerospace.honeywell.com/hg1120 16 All dimensions are in millimeters 4X 2.438 THRU 43.942 39.624 14.148 46.99 42.672 25.4 7.874 2X 1.778 0.086-56UNC-2B

Export Guidance All technology that leaves the United States is subject to export regulations. This manual contains technology that has an Export Commodity Classification of ECCN 7E994 with associated country chart control code of AT1. This technology generally will not require a license to be exported or re-exported. However, if you plan to export this item to an embargoed or sanctioned country, to a party of concern, or in support of a prohibited end-use, you may be required to obtain a license. Contact Us For more information, email imu.sales@honeywell.com or contact us on our website aerospace.honeywell.com/hg1120 For more information aerospace.honeywell.com/hg1120 Honeywell Aerospace 1944 East Sky Harbor Circle Phoenix, Arizona 85034 +1 (800) 601 3099 aerospace.honeywell.com N61-1774-000-000 06/17 2017 Honeywell International Inc.