PRESENTED BY HUMANOID IIT KANPUR

Similar documents
Introduction. ELCT903, Sensor Technology Electronics and Electrical Engineering Department 1. Dr.-Eng. Hisham El-Sherif

EL6483: Sensors and Actuators

Sensing. Autonomous systems. Properties. Classification. Key requirement of autonomous systems. An AS should be connected to the outside world.

Introduction to Internet of Things Prof. Sudip Misra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur

5. Transducers Definition and General Concept of Transducer Classification of Transducers

ACTUATORS AND SENSORS. Joint actuating system. Servomotors. Sensors

Electronic Systems - B1 23/04/ /04/ SisElnB DDC. Chapter 2

ELECTRONIC SYSTEMS. Introduction. B1 - Sensors and actuators. Introduction

Ch 5 Hardware Components for Automation

electronics for computer engineering (Sensor) by KrisMT Computer Engineering, ICT, University of Phayao

CS545 Contents XIV. Components of a Robotic System. Signal Processing. Reading Assignment for Next Class

WELCOME TO THE SEMINAR ON INTRODUCTION TO ROBOTICS

Electronics II. Calibration and Curve Fitting

EEE 187: Robotics. Summary 11: Sensors used in Robotics

DC motor control using arduino

9/28/2010. Chapter , The McGraw-Hill Companies, Inc.

Intelligent Robotics Sensors and Actuators

Electronic Instrumentation and Measurements

Embedded Systems Lecture 2: Interfacing with the Environment. Björn Franke University of Edinburgh

Signal Characteristics and Conditioning

Actuators, sensors and control architecture

ROBOTICS & EMBEDDED SYSTEMS

Advanced Measurements

University of Florida Department of Electrical and Computer Engineering Intelligent Machine Design Laboratory EEL 4665 Spring 2013 LOSAT

ECE 477 Digital Systems Senior Design Project Rev 8/09. Homework 5: Theory of Operation and Hardware Design Narrative

CENG 5931 HW 5 Mobile Robotics Due March 5. Sensors for Mobile Robots

An Example of robots with their sensors

Department of Mechatronics Engineering

Measurement Techniques

Job Sheet 2 Servo Control

Industrial Sensors. Proximity Mechanical Optical Inductive/Capacitive. Position/Velocity Potentiometer LVDT Encoders Tachogenerator

Robot Sensors Introduction to Robotics Lecture Handout September 20, H. Harry Asada Massachusetts Institute of Technology

Mechatronics System Design - Sensors

Developer Techniques Sessions

Sensors and Actuators

Development of intelligent systems

Sensors. CS Embedded Systems p. 1/1

An Example of robots with their sensors

IT.MLD900 SENSORS AND TRANSDUCERS TRAINER. Signal Conditioning

Citrus Circuits Fall Workshop Series. Roborio and Sensors. Paul Ngo and Ellie Hass

ECET 211 Electric Machines & Controls Lecture 4-2 Motor Control Devices: Lecture 4 Motor Control Devices

ELG3336 Design of Mechatronics System

UNIT III Data Acquisition & Microcontroller System. Mr. Manoj Rajale

Obstacle Avoiding Robot

Robot Hardware Non-visual Sensors. Ioannis Rekleitis

Sensors. human sensing. basic sensory. advanced sensory. 5+N senses <link> tactile touchless (distant) virtual. e.g. camera, radar / lidar, MS Kinect

Actuators in Automatic Control System

Water Meter Basics Incremental encoders

National Instruments Our Mission

Lab 2A: Introduction to Sensing and Data Acquisition

Sensors and Sensing Motors, Encoders and Motor Control

MECE 3320 Measurements & Instrumentation. Data Acquisition

Continuous Sensors Accuracy Resolution Repeatability Linearity Precision Range

New Long Stroke Vibration Shaker Design using Linear Motor Technology

Analogue Interfacing. What is a signal? Continuous vs. Discrete Time. Continuous time signals

combine regular DC-motors with a gear-box and an encoder/potentiometer to form a position control loop can only assume a limited range of angular

Nebraska 4-H Robotics and GPS/GIS and SPIRIT Robotics Projects

Sensing self motion. Key points: Why robots need self-sensing Sensors for proprioception in biological systems in robot systems

MOBILE ROBOTICS. Sensors An Introduction

Electronics Design Laboratory Lecture #4. ECEN 2270 Electronics Design Laboratory

SmartSenseCom Introduces Next Generation Seismic Sensor Systems

ELECTRONIC FUNDAMENTALS

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science

Hardware Platforms and Sensors

Sensors and Sensing Motors, Encoders and Motor Control

istand I can Stand SPECIAL SENSOR REPORT

Shock Sensor Module This module is digital shock sensor. It will output a high level signal when it detects a shock event.

Effective Teaching Learning Process for PID Controller Based on Experimental Setup with LabVIEW

Lab 1: Testing and Measurement on the r-one

Sensors. Chapter 3. Storey: Electrical & Electronic Systems Pearson Education Limited 2004 OHT 3.1

HOW TO UNDERSTAND THE WORKINGS OF RADIO CONTROL

E11 Lecture 11: Sensors & Actuators. Profs. David Money Harris & Sarah Harris Fall 2011

Analog to Digital Conversion

By Pierre Olivier, Vice President, Engineering and Manufacturing, LeddarTech Inc.

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

Control Design for Servomechanisms July 2005, Glasgow Detailed Training Course Agenda

Where: (J LM ) is the load inertia referred to the motor shaft. 8.0 CONSIDERATIONS FOR THE CONTROL OF DC MICROMOTORS. 8.

Speed Control of DC Motor Using Microcontroller

Actuator Components 2

JEPPIAAR ENGINEERING COLLEGE

Modern Robotics Inc. Sensor Documentation

Actuators. DC Motor Servo Motor Stepper Motor. Sensors

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station

AUTOPILOT CONTROL SYSTEM - IV

PART 2 - ACTUATORS. 6.0 Stepper Motors. 6.1 Principle of Operation

MCT - Mechatronics

Interactive Simulation: UCF EIN5255. VR Software. Audio Output. Page 4-1

Chapter 2 Sensors. The Author(s) 2018 M. Ben-Ari and F. Mondada, Elements of Robotics, / _2

Table of Contents...2. About the Tutorial...6. Audience...6. Prerequisites...6. Copyright & Disclaimer EMI INTRODUCTION Voltmeter...

Principles of operation 5

The Datasheet and Interfacing EE3376

Range Sensing strategies

IL8190 TECHNICAL DATA PRECISION AIR - CORE TACH / SPEEDO DRIVER WITH RETURN TO ZERO DESCRIPTION FEATURES

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge

As before, the speed resolution is given by the change in speed corresponding to a unity change in the count. Hence, for the pulse-counting method

Brainstorm. In addition to cameras / Kinect, what other kinds of sensors would be useful?

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G

SMART SENSOR SYSTEMS. WILEY A John Wiley and Sons, Ltd, Publication. Edited by. Gerard CM. Meijer

ni.com Sensor Measurement Fundamentals Series

Introduction to Measurement Systems

Transcription:

SENSORS & ACTUATORS Robotics Club (Science and Technology Council, IITK) PRESENTED BY HUMANOID IIT KANPUR October 11th, 2017

WHAT ARE WE GOING TO LEARN!! COMPARISON between Transducers Sensors And Actuators. Brief description About Sensors, Types of Sensors, Classifications. Actuators and it s working. COMPUTER PROCESS CONTROL SYSTEM. Analog To Digital Convertor. Sampling,Quantization, Encoding.

Transducer Any device that convert one form of energy to another.

Sensors Devices that measures physical quantities and convert them into signals which can be read by instruments

Actuators Devices that actuates or moves something.more specifically, they converts energy into motion or mechanical energy

SENSORS

Classification of Sensors In passive sensing, sensor measures the energy that is naturally available, such as thermal infrared, surface emissions. In active sensing, sensors provides energy on their own as a source of illumination. The energy reflected by the target is detected and measured. Note: The above two terms are used with the perspective of remote sensing. Source: http://wtlab.iis.u-tokyo.ac.jp/~wataru/lecture/rsgis/rsnote/cp2/cp2-1.htm

Active vs. Passive Sensors Active Sensor Passive Sensor

What makes a good sensor? Precision: An ideal sensor produces same output for same input. It is affected by noise and hysteresis. Resolution: The ability to detect small changes in the measuring parameter Accuracy: It is the combination of precision, resolution and calibration. Source: https://learn.adafruit.com/calibrating-sensors/why-calibrate

Calibration of Sensors Most sensors are not ideal and are often affected by surrounding noise. For a color sensor, this could be ambient light, and specular distributions. If a sensor is known to be accurate, it can be used to make comparison with reference readings. This is usually done with respect to certain standard physical references, such as for a rangefinder we may use a ruler for calibration. Each sensor has a characteristic curve that defines the sensor s response to an input. The calibration process maps the sensor s response to an ideal linear response

Characteristic Curve of Sensor Suppose the output of a sensor for some physical quantity x(t) is given by f(x(t)): Linear Model, where Affine Model, where, Often, a is called the proportionality constant, which gives an idea of the sensitivity of the sensor, and b denotes the bias. Note: The sensitivity of a sensor is ratio of output value to measured quantity.

Sensor s Operating Range If the operating range of a sensor is (L, H), To get an idea of how precise the measurements of a sensor can be, one defines its precision p as the smallest difference between two distinguishable sensor readings of the physical quantity.

Sampling and Quantisation The process of the discretization of the domain of the signal being measured is called sampling, whereas quantization refers to the discretisation of the range. Pulse Code Modulator Continuous-time continuous amplitude input signal Discrete-time continuous amplitude signal (PAM) Discrete-time discrete amplitude signal (PCM) Digital bit stream output signal

Sampling and Quantisation SAMPLING: Evaluating the input signal at discrete units of time, say 0, T, 2T,.. nt. QUANTIZING: Provides discretized values to the input on basis of a finite number of thresholding conditions ENCODING: Transforms the digital data into a digital signal, comprising of bits 0111011, on basis of various schemes. Manchester Line code

Sampling and Quantisation If the sampling rate isn t high, one can end up with different signals(aliases) during reconstruction, that fit the same set of sample points. This is called aliasing, and is undesirable. For best sampling, the sampling rate must be >= 2 times the frequency of the signal. (Nyquist Shannon Sampling Theorem) In the case of quantisation, selection of fewer levels of discretisation can lead to progressive loss of spatial detail. Also, contours(artificial boundaries) can start appearing due to sudden changes in intensity. For audio signals, this can be heard as noise/distortions.

VARIETIES OF SENSORS Acoustic Sensors Geophone Hydrophone Microphone Automotive Sensors Air flow meter Speedometer Hall-Effect Sensor Air- Fuel Ratio meter Electric Current Sensors Hall Probe Magnetometer Current sensor Voltage Detector Proximity Sensor Infrared sensor Ultrasonic sensor Navigation Instruments LIDAR Gyroscope Rotary Encoder Odometer Tachometer Optical Sensor Photodiode Infrared sensor Camera

1. Camera Vision processing requires a lot of RAM, and even low resolution cameras may give lots of data, parsing through which can be difficult. Cameras draw in around 0.1 A current, the current rating of the USB hub to which they are attached must be checked. Advamotion Raspberry Pi Camera

2. Inertial Measurement Unit Consists of three sensors: o Accelerometer: Used to measure inertial acceleration o Gyroscope :Measures angular velocity about defined axis o Magnetometer : Can be used along with gyroscope to get better estimates of robot s orientation (i.e. roll, pitch, yaw)

3. Photo-resistors Light sensitive resistors whose resistance decreases as the intensity of light they are exposed to increases. They are made of high resistance semiconductor material. When light hits the device, the photons give electrons energy. This makes them jump into the conductive band and thereby conduct electricity.

4. Infrared Sensor IR led is led that emits light in IR region and can't be seen by the eyes. Photodiode is a type of diode which works in reverse bias and its resistance is changed when subjected to change in light intensity. They are used for colour detection etc.

5. Flex Sensors Measure the amount of deflection caused by bending, also called bend sensors. The bending must occur around a radius of curvature, as by some angle at a point isn t effective and if done by more than 90 deg., may permanently damage the sensor.

6. Ultrasonic Sensor These are commonly used for obstacle detection. Works on principle similar to that of Sonar which consists of time of flight,the Doppler effect and the attenuation of sound waves.

7. Rotary Encoder They convert the angular position of a shaft or axle to a analog / digital code. They may represent the value in absolute or incremental terms. The advantage of absolute encoders is that they maintain the information of the position even when power is removed, and this is available immediately on its application.

8. Touch Sensor Touch sensors can be defined as switches that are activated by the touch. Examples includes capacitance touch switch, resistance touch switch, and piezo touch switch.

9.Thermocouple Converts thermal energy into electrical energy and is used to measure temperature. When two dissimilar metal wires are connected at one end forming a junction, and that junction is heated, a voltage is generated across the junction.

ACTUATORS

TYPES OF ACTUATORS In a robot, actuators are used in order to produce some mechanical movement. Electric Hydraulic Pneumatic Electro-mechanical devices which allow movement through use of electrically controlled systems of gears Transforms energy stored in reservoirs into mechanical energy by means of suitable pumps Uses pneumatic energy provided by air compressor and transforms it into mechanical energy by means of pistons or turbines DC Motor Water Pump by Tefulong Ltd. Pneumatic cylinder by Janatics Ltd.

ACTUATOR FUNCTIONAL DIAGRAM Unregulated Power Supply (from batteries) Control Signal (from microcontroller) H-Bridge Power Amplifier and Modulation Energy Conversion Actuator Motor Driver Output

MOTOR DRIVER Microcontrollers, typically, have current rating of 5-10 ma, while motors draw a supply of 150mA. This means motors can t be directly connected to microcontroller. For electromechanical actuators, following motor drivers are often used: o Simple DC Motors: L298, L293 o Servo Motors: Already have power cable and different control cable o Stepper Motors: L/R Driver Circuit, Chopper Drive L298N Stepper Motor Driver Controller

L298 DUAL H-BRIDGE IC Allowsto independentlycontrol two DC motors up to 2 A each in both directions. Power consumption for logical part 0-36 ma Requires protective diodes against back e.m.f. externally Connections to L298 Dual H-Bridge 2A

H- BRIDGE It is an electronic circuit used to apply voltage across a load in either direction on basis of input from a microcontroller S1 S2 S3 S4 Result 1 0 0 1 Motor moves right 0 1 1 0 Motor moves left 0 0 0 0 Motor coasts 0 1 0 1 Motor brakes 1 0 1 0 Motor brakes 1 1 0 0 Short circuit 0 0 1 1 Short circuit 1 1 1 1 Short circuit

SPEED CONTROL USING PWM Pulse Width Modulation (PWM) is scheme in which duty cycle of square wave output fromthe microcontroller is varied by providing a varying average DC output Voltage seen by the load is directly proportional to the unregulated source voltage

Components of a System Hardware

Components of a System Hardware Input Signal To plant Plant (Physical World) Actuators Control Effort Output Signal From plant Sensors Controller (Digital World) Measured Plant Output

Data Handling Systems Both data about the physical world and control signals sent to interact with the physical world are typically "analog" or continuously varying quantities. In order to use the power of digital electronics, one must convert from analog to digital form on the experimental measurement end and convert from digital to analog form on the control or output end of a laboratory system.

Data Collection after Control Source: http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html