Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm

Similar documents
Diode-pumped Tm. Tampere University of Technology

Mode-locking of 2 μm Tm,Ho:YAG laser with GaInAs and GaSb-based SESAMs

Tm-doped crystalline silicate laser

High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system

All-fiber, all-normal dispersion ytterbium ring oscillator

Mode-locked Tm,Ho:YAP laser around 2.1 μm

Vertical External Cavity Surface Emitting Laser

Quantum-Well Semiconductor Saturable Absorber Mirror

A new picosecond Laser pulse generation method.

A CW seeded femtosecond optical parametric amplifier

First published on: 22 February 2011 PLEASE SCROLL DOWN FOR ARTICLE

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers

Soliton stability conditions in actively modelocked inhomogeneously broadened lasers

G. Norris* & G. McConnell

How to build an Er:fiber femtosecond laser

Passive mode-locking performance with a mixed Nd:Lu 0.5 Gd 0.5 VO 4 crystal

Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL)

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

Module 4 : Third order nonlinear optical processes. Lecture 24 : Kerr lens modelocking: An application of self focusing

Testing with Femtosecond Pulses

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

taccor Optional features Overview Turn-key GHz femtosecond laser

Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

High-power operation of Tm:YLF, Ho:YLF and Er:YLF lasers

DIODE-PUMPED low-power femtosecond lasers at 1-μm

Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse

Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser

Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

E. U. Rafailov Optoelectronics and Biomedical Photonics Group School of Engineering and Applied Science Aston University Aston Triangle Birmingham

Generation of 15-nJ pulses from a highly efficient, low-cost. multipass-cavity Cr 3+ :LiCAF laser

Designing for Femtosecond Pulses

References and links Optical Society of America

High power VCSEL array pumped Q-switched Nd:YAG lasers

Controllable harmonic mode locking and multiple pulsing in a Ti:sapphire laser

High-Power Femtosecond Lasers

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser

High Power and Energy Femtosecond Lasers

Femtosecond pulse generation

Ultrafast Optical Physics II (SoSe 2017) Lecture 8, June 2

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology*

156 micro-j ultrafast Thulium-doped fiber laser

1ps passively mode-locked laser operation of Na,Yb:CaF 2 crystal

Development of near and mid-ir ultrashort pulse laser systems at Q-Peak. Evgueni Slobodtchikov Q-Peak, Inc.

Tunable GHz pulse repetition rate operation in high-power TEM 00 -mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Fundamental Optics ULTRAFAST THEORY ( ) = ( ) ( q) FUNDAMENTAL OPTICS. q q = ( A150 Ultrafast Theory

Survey Report: Laser R&D

Faraday Rotators and Isolators

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 2, NO. 3, SEPTEMBER

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

GENERATION OF FEMTOSECOND PULSED FROM TI:SAPPHIRE OSCILLATOR ABSTRACT INTRODUCTION

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

Ultrafast instrumentation (No Alignment!)

Yb-doped Mode-locked fiber laser based on NLPR Yan YOU

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Single-Walled Carbon Nanotubes for High-Energy Optical Pulse Formation

Survey Report: Laser R&D

Generation of ultra-fast laser pulses using nanotube mode-lockers

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser

High energy femtosecond OPA pumped by 1030 nm Nd:KGW laser.

Ultrafast second-stokes diamond Raman laser

Timing Jitter Characterization of a Free-Running SESAM Mode-locked VECSEL

Wavelength switching using multicavity semiconductor laser diodes

Optically-Pumped Semicoductor Disk Lasers with Intracavity Second-Harmonic Generation

Single-frequency operation of a Cr:YAG laser from nm

Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes

Optoelectronics ELEC-E3210

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems

6.1 Thired-order Effects and Stimulated Raman Scattering

Session 2: Silicon and Carbon Photonics (11:00 11:30, Huxley LT311)

Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier

DEVELOPMENT OF CW AND Q-SWITCHED DIODE PUMPED ND: YVO 4 LASER

SUPPLEMENTARY INFORMATION

Ultrafast Lasers with Radial and Azimuthal Polarizations for Highefficiency. Applications

Heriot-Watt University

Bistability in Bipolar Cascade VCSELs

High-power, high-energy diode-pumped Tm:YLF-Ho:YLF laser

Special 30th Anniversary

High-power semiconductor lasers for applications requiring GHz linewidth source

Widely tunable Yb:KYW laser with a volume Bragg grating

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015

Mode-locking and frequency beating in. compact semiconductor lasers. Michael J. Strain

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

LOPUT Laser: A novel concept to realize single longitudinal mode laser

PUBLISHED VERSION.

PICOSECOND AND FEMTOSECOND Ti:SAPPHIRE LASERS

A novel tunable diode laser using volume holographic gratings

Laser Science and Technology at LLE

Widely Wavelength-tunable Soliton Generation and Few-cycle Pulse Compression with the Use of Dispersion-decreasing Fiber

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser

Multi-Wavelength, µm Tunable, Tandem OPO

All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes

Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 µm

Transcription:

Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm A.A. Lagatsky,1,* S. Calvez,2 J. A. Gupta,3 V. E. Kisel,4 N. V. Kuleshov,4 C. T. A. Brown,1 M. D. Dawson,2 and W. Sibbett1 ТУ 1 School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK Institute of Photonics, University of Strathclyde, Wolfson Centre, 106 Rottenrow, Glasgow, G4 0NW, UK 3 Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, K1A 0R6, Canada 4 Institute for Optical Materials and Technologies, Belarus National Technical University, 65 Nezavisimosti Ave., Minsk, 220013, Belarus *aal2@st-andrews.ac.uk 2 БН Abstract: Efficient mode-locking in a Tm:KY(WO4)2 laser is demonstrated by using InGaAsSb quantum-well SESAMs. Self-starting ultrashort pulse generation was realized in the 1979-2074 nm spectral region. Maximum average output power up to 411 mw was produced around 1986 nm with the corresponding pulse duration and repetition rate of 549 fs and 105 MHz respectively. Optimised pulse durations of 386 fs were produced with an average power of 235 mw at 2029 nm. 2011 Optical Society of America References and links 2. 3. 4. 5. 6. по з 7. R. C. Stoneman and L. Esterowitz, Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers, Opt. Lett. 15(9), 486 488 (1990). J.-M. Hopkins, N. Hempler, B. Rösener, N. Schulz, M. Rattunde, C. Manz, K. Köhler, J. Wagner, and D. Burns, High-power, (AlGaIn)(AsSb) semiconductor disk laser at 2.0 microm, Opt. Lett. 33(2), 201 203 (2008). B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power, Opt. Express 18(26), 27582 27588 (2010). A. Härkönen, C. Grebing, J. Paajaste, R. Koskinen, J.-P. Alanko, S. Suomalainen, G. Steinmeyer, and M. Guina, Modelocked GaSb disk laser producing 384 fs pulses at 2 µm wavelength, Electron. Lett. 47(7), 454 456 (2011). L. E. Nelson, E. P. Ippen, and H. A. Haus, Broadly tunable sub-500 fs pulses from an additive-pulse modelocked thulium-doped fiber laser, Appl. Phys. Lett. 67(1), 19 21 (1995). R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, 190-fs passively mode-locked thulium fiber laser with a low threshold, Opt. Lett. 21(12), 881 883 (1996). S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, Carbon nanotube films for ultrafast broadband technology, Opt. Express 17(4), 2358 2363 (2009). K. Kieu and F. W. Wise, Soliton thulium-doped fiber laser with carbon nanotube saturable absorber, IEEE Photon. Technol. Lett. 21(3), 128 130 (2009). M. Engelbrecht, F. Haxsen, A. Ruehl, D. Wandt, and D. Kracht, Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nj, Opt. Lett. 33(7), 690 692 (2008). F. Haxsen, A. Ruehl, M. Engelbrecht, D. Wandt, U. Morgner, and D. Kracht, Stretched-pulse operation of a thulium-doped fiber laser, Opt. Express 16(25), 20471 20476 (2008). W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, Passive mode-locking of a Tm-doped bulk laser near 2 microm using a carbon nanotube saturable absorber, Opt. Express 17(13), 11007 11012 (2009). N. Coluccelli, G. Galzerano, D. Gatti, A. Lieto, M. Tonelli, and P. Laporta, Passive mode-locking of a diodepumped Tm:GdLiF4 laser, Appl. Phys. B 101(1-2), 75 78 (2010). A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 μm, Opt. Lett. 35(2), 172 174 (2010). ит о 1. ри й OCIS codes: (140.7090) Ultrafast lasers; (140.4050) Mode-locked lasers; (14680) Rare earth and transition metal solid-state lasers; (140.3600) Lasers, tunable. 8. 9. 10. Ре 11. 12. 13. (C) 2011 OSA 9 May 2011 / Vol. 19, No. 10 / OPTICS EXPRESS 9995

14. A. A. Lagatsky, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, S. Calvez, M. D. Dawson, J. A. Gupta, C. T. A. Brown, and W. Sibbett, Femtosecond (191 fs) NaY(WO 4) 2 Tm,Ho-codoped laser at 2060 nm, Opt. Lett. 35(18), 3027 3029 (2010). 15. A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, Optical spectroscopy and efficient continuous-wave operation near 2 μm for a Tm, Ho:KYW laser crystal, Appl. Phys. B 97(2), 321 326 (2009). 16. F. Fusari, A. A. Lagatsky, G. Jose, S. Calvez, A. Jha, M. D. Dawson, J. A. Gupta, W. Sibbett, and C. T. A. Brown, Femtosecond mode-locked Tm 3+ and Tm 3+ -Ho 3+ doped 2 μm glass lasers, Opt. Express 18(21), 22090 22098 (2010). 17. A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, and A. A. Kornienko, Spectroscopy and laser properties of Tm 3+ :KY(WO 4) 2 crystal, Appl. Phys. B 86(2), 287 292 (2007). 18. L. E. Batay, A. A. Demidovich, A. N. Kuzmin, A. N. Titov, M. Mond, and S. Kück, Efficient tunable laser operation of diode-pumped Yb,Tm:KY(WO 4) 2 around 1.9 µm, Appl. Phys. B 75(4-5), 457 461 (2002). 19. V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, Efficient tunable laser operation of Tm:KGd(WO 4) 2 in the continuous-wave regime at room temperature, IEEE J. Quantum Electron. 40(9), 1244 1251 (2004). 1. Introduction High-average power (>100 mw) laser sources of ultrashort pulses near 2 μm spectral region are of considerable interest for a range of applications such as synchronous pumping of optical parametric oscillators having idler signal in the mid-ir, development of broadband coherent IR sources for remote sensing, optical coherence tomography and laser comb generation in the near-ir and three-dimensional microstructuring of semiconductor materials. Amongst the options currently available for the direct generation of ultrashort pulses at higher powers around 2 μm are Tm 3+ (Tm) and Ho 3+ (Ho) doped-fibre and crystalline gain media or semiconductor disk lasers based on gallium-antimonide (GaSb) material system. The Tm-ion when hosted in the most crystalline and amorphous materials exhibits strong absorption bands around 800 nm and thus can be pumped efficiently by low-cost and high-power AlGaAs laser diodes. The presence of cross-relaxation energy transfer processes in the Tm- Tm system converts one excited state into two upper laser level states making this class of laser systems very efficient and scalable to high power levels. Additionally, Tm-based lasers are characterised by large continuous tuning spectral range of ~1800-2100 nm compared to other trivalent lanthanide ions [1]. Alternatively, optically pumped semiconductor disk lasers can generally demonstrate watt-level output powers [2] with high spatial beam quality and have the potential to be designed in highly integrated laser cavity architectures [3]. Although, the generation of 384-fs pulses at 1960 nm from a GaSb-based disk laser was demonstrated [4], to date, 2-μm femtosecond laser sources have been based predominantly on passively mode-locked Tm-doped and Tm-Ho codoped fibre systems. In early work, Nelson et al. demonstrated 500-fs pulses [5] using a nonlinear polarisation evolution (NPE) modelocking technique and 190-fs pulses were produced by a Tm-fibre laser that was passively mode-locked by a semiconductor saturable absorber mirror (SESAM) [6]. However, average output powers did not exceed a few milliwatts from such laser systems. Subsequently, somewhat higher powers were realised from mode-locked 2-μm fibre lasers by employing carbon nanotube-based saturable absorbers [7,8] where pulses as short as 750-fs were produced [8] and a 146-mW Tm-doped fibre laser generating 1.2-ps pulses at 1974 nm [9] (173 fs after dechirping outside the cavity [10]) was demonstrated using the NPE approach. Tm doped and Tm-Ho codoped crystalline gain media offer an alternative route towards the development of high-power and efficient ultrashort-pulse lasers for the 2-μm spectral region. In the published literature to date, results are related mainly to picosecond pulse generation in Tm-doped crystals. The best results in terms of pulse duration have so far been obtained with a Tm:KLu(WO 4 ) 2 laser [11] that produced 10-ps pulses at 1944 nm and a Tm:GdLiF 4 laser [12] that generated ~17-44 ps pulses tuned from 1868 nm to 1926 nm. By codoping with Tm and Ho, efficient lasers can be configured to provide emission in a slightly longer wavelength range (~2000-2150 nm) where weaker water absorption bands occur, (C) 2011 OSA 9 May 2011 / Vol. 19, No. 10 / OPTICS EXPRESS 9996

thereby enhancing the prospects for broadband and stable mode-locking. Recently, we have reported the generation of 570-fs pulses from a passively mode-locked Tm,Ho:KY(WO 4 ) 2 laser [13] and pulses as short as 191 fs were produced from Tm,Ho:NaY(WO 4 ) 2 [14], both operating around 2060 nm. It must be recognized though, that Tm-Ho codoped materials can suffer from the presence of increased up-conversion processes [15] compared to single Tmdoping and this in turn can lead to additional thermal loading inside the gain medium, resulting in reduced laser efficiency and limited output powers during continuous wave operation at room temperature. For this reason, direct generation of ultrashort pulses from Tm-doped materials looks more attractive for further development of laser diode pumped high-power mode-locked lasers that operate around 2 μm. Recently, we have demonstrated Tm-doped fluorogermanate glass laser producing near-transform-limited pulses of 410 fs duration centered at 1997 nm [16]. Average output power of 84 mw was, however, limited by poor thermo-mechanical properties of the glass. Here we report, for the first time to our knowledge, a Tm-doped crystalline laser that produces sub-ps pulses in the 1985-2065 nm range by using InGaAsSb quantum-well-based SESAMs for passive mode-locking. Transform-limited pulses as short as 386 fs were generated around 2030 nm with an average output power of 235 mw. 2. Experimental set-up and continuous wave operation of a Tm:KYW laser Ti:sapphire P = 1.2 W 63 mm M1 HR/SESAM Tm:KYW M2 FS Knife edge Fig. 1. Schematic of the Tm:KYW mode-locked laser. M 1 and M 2 plano-concave highreflector mirrors, r 1 = r 2 = 100 mm; OC output coupler (T = 1% or 2% at 2000 nm); HR plane high-reflector mirror; FS pair of IR grade fused silica prisms. The dotted arrow indicates the cavity configuration with one prism in use. The laser assessments were performed with a 2mm-long (N g optical axis), 1.5 mm (N p ) 5 mm (N m ) section Brewster-cut Tm 3+ :KY(WO 4 ) 2 (Tm:KYW) crystal doped at 5 at.%. It was previously demonstrated that such gain medium is characterised large absorption and emission cross sections, relatively broad luminescence band around 1.9 µm and can support the laser operation with a slope efficiency above 50% under laser diode pumping [17]. In our case, the Tm:KYW crystal was oriented for optical pump propagation along the N g axis and for a polarization along N m. An asymmetric Z-fold resonator was configured with two folding mirrors M1 and M2 having radii of curvature of 100 mm, an output coupler (OC) with 1% or 2% transmission around 2 μm and a plane high-reflector mirror or a SESAM in the case of the mode-locked operation. (Fig. 1) The laser beam mode radii inside the gain crystal were calculated to be 27.5 55 μm. A Ti:sapphire laser producing 1.2 W of output power at 801 nm was used as the pump source and its beam was focused into the gain medium via a 63- mm focal length lens to a spot radius of 27 μm (1/e 2 intensity) measured in air at the location of the input facet of the gain crystal. In continuous wave regime, this laser operated with slope efficiencies of 63% and 73% (relative to the absorbed pump power) when output couplers of 1% and 2% transmission were used and the corresponding output powers reached 645 mw (1.15 W of the absorbed pump power) and 670 mw (1.13 W of the absorbed pump power) at 1953 nm and 1944 nm respectively. The tunability of the Tm:KYW laser was assessed with the 1% output coupling OC (C) 2011 OSA 9 May 2011 / Vol. 19, No. 10 / OPTICS EXPRESS 9997

by inserting a 2mm-thick quartz plate having its optical axis in the plane of input face to thus act as a Lyot filter or using a fused silica prism for tuning at longer wavelengths. With 1.2 W of incident pump power, the laser output could be tuned over the 1834-2074 nm range using the Lyot filter (Fig. 2, black circles) and output wavelengths up to 2111 nm were reached with the intracavity tuning prism (Fig. 2, red circles) resulting in a total tuning range of 277 nm with a corresponding FWHM of 172 nm. A maximum output power of 600 mw was obtained around 1980 nm. Continuous tuning was observed in the ~2020-2111 nm and 1970-2000 nm ranges whereas the remainder of the spectrum was characterised by discrete tuning steps due to the presence of water vapor absorption bands. The authors believe that these results represent the largest tunability range that has been observed for any Tm-doped Tm,Ho codoped double-tungstate gain media. Previously, a spectral range of 1850-2000 nm was demonstrated from Yb,Tm:KYW [18] and an overall tunability from 1790 nm to 2042 nm was achieved in Tm:KGdW [19]. Output power, mw 700 600 500 400 300 200 100 0 SESAM#1 FWHM=172 nm 277 nm SESAM#2 90 1850 1900 1950 2000 2050 2100 2150 T=1% P in =1.2 W Fig. 2. Tunability of the Tm:KYW laser during continuous wave operation at room temperature (left-hand y-axis, black and red symbols indicate the tunability ranges obtained with a Lyot filter and a prism respectively) and reflectivity curves of the SESAM #1 and #2 around 2 μm (right-hand y-axis). 3. Mode-locking performance of the Tm:KYW laser around 2 µm For optimized passive mode-locking in the Tm:KYW laser two different SESAM structures were used. These were characterized by initial reflectivity of 98.4-96.4% in the range of 1940-2080 nm (SESAM#1) and 98.9-96.9% in the range of 1970-2120 nm (SESAM#2) (Fig. 2). Both structures had an antiresonant design and comprised 22 pairs (20 in case of SESAM#2) GaSb/AlAs 834 Sb layers (distributed Bragg reflector structure) grown on a 500μm-thick Te-doped GaSb(100) substrate. The absorber region was added in the topmost high-index quarter-wave layer and consisted of two In 0.4 Ga 0.6 As 0.14 Sb 0.86 quantum wells separated and surrounded by Al 0.24 Ga 0.76 As 21 Sb 0.979 layers. The SESAM#1 structure incorporated 5.35nm-thick quantum wells having a luminescence peak around 2035 nm, whereas the SESAM#2 had 5.5nm-thick quantum well layers with the luminescence maximum at 2100 nm. Both samples were grown by molecular beam epitaxy. To decrease the carrier recombination time, the SESAM samples were irradiated with 2-MeV N + ions at a dose of 5 10 11 cm 2. When a HR plane mirror was replaced by a SESAM, laser operated at around 1950 nm in a continuous-wave regime only. To support stable mode-locking it was necessary to shift the 98 96 94 92 Reflectivity, % (C) 2011 OSA 9 May 2011 / Vol. 19, No. 10 / OPTICS EXPRESS 9998

laser output to longer wavelengths at or beyond 1980 nm by inserting a knife edge into the intracavity beam between the second prism and an output coupler or alternatively by using a single prism as a dispersive element. In this second option configuration and in combination Pulse duration, fs Average power, mw 1350 1200 1050 900 750 600 400 360 320 280 240 200 1980 2000 2020 2040 2060 2080 (a) Intensity, a.u. Intensity, a.u. p =549 fs (b) -2 0 2 Delay, ps FWHM=8 nm sech 2 1960 1970 1980 1990 2000 2010 Fig. 3. (a) Tunability of the mode-locked Tm:KYW laser using one prism and the SESAM#2, (b) intensity autocorrelation of the pulses generated at 1986 nm and (c) corresponding optical spectrum. with the SESAM#2 stable and self-starting mode-locking was realized in the 1979-2074 nm spectral range (Fig. 3(a)). The pulse durations ranged from 1.32 ps at 2074 nm to 549 fs at 1986 nm (Fig. 3(b)) where the maximum average output power reached 411 mw at a pulse repetition frequency of 105 MHz. The corresponding optical spectral bandwidth was measured to be 8 nm thereby implying a time-bandwidth product of 0.33 (Fig. 3(c)). It should be noted that the ultrashort-pulse operation was accompanied by some Q-switching instabilities in the ~2000-2020 nm range and at wavelengths below ~1980 nm only Q- switched operation could be achieved because of increased water vapor absorption in that region. During these assessments of mode-locking in the Tm:KYW laser, 7 mm of fused silica prism glass was inserted into the cavity beam resulting in a double-pass group velocity dispersion of 1360 fs 2. The cavity mode diameter on the SESAM was calculated to be 284 µm. To investigate the possibility of shorter pulse generation from the Tm:KYW laser (given that the angular dispersion could impose a limit on achievable pulse durations in the singleprism scheme) we employed two fused silica prisms for the dispersion management (tip-totip separation ~250 mm) in combination with a knife edge for the wavelength tuning. A summary of the results is included as Fig. 4. Using the SESAM#2, efficient ultrashort pulse generation was obtained in the 2030-2065 nm (Fig. 4(a), grey dots) region and a maximum output power of 235 mw around 2030 nm at a pulse repetition frequency of 97.4 MHz (Fig. 4(d) was produced. It should be noted that this scheme gave rise to weaker wavelength selection compared to the single prism case, thus it was not possible to have stable modelocked operation at wavelengths shorter than 2030 nm when using the SESAM#2 which possesses a lower modulation depth. By employing the SESAM#1 in the same cavity configuration, stable mode-locking was realized from 2045 nm down to 1985 nm (Fig. 4(a), black dots) where average powers up to 200 mw were generated. Both SESAM structures supported comparable pulse durations, where transform-limited pulses as short as 422 fs were generated with the SESAM#1 at 1986 nm and 386-fs pulses (Fig. 4(b)) were produced at (c) (C) 2011 OSA 9 May 2011 / Vol. 19, No. 10 / OPTICS EXPRESS 9999

2029 nm with the corresponding FWHM spectra of 11.14 nm (ΔνΔτ = 0.314) (Fig. 4(c)) using the SESAM#2. Mode-locking thresholds were estimated at fluences of 252 μj/cm 2 and 227 μj/cm 2 on the SESAMs #1 and #2, respectively, when operated at around 2030 nm. Pulse duration, fs Average power, mw 900 800 700 600 500 400 240 210 180 150 120 4. Conclusions SESAM#2 SESAM#1 90 1980 2000 2020 2040 2060 (a) (b) (c) p =386 fs Intensity, a.u. RF power density, dbm -2 0 2 Delay, ps -40-60 -80-100 -120 69 dbc 97.36 97.37 97.38 97.39 97.40 Frequency, MHz 11.14 nm 2000 2040 2080 Span 50 khz RBW 300 Hz Fig. 4. Mode-locking performance of the Tm:KYW laser using a knife edge for a wavelength selection. (a) Pulse durations and corresponding average powers vs. output wavelength. (b) Intensity autocorrelation, (c) optical and (d) radio-frequency spectra of the mode-locked pulses at 2029 nm obtained with the SESAM#2. We have demonstrated what we believe to be the first mode-locked operation of a Tm:KYW laser in the femtosecond regime. Efficient and self-starting ultrashort-pulse generation was realized in the 1979-2074 nm wavelength range by using ion-implanted InGaAsSb quantumwell-based SESAMs. The maximum average output power reached 411 mw around 1986 nm at a pulse repetition frequency of 105 MHz that implied generated pulse energy of 3.9 nj. Corresponding pulse duration and a spectral bandwidth were measured to be 549 fs (7.1 kw peak power) and 8 nm respectively. The shortest pulse durations were realized when two intracavity prisms were used for dispersion control in combination with a knife edge for wavelength selection. Transform-limited pulses as short as 386 fs were generated with an average power of 235 mw at 2029 nm and a pulse repetition frequency of 97.4 MHz. We believe that further power scaling from a femtosecond Tm:KYW laser is feasible using laser diode pumping around 800 nm instead of the presently used Ti:sapphire pump source and is the object of current investigations. (d) (C) 2011 OSA 9 May 2011 / Vol. 19, No. 10 / OPTICS EXPRESS 10000