Spring 2004 M2.1. Lab M2. Ultrasound: Interference, Wavelength, and Velocity

Similar documents
Lab M6: The Doppler Effect

Name: Lab Partner: Section:

INTERFERENCE OF SOUND WAVES

Chapter 16 Sound. Copyright 2009 Pearson Education, Inc.

Frequency f determined by the source of vibration; related to pitch of sound. Period T time taken for one complete vibrational cycle

Physics 2310 Lab #2 Speed of Sound & Resonance in Air

Waves & Interference

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s.

Physics Spring 2006 Experiment 9 TRAVELING WAVES

Sound Waves and Beats

Wave Review Questions Updated

7.8 The Interference of Sound Waves. Practice SUMMARY. Diffraction and Refraction of Sound Waves. Section 7.7 Questions

Chapter 16. Waves and Sound

Speed of Light in Air

Speed of Sound in Air

College Physics II Lab 3: Microwave Optics

ABC Math Student Copy

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

Bike Generator Project

Ultrasound Physics. History: Ultrasound 2/13/2019. Ultrasound

CHAPTER 12 SOUND ass/sound/soundtoc. html. Characteristics of Sound

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics

Vibrations and Waves. Properties of Vibrations

4: EXPERIMENTS WITH SOUND PULSES

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air

AP Physics B (Princeton 15 & Giancoli 11 & 12) Waves and Sound

PC1141 Physics I. Speed of Sound. Traveling waves of speed v, frequency f and wavelength λ are described by

v = λf 1. A wave is created on a Slinky such that its frequency is 2 Hz and it has a wavelength of 1.20 meters. What is the speed of this wave?

Chapter 14, Sound. 1. When a sine wave is used to represent a sound wave, the crest corresponds to:

Speed of Sound. Introduction. Ryerson University - PCS 130

End-of-Chapter Exercises

Harmonic Motion and Mechanical Waves. Jun 4 10:31 PM. the angle of incidence equals the angle of reflection.

Physics 1C. Lecture 14C. "The finest words in the world are only vain sounds if you cannot understand them." --Anatole France

Resonant Tubes A N A N

Ch 26: Sound Review 2 Short Answers 1. What is the source of all sound?

BLACKBODY RADIATION PHYSICS 359E

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence

Answer:- School bell starts vibrating when heated which creates compression and rarefaction in air and sound is produced.

Standing Waves in Air

Week 15. Mechanical Waves

Resonance Tube Lab 9

Sonic Distance Sensors

Electromagnetic (Light) Waves Electromagnetic Waves

Doppler effect (Item No.: P )

PHYSICS LAB. Sound. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2

5: SOUND WAVES IN TUBES AND RESONANCES INTRODUCTION

Name: Date Due: Waves. Physical Science Chapter 6

Date Period Name. Write the term that corresponds to the description. Use each term once. beat

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to

Physics 476LW. Advanced Physics Laboratory - Microwave Optics

Chapter 4: AC Circuits and Passive Filters

... frequency, f speed, v......

Sound Waves Practice Problems PSI AP Physics 1. (D) It cannot be determined with the given information.

Chapter 3. Experiment 1: Sound. 3.1 Introduction

A sound wave is introduced into a medium by the vibration of an object. Sound is a longitudinal, mechanical

Chapter 17 Waves in Two and Three Dimensions

THE SPEAKER. The decibel scale is related to the physical sound intensity measured in watts/cm 2 by the following equation:

BVHS Physics: Waves Unit - Targets

Properties and Applications

Copyright 2009 Pearson Education, Inc.

Physics I Notes: Chapter 13 Sound

6. An oscillator makes four vibrations in one second. What is its period and frequency?

Chapter 05: Wave Motions and Sound

SECTION A Waves and Sound

WAVES BEATS: INTERFERENCE IN TIME

Doppler-Free Spetroscopy of Rubidium

Intext Exercise 1 Question 1: How does the sound produced by a vibrating object in a medium reach your ear?

PHYSICS 102N Spring Week 6 Oscillations, Waves, Sound and Music

SECTION A Waves and Sound

Section 1 Sound Waves. Chapter 12. Sound Waves. Copyright by Holt, Rinehart and Winston. All rights reserved.

Physics 2310 Lab #5: Thin Lenses and Concave Mirrors Dr. Michael Pierce (Univ. of Wyoming)

Ph 2306 Experiment 2: A Look at Sound

NCERT solution for Sound

Physics B Waves and Sound Name: AP Review. Show your work:

Part 1: Standing Waves - Measuring Wavelengths

Measuring Distance Using Sound

Tuesday, Nov. 9 Chapter 12: Wave Optics

First and second order systems. Part 1: First order systems: RC low pass filter and Thermopile. Goals: Department of Physics

HUYGENS PRINCIPLE AND INTERFERENCE

Ultrasonics. Introduction

Q1. (Total 1 mark) Q2. cannot (Total 1 mark)

Waves & Energy Transfer. Introduction to Waves. Waves are all about Periodic Motion. Physics 11. Chapter 11 ( 11-1, 11-7, 11-8)

THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium.

Standing Waves and Voltage Standing Wave Ratio (VSWR)

Key Terms. Loud Soft Quiet High pitch Low pitch Noise Deafness Frequency. Amplitude Wave Loudness Volume Dynamics Medium Speed of sound

Week 8 AM Modulation and the AM Receiver

HW assignment. Interference. From last time. Destructive Interference in a String. Question. Interference of sound waves

Microwave Diffraction and Interference

Resonance Tube. 1 Purpose. 2 Theory. 2.1 Air As A Spring. 2.2 Traveling Sound Waves in Air

Acoustic Doppler Effect

No Brain Too Small PHYSICS

FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION

Goals of the Lab: Photodetectors and Noise (Part 2) Department of Physics. Slide 1. PHYSICS6770 Laboratory 4

SOUND & MUSIC. Sound & Music 1

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

Sound Interference and Resonance: Standing Waves in Air Columns

Unit 6: Waves and Sound

Lab 2: Capacitors. Integrator and Differentiator Circuits

Transcription:

Spring 2004 M2.1 Lab M2. Ultrasound: Interference, Wavelength, and Velocity The purpose in this lab exercise is to become familiar with the properties of waves: frequency, wavelength, phase and velocity. We use ultrasound waves because the wavelength is easily measured with an ordinary meter stick. The frequency of ultrasound is above the range of human hearing, so the experiment does not create an audible sound. The experiment also illustrates the interference of waves Sound is a pressure wave in air. When we hear a sound, we are sensing a small variation in the pressure of the air near our ear. The speed of a sound wave in air is about 340 m/s or about 5 seconds to travel one mile, and this speed depends only on the properties of the air (temperature, composition, etc.) and not on the frequency or wavelength of the wave. Considering a sinusoidal sound wave in air with frequency f and wavelength l, the speed v is related to f and l by (1) v = f l. To understand this relation, think SPEED = (CHANGE IN DISTANCE) / (CHANGE IN TIME): the time it takes for one wavelength of the sound to go by is the period T, so v = l /T. But f = 1 / T, so v = f l. Note that as f increases, l goes down, but the speed v stays the same. The frequency range of human hearing is about 20 Hz to 20,000 Hz. (The upper end drops as we age; for people over 60, it is about 15 khz, while dogs can hear up to about 35 khz.) Consider two sound waves of equal f, equal l, and nearly equal amplitude, both approaching a detector, such as the human ear. If the two waves arrive at the ear in phase, that is with successive maxima arriving at the same time and successive minima arriving at the same time, then the waves interfere constructively, their amplitudes add, and the ear hears a loud sound. But if the waves arrive at the ear exactly out of phase, that is, with the maxima of one wave arriving at the same time as the minima of the other wave, then the waves interfere destructively; they cancel and the ear hears little or no sound. Now, in order to observe the interference of sound waves in the way just described, the two waves must have the same frequency and their phase difference should not change with time. A clever observation makes it unnecessary for experimenters to build two identical sources: The reflection of a source of waves is a new source with the same frequency and phase as the source being reflected. In our experiment, a source of sound (a speaker emitting a pure tone with known frequency f) sits a height S above a flat table. A receiver sits a distance R above the table, a distance L along the table away from the source. Sound from the source can travel to the receiver along two different paths: the sound can travel directly from the source to the receiver (path 1 - total length D 1 ) or the sound can reflect from the surface of the table to the receiver (path 2 - total length D 2 ). (Sound, like light, can reflect from a smooth flat

Spring 2004 M2.2 surface with the angle of incidence equal to the angle of reflection.) The receiver "sees" a reflection of the speaker in the table top which appears to be at a distance D 2. Whether the two waves arrive at the receiver in phase or out of phase depends on the path difference (D 2 - D 1 ). If the path difference is an integral number of wavelengths (D 2 - D 1 = nl) then the waves arrive in phase. If D 2 - D 1 = (n+1/2)l, then the waves arrive out of phase and the detector receives a small amplitude total wave. In this lab, you will measure the heights R and S at which interference maxima and minima occur. From this information, you will compute the wavelength l of the sound. Finally, from the wavelength and the known frequency f, you will compute the speed of sound v = l f. From the diagram above, we see that the two path lengths are (2) and. Interference minima occur at the receiver when (3) Hence, if n is known, then one can compute l from measurements of R, S, and L. The interference pattern you will investigate is shown at left. The gray arcs are the crests of the waves from the real source (upper black rectangle) and the crests of the waves from the imaginary source below the tabletop (lower black rectangle). The lower source is the reflection of the real source. Imagine that the tabletop is a glass mirror. The reflection of the real source that your eyes would see in the mirror would be the source shown here below the tabletop. There is a maximum in the combined signals where the wave crests of the two waves lie on top of one another. There is a minimum where the dark wave crests from one wave are on the light wave troughs from the other wave. There are narrow lines in the figure tracing the locations of the maxima. There is a maximum on the tabletop because the distances from the two sources are equal.

Spring 2004 M2.3 Experiment A schematic of the apparatus is shown above. The sound source and receiver are ultrasonic transducers which are tuned to operate at about 40 khz, well above the range of human hearing. The receiver signal is displayed on an oscilloscope, allowing the user to see when the signal is maximum or minimum. Begin by turning everything on and allowing the sinewave generator and the frequency meter to warm up for several minutes and stabilize. Aim the source directly at the receiver and tune the frequency for a maximum signal around 40 khz. The source and receiver are tuned transducers and do not work well if only slightly away from the optimum frequency. Record this frequency f and, from time to time during the experiment, check whether f has drifted at all. Retune to the original frequency if necessary. Part 1. Wavelength Set the source at some height around 20 cm above the table, aiming it approximately at the opposite edge of the table. Measure the distance S from the table top to the center of the source. Now move the receiver up and down along its support. You should see the output on the oscilloscope go through several maxima and minima as you move the receiver. Place the receiver level with the top surface of the table and slowly raise it until you encounter the 1st minimum. This should be the n=0 minimum, corresponding to a path difference of l / 2. Record the height R = h o of the n=0 minimum. Continue slowly raising the receiver, recording the heights h 1, h 2, h 3,.. of the subsequent minima. Record as many minima as possible and then make a plot of h n vs. n. Recall that, in Mathcad, the index i of an array variable x i must begin with 1, (i = 1, 2, 3) so you shouldn t define an array variable h n, since you want the first n to be n=0. Instead, you could define (4) i := 1, 2.. N (N is the number of data points) n i := i - a h i := < (Enter your values for h.) Where a = 1. This way, you have n = 0, 1, 2,... with corresponding h s. Looking at eq n (3) for inspiration, define a Mathcad function or array for l, which is the wavelength computed from the height h at which the n th minimum occurs. Make a plot of l vs n. To define l in Mathcad, you can either define an array variable l i in terms of n i and h i, or you can define a function l (h,n). The computed wavelength l should be independent of n.

Spring 2004 M2.4 If you have a l that is significantly higher at small n, i.e., gradually decreasing with increasing n, it is likely that you have missed the minimum nearest the tabletop and are calling the second minimum the first minimum, or have a systematic offset in the measurement of the h i s. You can fix this without taking more data by varying a in eq n 4 to make l i vs. i as flat as possible (a can be varied continuously, i.e. assume non-integral values is this makes for a flatter l i ). The first few l s are the most troublesome because when h is small, the two paths D 1 and D 2 are almost the same and there is a large fractional uncertainty in the difference (D 2 - D 1 ). From your plot of l vs. n, decide which data points, if any, should be eliminated from further analysis. It may simplify analysis to copy the good values into a new list. Compute the mean, standard deviation, and standard deviation of the mean of l. SFR l,,. Part 2. Speed of sound Using your measured values for f and l, compute the speed of sound, v. Also compute the uncertainty, dv, from the uncertainties in l and f. SFR v The theoretical result for the speed of sound in a gas is vgas = (7k B T/5m) 1/2 where k B T is the thermal energy scale (Boltzmann s constant times absolute temperature), and m is the average mass of the atoms or molecules. In air near room temperature this works out to: (4) vtheory = [331.5 + 0.607 T R (ºC)] m/s. where the temperature T R is in degrees Celsius (there is a thermometer on the wall in the lab). Calculate vtheory and dvtheory. Compare vtheory with your measured v by calculating Dv = v vtheory and d(dv) = [dvtheory 2 + dv 2 ] 1/2. SFR D Discuss the results, commenting on the agreement/disagreement of the theory with the experiment, the most significant sources of uncertainty in the measurement and how these might be improved. What are the sources of systematic error? Part 3. Speeders get a Break? As it turns out you will be using your velocity of sound measurement v + dv to calibrate the sonic Doppler velocimeters you sell to the Colorado Highway Patrol. The CHP wants its margin for error to be less than 1%, that is, it wants to specify a target range of allowable speeding, DS miles/hr. over the limit, such that there is at least 99% probability that someone clocked at the limit plus DS or faster is actually speeding. Using your data for v + dv, what will DS be for use where the speed limit is 70 miles/hr? Assume that

Spring 2004 M2.5 your calibration is the biggest uncertainty in the problem, that the fractional uncertainty in the measured speed ds/s is equal to your dv/v. Related labs: Explore more about sound with Lab M6 (Doppler Effect). Explore interference of waves, in particular light, with Lab O4 ( Diffraction).

Spring 2004 M2.6 Questions: Name Section use other side if necessary 1. If the speed of sound is v = 345 m/s, what is the range of wavelengths of sound which the human ear can detect? 2. (Counts as two questions.) Show how you will define the wavelength l in your Mathcad document. [Just write the Mathcad definition like it will appear on the computer screen, except write it on paper with your pen.] Also show how you will make a Mathcad graph of. l vs. n. For instance, if I want to show how to define a function y(x,t) = x t 2,where x = 3 t 1/2, and how to graph y vs. t in Mathcad, I could write either the Mathcads commands below on the left or the commands on the right. 3. What conditions (at least three) must be satisfied in order to have complete destructive interference of two sound waves?

Spring 2004 M2.7 Questions: Name Section use other side if necessary 4. Explain with a diagram and a few words why equations (2) are the correct expressions for the two paths D 1 and D 2. 5. Sketch the graph h vs. n. [No numbers on this graph! And no calculations. Just think a minute and make a qualitative sketch, showing what the graph should look like. Ask yourself, should h increase, decrease, or stay constant as n increases.] 6. Sketch the graph l vs. n. [No numbers! Just a qualitative sketch, showing what the graph should look like.] 5. 6. 7. Ultrasound is used as a tool in obstetric medicine to "see" inside the body objects larger than about a wavelength. The speed of sound in humans is about 1500 m/s, the same as in water. What would be the wavelength of 5 MHz medical ultrasound waves in humans? 8. How do you compute dv, the uncertainty in v, from measurements of f, df, l, and dl? 9. In this experiment, how is dl determined?