Comparative Analysis of the BER Performance of WCDMA Using Different Spreading Code Generator

Similar documents
Improvement of MFSK -BER Performance Using MIMO Technology on Multipath Non LOS Wireless Channels

BER ANALYSIS OF WiMAX IN MULTIPATH FADING CHANNELS

Performance of OFDM-Based WiMAX System Using Cyclic Prefix

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

SPREADING CODES PERFORMANCE FOR CORRELATION FUNCTION USING MATLAB

Doppler Frequency Effect on Network Throughput Using Transmit Diversity

Mobile Communication An overview Lesson 03 Introduction to Modulation Methods

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model

Combining techniques graphical representation of bit error rate performance used in mitigating fading in global system for mobile communication (GSM)

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels

Performance Evaluation Of Digital Modulation Techniques In Awgn Communication Channel

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1

Effects of Fading Channels on OFDM

Key words: OFDM, FDM, BPSK, QPSK.

Performance of OFDM System under Different Fading Channels and Coding

Performance Analysis of OFDM for Different Digital Modulation Schemes using Matlab Simulation

Analysis of Simulation Parameters of Pulse Shaping FIR Filter for WCDMA

1. INTRODUCTION II. SPREADING USING WALSH CODE. International Journal of Advanced Networking & Applications (IJANA) ISSN:

BER Performance Analysis of QAM Modulation Techniques in MIMO Rayleigh Channel for WCDMA System

SIMULATIVE STUDY (LINK/SYSTEM) OF WCDMA SYSTEMS

PERFORMANCE EVALUATION OF WCDMA SYSTEM FOR DIFFERENT MODULATIONS WITH EQUAL GAIN COMBINING SCHEME

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels

THE STUDY OF BIT ERROR RATE EVOLUTION IN A MOBILE COMMUNICATIONS SYSTEM USING DS CDMA TECHNOLOGY

Comparative Study of OFDM & MC-CDMA in WiMAX System

Decrease Interference Using Adaptive Modulation and Coding

Nand Dhandhukia, Dr. Kiran Parmar 3 NODE MODELS AND SIMULATION SCENARIOS

Comparative Analysis of Bit Error Rate (BER) for A-law Companded OFDM with different Digital Modulation Techniques

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING

BER Calculation of DS-CDMA over Communication Channels

Performance of a Base Station Feedback-Type Adaptive Array Antenna with Mobile Station Diversity Reception in FDD/DS-CDMA System

OFDM Systems For Different Modulation Technique

Performance Evaluation of ½ Rate Convolution Coding with Different Modulation Techniques for DS-CDMA System over Rician Channel

Objectives. Presentation Outline. Digital Modulation Revision

PERFORMANCE ANALYSIS OF DOWNLINK POWER CONTROL IN WCDMA SYSTEM

Optimal Number of Pilots for OFDM Systems

PERFORMANCE ANALYSIS OF MIMO-SPACE TIME BLOCK CODING WITH DIFFERENT MODULATION TECHNIQUES

Performance analysis of MISO-OFDM & MIMO-OFDM Systems

Improving the BER Performance of M-FSK in a Noisy Multipath Rayleigh, and Rician Fading Channels Using Reed-Solomon Forward Error Correction Method

TCM-coded OFDM assisted by ANN in Wireless Channels

The Parametric Analysis of Gaussian Pulse Shaping Filter in WCDMA Network

INTERFERENCE SELF CANCELLATION IN SC-FDMA SYSTEMS -A CAMPARATIVE STUDY

Keywords WiMAX, BER, Multipath Rician Fading, Multipath Rayleigh Fading, BPSK, QPSK, 16 QAM, 64 QAM.

A Comparative Performance Analysis of Digital Modulation Schemes used in Mobile Radio Systems

Performance of Wideband Mobile Channel with Perfect Synchronism BPSK vs QPSK DS-CDMA

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114

Study of Turbo Coded OFDM over Fading Channel

CHAPTER 4 PERFORMANCE ANALYSIS OF THE ALAMOUTI STBC BASED DS-CDMA SYSTEM

Performance Analysis of ICI in OFDM systems using Self-Cancellation and Extended Kalman Filtering

The BER Evaluation of UMTS under Static Propagation Conditions

BER ANALYSIS OF BPSK, QPSK & QAM BASED OFDM SYSTEM USING SIMULINK

OFDM AS AN ACCESS TECHNIQUE FOR NEXT GENERATION NETWORK

Performance Evaluation of different α value for OFDM System

BER Analysis and MAI Cancellation in AWGN and Rayleigh fading channels for CDMA System Raghu H S 1 Mr.Lohith B N 2

Survey on Effective OFDM Technology for 4G

Cross Spectral Density Analysis for Various Codes Suitable for Spread Spectrum under AWGN conditions with Error Detecting Code

Single Carrier Ofdm Immune to Intercarrier Interference

Digital Modulation Schemes

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals

Part 3. Multiple Access Methods. p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU

PERFORMANCE ANALYSIS OF MC-CDMA SYSTEM USING BPSK MODULATION

Chapter 7 Multiple Division Techniques for Traffic Channels

Analysis, Design and Testing of Frequency Hopping Spread Spectrum Transceiver Model Using MATLAB Simulink

PERFORMANCE EVALUATION OF DIRECT SEQUENCE SPREAD SPECTRUM UNDER PHASE NOISE EFFECT WITH SIMULINK SIMULATIONS

Lecture 9: Spread Spectrum Modulation Techniques

Chapter 2 Channel Equalization

On the Spectral Efficiency of MIMO MC-CDMA System

ORTHOGONAL frequency division multiplexing (OFDM)

Performance Analysis of Concatenated RS-CC Codes for WiMax System using QPSK

A Novel Spread Spectrum System using MC-DCSK

Spread Spectrum. Chapter 18. FHSS Frequency Hopping Spread Spectrum DSSS Direct Sequence Spread Spectrum DSSS using CDMA Code Division Multiple Access

Channel Estimation in Multipath fading Environment using Combined Equalizer and Diversity Techniques

Design and Simulation of COFDM for High Speed Wireless Communication and Performance Analysis

SC - Single carrier systems One carrier carries data stream

Performance Analysis Of OFDM Using QPSK And 16 QAM

Performance of Orthogonal Frequency Division Multiplexing System Based on Mobile Velocity and Subcarrier

COMPARISON OF CHANNEL ESTIMATION AND EQUALIZATION TECHNIQUES FOR OFDM SYSTEMS

About Homework. The rest parts of the course: focus on popular standards like GSM, WCDMA, etc.

Error Probability of Different Modulation Schemes for OFDM based WLAN standard IEEE a

Performance Enhancement of Multi User Detection for the MC-CDMA

Performance Analysis of CDMA System using Direct Sequence Spread Spectrum and Frequency Hopping Spread Spectrum Techniques

BER analysis of MIMO-OFDM system in different fading channel

Bit Error Rate Assessment of Digital Modulation Schemes on Additive White Gaussian Noise, Line of Sight and Non Line of Sight Fading Channels

Multirate schemes for multimedia applications in DS/CDMA Systems

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61)

Chapter 2 Overview - 1 -

Performance Analysis of LTE System in term of SC-FDMA & OFDMA Monika Sehrawat 1, Priyanka Sharma 2 1 M.Tech Scholar, SPGOI Rohtak

CAMPARATIVE BIT ERROR RATE PERFORMANCE ANALYSIS OF 4G OFDM SYSTEM USING DIFFERENT MODULATION TECHNIQUE

Performance Comparison of MIMO Systems over AWGN and Rayleigh Channels with Zero Forcing Receivers

Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM)

Performance Evaluation of COFDM in Time Varying Environment

High Speed & High Frequency based Digital Up/Down Converter for WCDMA System

G410 CHANNEL ESTIMATION USING LEAST SQUARE ESTIMATION (LSE) ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM

Soft Handoff Parameters Evaluation in Downlink WCDMA System

BER Performance of MC-CDMA Using Walsh Code with MSK Modulation on AWGN and Rayleigh Channel

Performance Analysis of MIMO-OFDM based IEEE n using Different Modulation Techniques

Performance Evaluation of BPSK modulation Based Spectrum Sensing over Wireless Fading Channels in Cognitive Radio

Effect of AWGN & Fading (Rayleigh & Rician) Channels on BER Performance of Free Space Optics (FSO) Communication Systems

Study and Analysis of 2x2 MIMO Systems for Different Modulation Techniques using MATLAB

Evaluation of Code Division Multiplexing on Power Line Communication

Simulation Study and Performance Comparison of OFDM System with QPSK and BPSK

Transcription:

Science Journal of Circuits, Systems and Signal Processing 2016; 5(2): 19-23 http://www.sciencepublishinggroup.com/j/cssp doi: 10.11648/j.cssp.20160502.12 ISSN: 2326-9065 (Print); ISSN: 2326-9073 (Online) Review Article Comparative Analysis of the BER Performance of WCDMA Bourdillon O. Omijeh 1, Oteheri Tedje 2 1 Department of Electronic and Computer Engineering, University of Port Harcourt, Port Harcour, Nigeria 2 Centre for Information and Telecommunications Engineering, University of Port Harcourt, Port Harcourt, Nigeria Email address: omijehb@yahoo.com (B. O. Omijeh), tedje.oteheri@gmail.com (O. Tedje) To cite this article: Bourdillon O. Omijeh, Oteheri Tedje. Comparative Analysis of the BER Performance of WCDMA Using Different Spreading Code Generator. Science Journal of Circuits, Systems and Signal Processing. Vol. 5, No. 2, 2016, pp. 19-23. doi: 10.11648/j.cssp.20160502.12 Received: August 23, 2016; Accepted: September 5, 2016; Published: October 9, 2016 Abstract: In recent times the Wideband Code Division Multiple Access (WCDMA) is one of the most used. This is because it provides higher data rates in mobile communication and it provides the users with many multimedia applications such as video streams and high resolution pictures. In other to enhance the performance of the technology a suitable modulation technique and error correcting technique is implemented.in this paper I have done performance analysis of different spread spectrum sequence with the Quadrature Phase Shift Keying (QPSK) modulation technique when the system is subjected to multipath Rayleigh fading and Additive White Gaussian Noise (AWGN). The research has been done using MATLAB for simulation and evaluation of the bit error rate for the WCDMA system models. Keywords: WCDMA, QPSK, PN Code, Gold Code, Walsh Code, GMSK, Rayleigh Fading 1. Introduction Current generation systems are designed to support multimedia applications. For this reason, the WCDMA supports higher capacity and has better limiting features of multipath propagating effects. These third generation systems provide services with high data rates for both public and private networks. WCDMA uses noise-like broadband frequency spectrum where it has high resistance to multipath fading whereas this was not present in the conventional narrowband signal of second generation (2G) communication system [1]. In 2G communication systems, Gaussian Minimum Shift Keying (GMSK) modulation scheme is widely used in GSM communication. This modulation technique can only transmit 1 bit per symbol, so it is not suitable for the next generation communications systems. It is therefore important to study a new modulation technique that could deliver higher data rate effectively in a multipath fading channel [9]. The implementation of high data rate modulation techniques that have good bandwidth efficiency in WCDMA cellular communications requires perfect modulators, demodulators, filters and transmission paths that are difficult to achieve in practical radio environment. Modulation schemes which are capable of delivering more bits per symbol are more immune to errors caused by noise and interference in the channel. Moreover, errors can be easily produced as the number of users is increased and the mobile terminal is subjected to mobility. Thus, it has driven many researches into the application of higher order modulations [2, 8, 10]. This paper focuses on the performance measurement of high data rate modulation schemes in channels which are subjected to Multipath Rayleigh Fading and Additive White Gaussian Noise (AWGN). AWGN is the effect of thermal noise produced by thermal motion of electron in all dissipative electrical components i.e. resistors, wires and so on [3]. Mathematically, thermal noise is described by a zero mean Gaussian random process where the random signal is a sum of Gaussian noise random variable and a dc signal which is shown in the equation

Science Journal of Circuits, Systems and Signal Processing 2016; 5(2): 19-23 20 Z = a + n (1) And the Probability Distribution Function (pdf) for Gaussian noise is shown as follows 1 1 z a ( z) = exp σ 2π 2 σ P (2) The effect can cause fluctuations in the received signals amplitude, phase and angle of arrival, giving rise to terminology multipath fading. The performance of a WCDMA system is better improved by using spreading codes. The different spreading codes with different spreading length are used to support high bit rate and mitigate the effect of inter-symbol interference (ISI) and narrowband interference in WCDMA. The main property of the spreading code is they need to be orthogonal to each other. Some of these spreading codes are Hammard codes, PN sequence, Gold sequence and Walsh codes. The pseudorandom (PN) sequence is deterministically generated; however, it is almost like random sequences to an observer. The PN sequence is usually implemented by using sequential logic circuits [4]. Gold sequence is another type of sequence used in WCDMA techniques [5]. Gold codes are obtained from a modulo-2 addition of two maximum length sequences. Gold sequences are generated on the basis of preferred pair m- sequences.the gold sequence has inter-code interference. Walsh code is used as spreading code with less spreading factor. Walsh codes are used in direct sequence and frequency hopping spread spectrum (such as IS95, cdma2000 etc.). Walsh codes are orthogonal codes. They are generated by using Hammard matrix. From the corresponding Hammard matrix the Walsh codes are given by rows [6]. QPSK is a type of M-ary PSK modulation technique where M=4, it transmits 2 bits per symbol. The phase carrier is divided into four equally spaced values which are 0, π/2, π and 3π/2 each value of the phase is represents a pair of message bits. The basic signal of QPSK is expressed as π π S QPSK (t) = Es cos ( i 1 ) Φ1 (t) ES sin ( i 1 ) Φ2 (t) 2 2 i=1,2,3,4 (3) 2. Related Works [1] in their paper compared modulation technique using M-ary Quadrature Amplitude Modulation (QAM) and Quadrature Phase Shift Keying (QPSK) are considered in Wideband Code Division Multiple Access (WCDMA) system. The system was subjected to Additive White Gaussian Noise (AWGN) and multipath Rayleigh fading. [2] in their paper studied the wideband code division multiple access (WCDMA) downlink over various narrowband and wideband channels. Implementation issues and performance were discussed; particularly when space 2 time transmit diversity (STTD) is employed. [5] in their paper designed a system to compare the various modulation techniques of Binary Phase Shift Keying (BPSK) and other Phase Shift Keying modulation techniques. Their comparison was done by finding the Bit Error Rate of each of the modulation techniques. [6] compared the QPSK and QAM modulation techniques used in WCDMA in other to improve the performance of the system. At the end of the research, QPSK was seen to be a more reliable modulation technique. [7] performed analysis of WCDMA using different spreading codes such as Walsh codes, gold codes, etc. this research was carried out in the presence of Rayleigh fading with AWGN. From their simulation results, it was seen that BER of WCDMA can be improved drastically by using Walsh code. [4] paper describes an efficient way of implementing the hardware of a sign Walsh transform. Such a non-linear transform converts binary/ternary vectors into the spectral domain and is important in many signal processing applications including CDMA coding and the analysis of logic design. The approach used is based on fixed butterfly diagrams that are easily implemented in hardware. 3. Methodology The MATLAB simulation tool was used to develop and simulate the model as shown in figure 1. The system was developed using blocks from the communication block set found in the Simulink library. All parameters for each block were set on the block properties dialog box. Various spreading sequences are considered such as PN, Gold and Walsh code in the presence of Rayleigh channel and AWGN. The modulation technique used is the QPSK modulation at the transmitter whose output is a baseband representation of the modulated signal. At the receiver, the QPSK demodulator is used to demodulate the modulated signal. At the transmitter, a raised cosine filter is used to up sample the input signal and at the receiver another raised cosine filter is used to change the overall response of the signal. There are different fading effects and Rayleigh fading represents the worst case of multipath fading. It represents small scale fading due to small changes in position with respect to time that is Doppler Effect. On the other hand, AWGN represents thermal noise generated by electrical instruments. The following steps were taken to analyze the different spreading code models as shown in fig. 1. Simulation was run in intervals of 50 Matlab seconds. Records were taken for error rate and no of errors for the Walsh code, PN code and the Gold code models respectively. In each model, the option stop simulation was disabled to allow for runtime in the Bit Error Rate display

21 Bourdillon O. Omijeh and OteheriTedje: Comparative Analysis of the BER Performance of WCDMA 4. Results and Discussions Fig. 1. Comparative models for the different spreading codes. Based on the data generated by the MATLAB simulation for the WCDMA model using different spread spectrum generators. The simulation was run in intervals of 50 MATLAB seconds. The BER (Bit Error Rate) for the Walsh code is seen to be higher than that of the PN code and the Gold code over the same period. These results are seen in the tables.

Science Journal of Circuits, Systems and Signal Processing 2016; 5(2): 19-23 22 Table 1. BER result for Walsh code, PN code and Gold spreading sequence model at increasing simulation time. Bit Error Rate RUNTIME WALSH CODE PN CODE GOLD CODE 50 0.9216 0.8431 0.8431 100 0.901 0.8119 0.8317 150 0.9139 0.8212 0.8477 200 0.9303 0.8458 0.8607 250 0.9283 0.8247 0.8606 300 0.9236 0.8339 0.8571 350 0.9202 0.8405 0.8632 400 0.9202 0.8404 0.8678 450 0.9113 0.8337 0.8714 500 0.9082 0.8263 0.8483 550 0.9074 0.8258 0.8457 600 0.9018 0.822 0.8353 650 0.9017 0.8187 0.8341 700 0.893 0.8188 0.8317 750 0.8802 0.8109 0.8229 800 0.8702 0.8065 0.8152 850 0.8578 0.8049 0.812 900 0.8457 0.798 0.808 950 0.837 0.7918 0.795 1000 0.8212 0.7842 0.7829 Fig. 2. Overall Comparative Bit Error Rate for the Different Spreading Codes. Table 2. Number of errors generated from the different spreading codes at different simulation time. No. of Errors RUNTIME WALSH CODE PN CODE GOLD CODE 50 47 43 43 100 91 82 84 150 138 124 128 200 187 170 173 250 233 207 216 300 278 251 258 350 323 295 303 400 369 337 348 450 411 376 393 500 455 414 425 550 500 455 466 600 542 494 502 650 587 533 543 700 626 574 583 750 661 609 618 800 697 646 653 850 730 685 691 900 762 719 728 950 796 753 756 1000 822 785 784

23 Bourdillon O. Omijeh and OteheriTedje: Comparative Analysis of the BER Performance of WCDMA Fig. 3. Overall Comparative Number of Errors for the Different Spreading Codes. The simulation is successfully done using QPSK modulation technique and the desired BER graphs for the simulations are obtained. The BER performance of the Walsh code generator is better than that of the PN code and gold code generators. 5. Conclusion In this paper, the comparative analysis of the Bit Error Rate performance of Wideband Code Division Multiple Access using different spreading codes has been achieved. It includes the design of the model using Matlab/Simulink. It is that the Walsh Spreading code has a higher Bit Error rate than that of the PN code and Gold code in the presence of multipath fading with AWGN in the transmission channel. References [1] Masud M. A., Samsuzzaman M. and Rahman M. A., Bit Error Rate Performance Analysis on Modulation Techniques of Wideband Code Division Multiple Access. Journal of Telecommunications, Vol. 1, Issue 2, pp. 22-29, March 2010. [2] Rosmansyah Y., Sweeney P., Tafazolli R., Air Interface Techniques for Achieving High Data Rates for UMTS, IEEE 3G Mobile Communication Technologies, Conference Publication No. 477, pp.368-372, 26-28 March 2001. [3] Bernard Skyler, Digital Communications Fundamentals and Applications, Prentice-Hall, 2 nd Edition, pp30-33. [4] Falkowsky B., Yan, Shixing, Fixed Sign Walsh Transform and its Iterative Hardware Architecture, IEEE International Symposium on Circuits and Systems, vol. 1, pp.448-487, May 2005. [5] Omijeh B. and Adebanya C., Computer-Based Comparative Analysis of BPSK versus other PSK Modulation Models, International Journal of Advanced Research in Computer and Communication Engineering, vol.4, issue 10, October 2015. [6] Barretto C., Braganza O., D sa S., Saju S., George G., Comparison of Modulation Techniques Used in WCDMA, International Journal of Engineering Research and Applications, vol. 4, issue 1 (version 2), pp.47-54, January 2014. [7] Samundiswary P. and Kaylan P., Performance Analysis of WCDMA using Different Spreading Codes, Pondichery University Pondicherry, India, International Journal of Computer Applications (0975-8887), vol. 38, no. 10, January 2012. [8] HarriHolma and Antti Toskala, WCDMA forumts, Radio Access for Third Generation Mobile Communications, John Wiley & Sons, Ltd., Third Edition, September 2004. [9] Garg, V. K., Wireless Network Evolution: 2G to 3G, Prentice Hall: Upper Saddle River, NJ, 2002. [10] TeroOjampera, Ramjee Prasad, Wideband CDMA for Third Generation Mobile Communication: Universal Personal Communication, Artech House, USA, 1998.