ARL Fall 2017 Meetings

Similar documents
Platform Independent Launch Vehicle Avionics

CubeSat Proximity Operations Demonstration (CPOD) Vehicle Avionics and Design

Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) Overview

CubeSat Proximity Operations Demonstration (CPOD) Mission Update Cal Poly CubeSat Workshop San Luis Obispo, CA

The Evolution of Nano-Satellite Proximity Operations In-Space Inspection Workshop 2017

The TEXAS Satellite Design Laboratory: An Overview of Our Current Projects FASTRAC, BEVO-2, & ARMADILLO

SNIPE mission for Space Weather Research. CubeSat Developers Workshop 2017 Jaejin Lee (KASI)

End-to-End Simulation and Verification of Rendezvous and Docking/Berthing Systems using Robotics

From Single to Formation Flying CubeSats: An Update of the Delfi Programme

t: e: w: Mokslininkų str. 2A, LT Vilnius, Lithuania

National Space Grant Student Satellite Program

SMART COMMUNICATION SATELLITE (SCS) PROJECT OVERVIEW. Jin JIN Space Center, Tsinghua University 2015/8/10

The NaoSat nanosatellite platform for in-flight radiation testing. Jose A Carrasco CEO EMXYS Spain

HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave configuration

ARMADILLO: Subsystem Booklet

SPACE. (Some space topics are also listed under Mechatronic topics)

KUTESat. Pathfinder. Presented by: Marco Villa KUTESat Project Manager. Kansas Universities Technology Evaluation Satellite

CanX-2 and NTS Canada's Smallest Operational Satellites

SIMBA Sun Earth Imbalance mission. Tjorven Delabie, KU Leuven

Autonomous and Autonomic Systems: With Applications to NASA Intelligent Spacecraft Operations and Exploration Systems

Minnesat: GPS Attitude Determination Experiments Onboard a Nanosatellite

GEM - Generic Engineering Model Overview

GNC/AOCS DEVELOPMENT SYSTEM FOR RENDEZ-VOUS AND DOCKING MISSIONS AT SENER, AND ASSOCIATED TEST FACILITIES

ETS-VII: Achievements, Troubles and Future

NetCubeSat and SDR Based Communication System for Climate Change Understanding

(SDR) Based Communication Downlinks for CubeSats

Small Satellites: The Execution and Launch of a GPS Radio Occultation Instrument in a 6U Nanosatellite

Cubesats and the challenges of Docking

Flight Results from the nsight-1 QB50 CubeSat Mission

Key Areas for Collaboration

Introduction. Satellite Research Centre (SaRC)

Research Activities on Small Satellite in HIT

THE OPS-SAT NANOSATELLITE MISSION

BRIDGING THE GAP: COLLABORATION USING NANOSAT AND CUBESAT PLATFORMS THROUGH THE TEXAS 2 STEP (2 SATELLITE TARGETING EXPERIMENTAL PLATFORM) MISSION

CUBESAT an OVERVIEW AEOLUS AERO TECH, Pvt. Ltd.

Relative Navigation, Timing & Data. Communications for CubeSat Clusters. Nestor Voronka, Tyrel Newton

Orbicraft Pro Complete CubeSat kit based on Raspberry-Pi

Moog CSA Engineering CubeSat Payload Accommodations and Propulsive Adapters. 11 th Annual CubeSat Developer s Workshop 25 April 2014

Office of Chief Technologist - Space Technology Program Dr. Prasun Desai Office of the Chief Technologist May 1, 2012

Rome, Changing of the Requirements and Astrofein s Business Models for Cubesat Deployer

Rapid Development and Test for UKube-1 using Software and Hardware-in-the-Loop Simulation. Peter Mendham and Mark McCrum

The PROBA Missions Design Capabilities for Autonomous Guidance, Navigation and Control. Jean de Lafontaine President

FlexCore: Low-Cost Attitude Determination and Control Enabling High-Performance Small Spacecraft

The STU-2 CubeSat Mission and In-Orbit Test Results

University of Kentucky Space Systems Laboratory. Jason Rexroat Space Systems Laboratory University of Kentucky

PROCEEDINGS OF SPIE. Inter-satellite omnidirectional optical communicator for remote sensing

FPGA Implementation of Safe Mode Detection and Sun Acquisition Logic in a Satellite

Real-Time AOCS EGSE Using EuroSim and SMP2-Compliant Building Blocks

Tropnet: The First Large Small-Satellite Mission

From the Delfi-C3 nano-satellite towards the Delfi-n3Xt nano-satellite

The FASTRAC Satellites

MarCO: Ready for Launch Andrew Klesh, Joel Krajewski

Satellite Engineering BEST Course. CubeSats at ULg

A Guidance, Navigation and Control (GN&C) Implementation of Plug-and-Play for Responsive Spacecraft

DYNAMIC IONOSPHERE CUBESAT EXPERIMENT

Design of a Remote-Cockpit for small Aerospace Vehicles

Open Source Design: Corvus-BC Spacecraft. Brian Cooper, Kyle Leveque 9 August 2015

Beyond CubeSats: Operational, Responsive, Nanosatellite Missions. 9th annual CubeSat Developers Workshop

Free-flying Satellite Inspector

Reaching for the Stars

Tele-manipulation of a satellite mounted robot by an on-ground astronaut

The Virtual Spacecraft Reference Facility

A Constellation of CubeSats for Amazon Rainforest Deforestation Monitoring

Air Force Institute of Technology. A CubeSat Mission for Locating and Mapping Spot Beams of GEO Comm-Satellites

FORMOSAT-3/COSMIC Mission Satellite Performance: Five Years in Orbit

Design of a Free Space Optical Communication Module for Small Satellites

Cubesat Micropropulsion Characterization in Low Earth Orbit

Relative Cost and Performance Comparison of GEO Space Situational Awareness Architectures

The FASTRAC Experience: A Student Run Nanosatellite Program

COE CST First Annual Technical Meeting: Autonomous Rendezvous & Docking Penina Axelrad. Federal Aviation. Administration.

Space Debris Mitigation

AMSAT Fox Satellite Program

RAX: The Radio Aurora explorer

Low-Cost Simulation and Verification Environment for Micro-Satellites

COTS ADAPTABLE MODULE FOR ATTITUDE DETERMINATION IN CUBESATS

Design and Operation of Micro-Gravity Dynamics and Controls Laboratories

A Next Generation Test-bed for Large Aperture Imaging Applications. Can Kurtuluş Đstanbul Technical University

Dream Chaser for European Utilization (DC 4 EU):

Highly-Integrated Design Approach for High-Performance CubeSats

Outernet: Development of a 1U Platform to Enable Low Cost Global Data Provision

Automation & Robotics (A&R) for Space Applications in the German Space Program

Integrating Advanced Payload Data Processing in a Demanding CubeSat Mission. Mark McCrum, Peter Mendham

sunspace experience with sumbandilasat

Wide Area Wireless Networked Navigators

Hopper Spacecraft Simulator. Billy Hau and Brian Wisniewski

ASSESSMENT OF SPHERES

THE SPHERES ISS LABORATORY FOR RENDEZVOUS AND FORMATION FLIGHT. MIT Room Vassar St Cambridge MA

Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R

Technology Considerations for Advanced Formation Flight Systems

CubeSat based Rendezvous, Proximity Operations, and Docking in the CPOD Mission

CubeSat Navigation System and Software Design. Submitted for CIS-4722 Senior Project II Vermont Technical College Al Corkery

Model Based AOCS Design and Automatic Flight Code Generation: Experience and Future Development

Utilizing Commercial DSLR for High Resolution Earth Observation Satellite

Geoff Crowley, Chad Fish, Charles Swenson, Gary Bust, Aroh Barjatya, Miguel Larsen, and USU Student Team

Agent Model of On-Orbit Servicing Based on Orbital Transfers

INTERNET OF THINGS IN SPACE

Microsatellite Constellation for Earth Observation in the Thermal Infrared Region

DLR s Optical Communications Program for 2018 and beyond. Dr. Sandro Scalise Institute of Communications and Navigation

CRITICAL DESIGN REVIEW

Mission Goals. Brandi Casey (Project Manager)

Transcription:

ARL Fall 2017 Meetings Miguel Nunes Assistant Specialist, Hawaii Institute of Geophysics and Planetology (HIGP) and Hawaii Space Flight Laboratory (HSFL) Autonomous Docking with Small Satellites

Overview Motivation autonomous systems... smarter and more agile space robots will be better equipped to sense and react to anomalies onboard, making them less dependent on the ground crew. NASA Technology Roadmap 4, 2015-2035 Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 2 / 22

2. MARS-ADCS 3. MARS-ARD Overview Motivation Space telescope assembly concept. Image Credit AAReST project. Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization Video 3 / 22

Overview Operations Concept Initiate maneuvers for constellation formation maintenance Self Situational Awareness Acquisition Initiate docking phase Final docking phase Deployment Launch Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 4 / 22

Overview Related Missions Mission Year Chaser Sat Mass (kg) Target Sat Mass (kg) Status Country Cosmos 1967 Cosmos-186 6 530 Cosmos-188 6 530 Success Russia ETS-VII 1998 Hikoboshi 2 500 Orihime 400 Success Japan Orbital Express 2007 ASTRO 1 089 NEXTSat 227 Success USA ATV 2008 ATV 20 750 ISS 419 455 Success ESA CPOD 2016 CPOD-A 5 CPOD-B 5 Pending USA few autonomous docking missions in past 60 years docking missions with small satellites has never been done emerging embedded technologies are enabling ARD Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 5 / 22

Software Comprehensive Open-architecture Solution for Mission Operations Systems (COSMOS) Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 6 / 22

Software COSMOS & LSTS Toolchain Bridging Water, Ground, Air with Space vehicles Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 7 / 22

Monolithic vs Multi-Agent Function Monolithic System Multi-Agent System software development monolithic, centralized modular, distributed, scalable add/remove components dynamically fixed, not possible flexible data processing centralized centralized or distributed geographic distribution centralized centralized or distributed robustness to failures whole system fails partial system failure plug-n-play fixed, not possible flexible to implement scalability limited to single units scalable, limit is data bus bandwidth Monolithic Multi-Agent Sensor 1 Sensor 1 Sensor 2 Estimation Estimation Sensor 2 Sensor N Sensor N Actuator 1 Actuator 1 Actuator 2 Control Actuator N Control Actuator 2 Actuator N Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 8 / 22

Agent Definition an agent is a computer system that is situated in some environment, and that is capable of autonomous action in this environment in order to achieve its delegated objectives Weiss, Multiagent Systems, 2013 An agent is: social (interact with other agents) proactive (autonomous decision making) reactive (sense and act) Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 9 / 22

Agent Definition an agent is a computer system that is situated in some environment, and that is capable of autonomous action in this environment in order to achieve its delegated objectives Weiss, Multiagent Systems, 2013 An agent is: social (interact with other agents) proactive (autonomous decision making) reactive (sense and act) Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 9 / 22

Multi-Agent Robotic System Multi-Agent Robotics System Bracket Spacecraft Hardware Space Physics GNC Architecture Agent Guidance 6DoF E-Guidance Agent Control + Control - Agent Navigation Navigation State Estimate EKF (Position, Attitude) Sensor data Agent Actuator1 Agent ActuatorN Agent Sensor1 Agent SensorN Actuators Thrusters Wheels Magnetorquers Sensors GPS Attitude Rendezvous Forces Torques Spacecraft Dynamics & Kinematics Spacecraft State Exec Agent External Disturbances Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 10 / 22

Multi-Agent Robotic System COSMOS Agent #1 External Disturbances COSMOS Agent #2 External Disturbances Guidance u g (k),u g (k+1) Control u=u(x) Guidance u g (k),u g (k+1) Control u=u(x) Actuators Actuators Agent driver Dynamics Agent driver Dynamics Navigation Sensor Fusion State Estimation X(x,v,a,q) state vector Sensors Navigation Sensor Fusion State Estimation X(x,v,a,q) state vector Sensors GNC On Board Computer Software Vehicle Dynamics GNC On Board Computer Software Vehicle Dynamics COSMOS Space network COSMOS Space network COSMOS Space network COSMOS Data Packets COSMOS Agent #3 External Disturbances COSMOS Agent #4 External Disturbances Guidance u g (k),u g (k+1) Control u=u(x) Guidance u g (k),u g (k+1) Control u=u(x) Actuators Actuators Agent driver Dynamics Agent driver Dynamics Navigation Sensor Fusion State Estimation X(x,v,a,q) state vector Sensors Navigation Sensor Fusion State Estimation X(x,v,a,q) state vector Sensors GNC On Board Computer Software Vehicle Dynamics GNC On Board Computer Software Vehicle Dynamics Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 11 / 22

HiakaSat ADCS MARS Position Sensor Attitude Sensors Actuators GPS ST MAG GYRO MTR1 MTR2 MTR3 GPS Agent ST Agent IMU Agent TCU Agent Navigation Agent (orbit and attitude estimation) Control Agent (control input) Other agents Exec Agent (mode management, FDIR) Sensor Data Actuator Data Agent Data (UDP) Hardware Drivers ADCS Agents Sensors Actuators Radios/Ground Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 12 / 22

Actual Actual Actual Actual Actual Actual Actual Actual Actual Actual Actual Actual Actual Actual Actual Actual Orbit View Actual Actual Actual Actual Actual Actual Actual Actual Actual Lat 043.4 N Long 090.6 E Alt 0123 k 45:03 Umbra Local Time 245:19:07:58 S/C State Nominal ADCS Mode LVLH Ground St ASF-1 22:10 AOS Sub-Sat View 45:03 Umbra Local Time 245:19:07:58 S/C State Nominal ADCS Mode LVLH Ground St ASF-1 22:10 AOS Sim Sim Sub-Sat View Lat 033.6 N Long 007.4 E Alt 0489 k 26:58 Local Time 245:02:07:58 S/C State Nominal ADCS Mode IH2 Ground St SSC 08:15 LOS UHF, SBand Sat # Satellite Name MOST GSC 001 TinySat-1 Autonomous 002 TinySat-2 Autonomous 003 TinySat-3 Autonomous 004 TinySat-4 Autonomous 005 TinySat-5 Autonomous 006 TinySat-6 Autonomous 007 TinySat-7 Autonomous 008 TinySat-8 Autonomous 009 TikiSat-1 Autonomous 010 TikiSat-2 Autonomous Autonomous 011 HawaiiSat-1 Autonomous 012 HawaiiSat-2 SpaceCadet 1 SpaceCadet 1 013 MightySat Manual 014 ClearSat SpaceCadet 2 SpaceCadet 2 015 KUD0Sat-1 Autonomous 016 KUD0Sat-2 Autonomous 017 BoxSat-1 Autonomous 018 BoxSat-2 Autonomous 019 BoxSat-3 Autonomous 020 BoxSat-4 Autonomous 021 BoxSat-6 Autonomous 022 BoxSat-9 SpaceCadet 3 Autonomous 023 BoxSat-10 Autonomous 024 BoxSat-11 SpaceCadet 3 SpaceCadet 3 025 SimSat-A SpaceCadet 4 Manual Controller Status MPST MOST GSCT DMT TBCT CEO Flight Director On 1 1 SpaceCadet 1 On 1 1 SpaceCadet 2 On 1 SpaceCadet 3 On 2 1 SpaceCadet 4 Off SpaceCadet 5 Off SpaceCadet 6 Off SpaceCadet 7 Off SpaceCadet 8 Sim 1 SpaceCadet 9 Off SpaceCadet 10 Off Trainee 1 Sim 1 Trainee 2 On 1 Trainee 3 On 1 Trainee 4 Off Actual Orbit View Actual Sub-Sat View Actual Orbit View Actual Lat 073.6 S Long 187.4 E Alt 0557 k 07:53 Umbra Local Time 245:07:07:58 S/C State Nominal ADCS Mode LVLH Ground St KCC 17:20 AOS Lat 033.6 S Long 096.4 E Alt 0623 k 27:53 Local Time 245:09:07:58 S/C State SAFE ADCS Mode SAFE Ground St KCC 37:20 AOS Lat 013.6 N Long 196.4 E Alt 7623 k 82:53 Umbra Local Time 245:21:07:58 Ground St SCC 17:20 LOS VHF, SBand Orbit View Actual Orbit View Actual Sub-Sat View Actual Sub-Sat View Actual Orbit View Simulation Orbit View Simulation 26:58 Local Time 245:02:07:58 S/C State Nominal ADCS Mode IH2 Ground St SSC 08:15 LOS UHF, SBand 07:53 Umbra Local Time 245:07:07:58 S/C State Nominal ADCS Mode LVLH Ground St KCC 17:20 AOS 27:53 Local Time 245:09:07:58 S/C State SAFE ADCS Mode SAFE Ground St KCC 37:20 AOS 07:53 Umbra Local Time 245:07:07:58 S/C State Nominal ADCS Mode LVLH Ground St KCC 17:20 AOS Actual Lat 088.6 N Long 196.4 E Alt 5523 k 82:53 Umbra Local Time 245:21:07:58 Ground St SCC 17:20 LOS VHF, SBand 07:53 Umbra Local Time 245:07:07:58 S/C State Nominal ADCS Mode LVLH Ground St KCC 17:20 AOS Ground St Band Local Tm Azimuth Sat # Elevation Max Elev AOS Mode LOS 245:07:07:58 281.3 67.5-82.4 19:38:37 [+05:30] 19:47:27 [-04:20] Orbit View Lat 043.4 N Long 090.6 E Alt 0123 k 45:03 Umbra Local Time 245:19:07:58 S/C State Nominal ADCS Mode LVLH Ground St ASF-1 22:10 AOS Actual Sub-Sat View Actual Sub-Sat View Actual Sub-Sat View Actual Lat 033.6 N Long 007.4 E Alt 0489 k 26:58 Local Time 245:02:07:58 S/C State Nominal ADCS Mode IH2 Ground St SSC 08:15 LOS UHF, SBand Lat 073.6 S Long 187.4 E Alt 0557 k 07:53 Umbra Local Time 245:07:07:58 S/C State Nominal ADCS Mode LVLH Ground St KCC 17:20 AOS Lat 033.6 S Long 096.4 E Alt 0623 k 27:53 Local Time 245:09:07:58 S/C State SAFE ADCS Mode SAFE Ground St KCC 37:20 AOS 2. MARS-ADCS 3. MARS-ARD COSMOS CEO UTC 001 2012-01-23 19:43:07 MOC 08:43:07 002 003 004 005 006 007 008 009 010 C S P C S P C S P C S P C S P C S P C S P C S P C S P C S P 011 012 013 014 015 016 017 018 019 020 C S P C S P C S P C S P C S P C S P C S P C S P C S P C S P 021 022 023 024 025 026 027 028 029 030 C S P C S P C S P C S P 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 SORT CONTROL ALLOCATIONS PERSONNEL CEO COSMOS Executive Operator LocalT MET Orbit 14:43:07 1234:09:32:27 17126 SELECT 11 HawaiiSat-1 MOST 12 HawaiiSat-2 MOST 13 MightySat MOST 14 ClearSat MOST 15 KUDOSat-1 MOST 16 KUDOSat-2 MOST 17 BoxSat-1 MOST 18 BoxSat-2 MOST 19 BoxSat-3 MOST 20 BoxSat-4 MOST B C L EPS OBC ADC RF TCS + B EPS C L OBC ADC RF RCS + CONTACT EPS OBC ADC RF TCS + CAR LCK EPS OBC ADC RF TCS + B C L RCS SM GNC CM1 CM2 EPS OBC ADC COM TCS B C L RCS SM GNC CM1 CM2 EPS OBC ADC COM TCS 21 BoxSat-6 MOST 22 BoxSat-9 MOST 23 BoxSat-10 MOST 24 BoxSat-11 MOST 25 SimSat-1 MOST 26 SimSat-2 MOST B C L EPS OBC ADC RF TCS + B EPS C L OBC ADC RF RCS + CONTACT EPS OBC ADC RF TCS + CAR LCK EPS OBC ADC RF TCS + Lat 023.4 S Long 090.6 E Alt 0123 k Lat 043.4 N Long 090.6 E Alt 0123 k Lat 043.4 S Long 090.6 E Alt 0123 k Lat 043.4 S Long 090.6 E Alt 0123 k Lat 043.4 S Long 090.6 E Alt 1123 k Lat 043.4 S Long 090.6 E Alt 0723 k B C L EPS OBC ADC RF TCS + B EPS C L OBC ADC RF RCS + CONTACT EPS OBC ADC RF TCS + CAR LCK EPS OBC ADC RF TCS + CONTACT EPS OBC ADC RF TCS + CONTACT EPS OBC ADC RF TCS + #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 MC1 MC2 MC3 OTB1 OTB2 MC5 MC6 MC7 MC8 MC9 CPU MEM DISK NODE #1 (MC1) STATUS KCC UHF CONTACT 009 AUTO KCC ASF-1 ASF-2 SCC-1 SCC-2 UHF S-B S-B UHF S-B OPER STBY OPER DOWN STBY ABC DEF-1 DEF-2 DEF-3 GHI-2 C-B S-B S-B X-B Ku-B LNK STBY OPER OPER OFF HMC3-1 HMC3-2 NMC3-1 NMC3-2 SMC3-1 UHF S-B UHF S-B UHF STBY OPER STBY STBY OFF SMC3-2 BMC3-1 BMC3-2 WPGS ARC-1 S-B UHF S-B VHF UHF OFF OPER OPER LNK DOWN ARC-2 ARC-3 ARC-4 ARC-5 UHF UHF S-B S-B OPER OPER STBY OPER MSG Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 13 / 22

COSMOS 3D Docking Engine Video Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 14 / 22

Hardware CubeSat Representative Hardware. Image credit Tyvak. Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 15 / 22

On Board Computing Evolution of computing throughput. Image credit RHESE Project. Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 16 / 22

2. MARS-ADCS 3. MARS-ARD Heterogeneous Computing Unibap ix30 Heterogeneous Computer (CPU, GPU, FPGA). <20W operational. Image Credit Unibap Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 17 / 22

2. MARS-ADCS 3. MARS-ARD Hardware: Attitude Control CubeADCS hardware. Image credit CubeSpace. Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 18 / 22

Hardware in the Loop Testing Helmholtz Cage Motion tracking system Sun simulator ADCS hardware Satellite testbed Air bearing platform GPS simulator Testbed control software Video Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 19 / 22

2. MARS-ADCS 3. MARS-ARD CubeADCS Testing Video Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 20 / 22

Questions? Thank You Miguel A. Nunes MARS for Space Missions and a Method for Satellite Constellations Optimization 22 / 22