MINIATURE X-RAY TUBES UTILIZING CARBON-NANOTUBE- BASED COLD CATHODES

Similar documents
CARBON-NANOTUBE FIELD EMISSION X-RAY TUBE FOR SPACE EXPLORATION XRD/XRF INSTRUMENT.

Using Carbon Nano-Tube Field Emitters to Miniaturize X-Ray Tubes

Thermionic x-ray. Alternative technologies. Electron Field Emission. CNT Based Field Emission X-Ray Source

MINIATURE X-RAY SOURCES AND THE EFFECTS OF SPOT SIZE ON SYSTEM PERFORMANCE

Field Emission Cathodes using Carbon Nanotubes

MOXTEK S NEW ULTRA-LITE X-RAY SOURCES: PERFORMACE CHARACTERIZATIONS

Electron Gun using Coniferous Carbon Nano-Structure

Fabrication of Probes for High Resolution Optical Microscopy

Scanning Electron Microscopy Basics and Applications

Development of triode-type carbon nanotube field-emitter arrays with suppression of diode emission by forming electroplated Ni wall structure

SIMULTANEOUS XRD/XRF WITH LOW-POWER X-RAY TUBES

Schematic diagram of the DAP

photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited by

p q p f f f q f p q f NANO 703-Notes Chapter 5-Magnification and Electron Sources

Distributed source x-ray tube technology for tomosynthesis imaging

2014 CINDE Toronto Portable X-ray & X-Ray Production

Scanning electron microscope

SUPPLEMENTARY INFORMATION

Defense Technical Information Center Compilation Part Notice

New Pixel Circuits for Driving Organic Light Emitting Diodes Using Low-Temperature Polycrystalline Silicon Thin Film Transistors

MODULE I SCANNING ELECTRON MICROSCOPE (SEM)

Synthesis of SiC nanowires from gaseous SiO and pyrolyzed bamboo slices

Scanning electron microscope

Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films

Design and Fabrication of Carbon Nanotube Array based Field Emission Cathode for X-ray Tube

Field emission performance of macroscopically gated multiwalled carbon nanotubes for a spacecraft neutralizer

CHAPTER 6 CARBON NANOTUBE AND ITS RF APPLICATION

INTERNATIONAL FEMTOSCIENCE, INC. Jim Davidson, Dave Kerns.

Analog Synaptic Behavior of a Silicon Nitride Memristor

Study of shear force as a distance regulation mechanism for scanning near-field optical microscopy

Circuit Components Lesson 4 From: Emergency Management Ontario

X-rays. X-rays are produced when electrons are accelerated and collide with a target. X-rays are sometimes characterized by the generating voltage

Research Article Small-Sized Flat-Tip CNT Emitters for Miniaturized X-Ray Tubes

Seminar 8. Radiology S8 1

Module 4B7: VLSI Design, Technology, and CAD. Scanning Electron Microscopical Examination of CMOS Integrated Circuit

Design, Fabrication and Characterization of Very Small Aperture Lasers

Compact EUV Source for Metrology and Inspection

LECTURE 10. Dr. Teresa D. Golden University of North Texas Department of Chemistry

MOXTEK. 50kV 10 Watt MAGNUM X-ray Source. X-ray Sources. Contents

USING A CHARGE-COUPLED DEVICE (CCD) TO GATHER X-RAY FLUORESCENCE (XRF)AND X-RAY DIFFRACTION (XRD) INFORMATION SIMULTANEOUSLY

NANO MODIFICATION OF THE W(100)/ZrO ELECTRON EMITTER TIP USING REACTIVE ION ETCHING

Q-switched resonantly diode-pumped Er:YAG laser

S200 Course LECTURE 1 TEM

Real-Time Observation of Tubule Formation from Amorphous Carbon Nanowires under High-Bias Joule Heating

National Science Foundation Center for Lasers and Plasmas for Advanced Manufacturing. Mool C. Gupta Applied Research Center Old Dominion University

Today s Outline - January 25, C. Segre (IIT) PHYS Spring 2018 January 25, / 26

WO 2014/ Al. 20 February 2014 ( ) P O P C T

High End / Low Cost Pulsed Laser Diodes 905D1SxxUA-Series

Senderovich 1. Figure 1: Basic electrode chamber geometry.

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2

New Detectors for X-Ray Metal Thickness Measuring

- Near Field Scanning Optical Microscopy - Electrostatic Force Microscopy - Magnetic Force Microscopy

Ionization (gas filled) tubes

Supplementary Information

Unusual Tubes. Tom Duncan, KG4CUY March 8, 2019

Florida State University Libraries

Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation

DEVELOPMENT OF A WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE SPECTROMETER USING A MULTI-CAPILLARY X-RAY LENS FOR X-RAY DETECTION

NDT-PRO Services expands service offering

CHAPTER 9: ELECTRONICS

OEM s #1 Choice for X-Ray Sources and Generators. Focus on Performance, Reliability, Form Factor, and Versatility.

SILICON NANOWIRE HYBRID PHOTOVOLTAICS

Diamond vacuum field emission devices

SUPPLEMENTARY INFORMATION

DEVELOPMENT OF CW AND Q-SWITCHED DIODE PUMPED ND: YVO 4 LASER

Supplementary Information: Nanoscale. Structure, Dynamics, and Aging Behavior of. Metallic Glass Thin Films

Semiconductor Physics and Devices

Major Fabrication Steps in MOS Process Flow

Supplementary Figure S1. Characterization using X-ray diffraction (XRD). (a) Starting titanium (Ti) foil used for the synthesis (JCPDS No ).

Use of Graphene as a Patch Material in comparison to the copper and other Carbon Nanomaterials

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004

CW RF cesium-free negative ion source development at SNU

ANALYTICAL MICRO X-RAY FLUORESCENCE SPECTROMETER

Gas scintillation Glass GEM detector for high-resolution X-ray imaging and CT

VISUAL PHYSICS ONLINE DEPTH STUDY: ELECTRON MICROSCOPES

Advancing EDS Analysis in the SEM Quantitative XRF. International Microscopy Congress, September 5 th, Outline

Development of a nitrogen incorporated ultrananocrystalline diamond film based field emitter array for a flat panel X-ray source

Photomultiplier Tube

High Power Pulsed Laser Diodes 850-Series

Experiment 6: Franck Hertz Experiment v1.3

Improvement of Energy Resolutions for Planar TlBr Detectors Using the Digital Pulse Processing Method

Data Collection with. VÅNTEC-2000 Detector

Amorphous Selenium Direct Radiography for Industrial Imaging

attosnom I: Topography and Force Images NANOSCOPY APPLICATION NOTE M06 RELATED PRODUCTS G

WIDE ANGLE GEOMETRY EDXRF SPECTROMETERS WITH SECONDARY TARGET AND DIRECT EXCITATION MODES

A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters

Bridgelux V13 Array. Product Data Sheet DS44. BXRE-27x2000

Beams and Scanning Probe Microscopy

A process for, and optical performance of, a low cost Wire Grid Polarizer

Functions of the SEM subsystems

TOWARDS FAST RECIPROCAL SPACE MAPPING

Measuring CNT FETs and CNT SETs Using the Agilent B1500A

Drive Beam Photo-injector Option for the CTF3 Nominal Phase

Introduction of New Products

Opportunities and Challenges for Nanoelectronic Devices and Processes

Characteristics of a Normal Glow Discharge Excited by DC Voltage in Atmospheric Pressure Air

Vixar High Power Array Technology

Development of a Low Cost, Low Power, Miniature Sector Mass Spectrometer with IonCCD Detection

Introduction. Chapter 16 Diagnostic Radiology. Primary radiological image. Primary radiological image

Transcription:

Copyright JCPDS - International Centre for Diffraction Data 25, Advances in X-ray Analysis, Volume 48. 24 MINIATURE X-RAY TUBES UTILIZING CARBON-NANOTUBE- BASED COLD CATHODES A. Reyes-Mena, Charles Jensen, Erik Bard, D. Clark Turner and K. G. Erdmann MOXTEK, Inc., Orem, UT 8457 ABSTRACT Qi Qiu, Bo Gao, Jianping Lu and Otto Zhou XINTEK, Inc., Chapel Hill, NC 27516 The electron field-emission properties of carbon nanotubes enable the fabrication of cold cathodes for a variety of vacuum device applications. The utilization of these cathodes is an attractive alternative for the replacement of thermionic or hot cathodes for generating X-rays. Miniature X-ray tubes have been fabricated using triode-style carbon nanotubebased cathodes. In this paper we report the results of characterization studies, such as beam current dependence on the control gate voltage. Also, results on focal spot measurements and electron-beam modeling allow the possibility of reducing focused spot sizes. Driving gate voltages below 1 volts for easy pulsing has been achieved, and the extended lifetime data suggests that a regulated power supply would be ideal for a constant AC operation mode. The 1mm focal spot size achieved so far is suitable for most XRF applications. INTRODUCTION A new X-ray tube design utilizing carbon nanotube (CNTs) cold cathodes may be a significant advance in X-ray technology development and could lead to portable and miniature X-ray sources for medical and industrial applications. CNT is a new carbon allotrope that was discovered over ten years ago [1]. Because of the unique chemical bonding and the perfect tubular geometry, it has many unique properties [2] such as atomically sharp tips and large aspect ratios (>1 3 ). As a result, CNTs have larger field enhancement factors and, thus, lower threshold fields for emission than conventional emitters such as the Spindt-type tips fabricated by lithography [3]. Due to the fieldemission nature of this cold cathode, the energy spread is about.5ev and the spatial spread angle in a parallel direction to the electrical field is smaller than 5 o. It has been shown that the field emission turn-on field of CNTs is significantly lower than the values reported for other electron emissive materials (Table 1). Cathode Material Mo tips 5-1 Si tips 5-1 p-type diamond 16 Defective CVD diamond 3-12 Amorphic diamond 2-4 Cesium-coated diamond 2-3 Threshold Field (V/µm) for 1 ma/cm 2 Graphite powders 1-2 Nano-diamond 3-5 (unstable > 3 ma/cm2) Carbon Nanotubes 1-2 (stable >4mA/cm 2 ) Table 1. Threshold fields for various cathode materials and some CNT emission characteristics.

Copyright JCPDS - International Centre for Diffraction Data 25, Advances in X-ray Analysis, Volume 48. 25 The CNTs are capable of delivering stable high currents a stable emission current of >1µA has been observed from an individual single-wall carbon nanotube (SWNT) [4] and reaching an emission current density greater than 1A/cm 2 from a macroscopic cathode [5]. These properties make the CNTs attractive electron-field emitters for technological applications. The potential of using CNTs as the cold cathodes has been demonstrated in devices such as the field-emission flat panel displays (FEDs) [6], lighting elements [7], and discharge tubes for over-voltage protection [8]. The novel CNT cold cathode generates room temperature emission and controllable output currents and repetition rates [9]. In contrast, conventional thermionic cathodes are limited by a slow response time, high power consumption, and high operating temperature (up to 1ºC) that substantially decrease the average lifetime of X-ray filaments. The imaging resolution in typical diagnostic X-ray machines is also limited because the distribution of electrons is random. In this paper we report results on the development of carbon-nanotube-based miniature X-ray tubes. MINIATURE X-RAY TUBES The miniaturization of XRF instrumentation created a need for a compact, portable, batterypowered X-ray tube. In 21 MOXTEK introduced a miniature X-ray tube designed to address the needs of handheld XRF [1,11]. This tube was designed to be a transmissiontarget, end-window configuration in order to provide very close anode-to-sample coupling. Refer to Figure 1 for details of the interior construction of the tube. To provide for battery operation of the tube the cathode includes a thermionic filament that was designed for very low power consumption, requiring typically only.2 watt input power to produce 1µA of emission current. There is a circular focusing aperture to restrict the electron beam to a central cone. The anode is a sputtered film on the back of the beryllium exit window. This tube was designed as a replacement for 19 Cd radioisotope sources commonly used in handheld XRF instruments. The 19 Cd emits primarily the AgKα line, so silver was chosen for the anode material. The tube has an additional advantage over the isotope sources, as it produces continuum radiation [11]. CNT CATHODES Figure 1. Cross-section of a transmission target X-ray tube. CNTs have found application in scanning probe microscopy and field emission cold cathodes for visible light, field-emission displays and X-ray generation [5]. Xintek has developed methods to enhance the emission uniformity and stability of the CNT cathodes and carried out extensive systematic studies of their field emission properties, pioneering several methods for integration of CNTs into device structures [6,7,8].

Copyright JCPDS - International Centre for Diffraction Data 25, Advances in X-ray Analysis, Volume 48. 26 Figure 2 shows a typical current-gate voltage plot. This data was taken by both increasing and decreasing the gate voltage (GV). Throughout the measurement the anode current (AC) to gate current (GC) ratio stays around 1, which means that at this stage of the process approximately half of the cathode current is collected by the gate and the other half by the tube anode. For example, to achieve 2µA of AC or GC, a GV of ~ 34V needs Current (A) 5.E-5 4.E-5 4.E-5 3.E-5 3.E-5 2.E-5 2.E-5 1.E-5 5.E-6.E+ Gate Current Anode Current 1 2 3 4 5 6 Gate Voltage (V) Figure 2. Typical current-gate voltage plot. The insert shows the corresponding F-N fit. to be applied. Thus, the power consumption on the CNT cathode is substantially less than that of the thermionic cathode. The field emission nature is exhibited when a Fowler- Nordheim (F-N) is used to fit this data, as illustrated in the insert in Figure 2. Figure 3 shows pulsed emission current from a typical CNT cathode at a frequency of 2KHz with different duty cycles. The frequency can be controlled by programming the gate voltage through a signal generator. The pulsed current can be further used to produce programmable X-ray radiation at various repetition rates and duty cycles after the electrons are accelerated to bombard the anode. Some X-ray pulses at different frequencies are illustrated in Figure 4. Figure 3. 2 KHz pulsed cathode operation at various duty cycles. Figure 4. X-ray pulses with flexible width and repetition rate can be readily achieved by programming the gate voltage.

Copyright JCPDS - International Centre for Diffraction Data 25, Advances in X-ray Analysis, Volume 48. 27 CNT CATHODE INTEGRATION INTO MINIATURE X-RAY TUBES The CNT cathode has been integrated into the standard miniature X-ray tube envelope utilizing its basic design and dimensions as described in a previous section. The CNT films were deposited onto TO-5 headers used for standard filament X-ray tubes. The CNT cathode configuration essentially consists of a CNT-film support (a TO-5 header) and an electrically insulated gate on top of the CNT emitter on which a voltage (GV) is applied for extracting the electrons the cathode current from the emitter. Those electrons either make it through the gate to the tube anode or are collected by the cathode gate, contributing to the anode current (AC) and the gate current (GC), respectively (Figure 5). Figure 5. CNT cathode configuration Extended continuous operation. A CNT tube has been continuously operated for over 7 hours. The GV was adjusted to maintain an AC of 2µΑ, as illustrated in Figure 6. The initial and final GVs were 36V and 67V, respectively. The initial GC was around 2µA for the first 27 hours and, then, it stayed approximately constant during the last 4 hours of operation. It is important to note that the increase in GV was more accentuated during the initial time than for the last 12 hours of operation. The GV becomes more stable thereafter. This data suggests that the use of a regulated AC power supply with GV below 1V would be ideal for maintaining constant a given AC, despite GV variations during the tube lifetime operation. Current (ua) 1 9 8 7 6 5 4 3 2 1 2 ua Gate Current Anode Current Gate Voltage 2 4 6 Run Time (h) Figure 6. Extended CNT operation. The gate voltage has been manually adjusted to achieve ~2mA of anode current. 1 9 8 7 6 5 4 3 2 1 Gate Voltage (V)

Copyright JCPDS - International Centre for Diffraction Data 25, Advances in X-ray Analysis, Volume 48. 28 Pulsed operation. The CNT tube has also been continuously operated in a pulsed mode. Figure 7 shows data taken at 1KHz with a 25% duty cycle, a GC of 33µA, and a GV of 6V. 8 7 Pulsed gate voltage Gate current 5 45 6 4 35 Gate Voltage(V) 5 4 3 2 3 25 2 15 1 Gate current (µa) 1 5.E+ 1.E-3 2.E-3 3.E-3 4.E-3 5.E-3 Time (Seconds) Figure 7. Pulsed operation of a CNT X-ray tube. Focal spot characterization. Figure 8 shows the focal spot for a CNT X-ray tube with a passive-focusing optic and a large-opening cathode gate. Figure 9 portrays the result using passive optics with an adjusted focal length and a small-opening cathode gate. The images on the right-hand side of each pair are computational results, closely resembling the experimental results on the left. Validation of experimental results through modeling of this kind enables optical design to progress toward the goal of minimizing spot size for CNT-based X-ray devices [13]. Nevertheless, focal spot sizes achieved so far (~1mm) are suitable for most XRF applications. Figure 8. Experimental and computational spot images of a CNT X-ray tube with a large gate opening. 1 mm 1 mm Figure 9. Experimental and computational spot images of a CNT X-ray tube with a small gate opening.

Copyright JCPDS - International Centre for Diffraction Data 25, Advances in X-ray Analysis, Volume 48. 29 SUMMARY AND CONCLUSIONS CNT cathodes have been successfully incorporated into miniature X-ray tubes. The CNTs offer unique advantages for a new generation of X-ray tubes, namely: low power consumption, long lifetime (testing still in progress), and pulse capability. Driving gate voltages below 1 volts for easy pulsing has been achieved, and the extended lifetest data suggests that a regulated power supply would be ideal for a constant AC operation mode. The 1mm focal spot size achieved so far is suitable for most XRF applications. The use of electron-beam modeling tools allows the possibility of reducing focused spot sizes. ACKNOWLEDGEMENTS This research is supported in part by grants from the National Institutes of Health (CA14773, EB264, PI: Hong Liu). REFERENCES [1] Iijima, S., Helical Microtubules of Graphitic Carbon, Nature, 354 (1991) 56. [2] Dresselhaus, M.S., G. Dresselhaus, and P. Avouris, eds. Carbon Nanotubes : Synthesis, Structure, Properties, and Applications, Topics in Appl. Phys., 8 (2), Springer-Verlag: Heidelberg. [3] Ajayan, P.M. and O. Zhou, Applications of Carbon Nanotubes, in Carbon Nanotubes : Synthesis, Structure, Properties, and Applications (Topics in Appl. Phys., 8), M.S. Dresselhaus, G. Dresselhaus, and P. Avouris, Eds, 2, Springer-Verlag: Heidelberg, p. 391-425. [4] K.A. Dean and B.R. Chalamala, Appl. Phys. Lett., 76 (2) 375. [5] Zhu, W., et al., Very High Current Density from Carbon Nanotube Field Emitters. Appl. Phys. Lett., 75 (1999) 873. [6] Choi, W.B., et al., Appl. Phys. Lett., 75 (1999) 3129. [7] Saito, Y., S. Uemura, and K. Hamaguchi, Cathode Ray Tube Lighting Elements with Carbon Nanotube Field Emitters, Jpn. J. Appl. Phys., 37 (1998) L346. [8] Rosen, R., et al., Application of Carbon Nanotubes as Electrodes in Gas Discharge Tubes, Appl. Phys. Lett., 76 (2) 1197. [9] G. Z. Yue et al., Appl. Phys. Lett., 81 (22) 355. [1] A. Reyes-Mena, Melany Moras, Charles Jensen, Steven D. Liddiard, and D. Clark Turner, Characterization Techniques for Miniature Low-Power X-ray Tubes, Adv. in X-ray Analysis, in press (23). [11] Charles Jensen, S.M. Elliott, Steven D. Liddiard, A. Reyes-Mena, Melany Moras, and D. Clark Turner, Improvements in Low-Power, End-Window, Transmission- Target X-ray Tubes, Adv. in X-ray Analysis, in press (23). [12] U.S. patent 65539. [13] Erik Bard, A. Reyes-Mena and Charles Jensen, Development of a Field-Emission Based Microfocused X-ray Source, in preparation.