Two-dimensional optical phased array antenna on silicon-on-insulator

Similar documents
Beam steering for wireless optical links based on an optical phased array in silicon

High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform

Plane wave excitation by taper array for optical leaky waveguide antenna

Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography

Optics Communications

SILICON-ON-INSULATOR (SOI) is emerging as an interesting

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects

Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array

Cost-effective CMOS-compatible grating couplers with backside metal mirror and 69% coupling efficiency

Silicon photonic devices based on binary blazed gratings

WAVELENGTH division multiplexing (WDM) is now

Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator

A thin foil optical strain gage based on silicon-on-insulator microresonators

Figure 1 Basic waveguide structure

Fully-Etched Grating Coupler with Low Back Reflection

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

Variable splitting ratio 2 2 MMI couplers using multimode waveguide holograms

Grating coupled photonic crystal demultiplexer with integrated detectors on InPmembrane

Arbitrary Power Splitting Couplers Based on 3x3 Multimode Interference Structures for All-optical Computing

Demonstration of Silicon-on-insulator midinfrared spectrometers operating at 3.8μm

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

Deliverable Report. Deliverable No: D2.9 Deliverable Title: OAM waveguide transmission

Wide bandwidth and high coupling efficiency Si 3 N 4 -on-soi dual-level grating coupler

SUPPLEMENTARY INFORMATION

Design and Simulation of Optical Power Splitter By using SOI Material

Numerical Analysis and Optimization of a Multi-Mode Interference Polarization Beam Splitter

Fully integrated hybrid silicon two dimensional beam scanner

Tuning of Silicon-On-Insulator Ring Resonators with Liquid Crystal Cladding using the Longitudinal Field Component

Impact of the light coupling on the sensing properties of photonic crystal cavity modes Kumar Saurav* a,b, Nicolas Le Thomas a,b,

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Ali A. Hussein Sawsan A. Majid Trevor J. Hall

On-chip interrogation of a silicon-on-insulator microring resonator based ethanol vapor sensor with an arrayed waveguide grating (AWG) spectrometer

Ultracompact Phase Modulator Based on a Cascade of NEMS-Operated Slot Waveguides Fabricated in Silicon-on-Insulator

How to bring nanophotonics to application silicon photonics packaging

Foundry processes for silicon photonics. Pieter Dumon 7 April 2010 ECIO

Integrated Photonics based on Planar Holographic Bragg Reflectors

Uniform emission, constant wavevector silicon grating surface emitter for beam steering with ultra-sharp instantaneous fieldof-view

Comparison of AWGs and Echelle Gratings for Wavelength Division Multiplexing on Silicon-on-Insulator

CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler

Silicon Photonic Device Based on Bragg Grating Waveguide

Photonics and Optical Communication

Loss Reduction in Silicon Nanophotonic Waveguide Micro-bends Through Etch Profile Improvement

Mach Zehnder Interferometer True Time Delay Line

Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit

Optical Communications and Networking 朱祖勍. Sept. 25, 2017

Integrated metamaterials for efficient and compact free-space-to-waveguide coupling

The Design of Optical Signal Transforms Based on Planar Waveguides on a Silicon on Insulator Platform

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Two bit optical analog-to-digital converter based on photonic crystals

Supplementary Figure 1. Effect of the spacer thickness on the resonance properties of the gold and silver metasurface layers.

Ultra-Compact Low-loss Broadband Waveguide Taper in Silicon-on-Insulator

Optical Polarization Filters and Splitters Based on Multimode Interference Structures using Silicon Waveguides

Optomechanical coupling in photonic crystal supported nanomechanical waveguides

Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect

Investigation of ultrasmall 1 x N AWG for SOI- Based AWG demodulation integration microsystem

Hybrid vertical-cavity laser integration on silicon

Broadband Optical Phased-Array Beam Steering

A novel tunable diode laser using volume holographic gratings

Compact hybrid TM-pass polarizer for silicon-on-insulator platform

Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides

Design, Simulation & Optimization of 2D Photonic Crystal Power Splitter

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers

UC Santa Barbara UC Santa Barbara Previously Published Works

Reduction in Sidelobe Level in Ultracompact Arrayed Waveguide Grating Demultiplexer Based on Si Wire Waveguide

A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires

Supplementary Figure 1. GO thin film thickness characterization. The thickness of the prepared GO thin

Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler

Title. CitationOptics Express, 18(24): Issue Date Doc URL. Rights. Type. File Information. coupler

Ultracompact Adiabatic Bi-sectional Tapered Coupler for the Si/III-V Heterogeneous Integration

Copyright 2004 Society of Photo Instrumentation Engineers.

Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon

Multiple wavelength resonant grating filters at oblique incidence with broad angular acceptance

A Comparison of Optical Modulator Structures Using a Matrix Simulation Approach

Heinrich-Hertz-Institut Berlin

Title. Author(s)Saitoh, Fumiya; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 18(5): Issue Date Doc URL.

Photonic Integrated Beamformer for Broadband Radio Astronomy

Fast, Two-Dimensional Optical Beamscanning by Wavelength Switching T. K. Chan, E. Myslivets, J. E. Ford

Diffraction, Fourier Optics and Imaging

Mode analysis of Oxide-Confined VCSELs using near-far field approaches

Waveguiding in PMMA photonic crystals

Integrated interferometric approach to solve microring resonance splitting in biosensor applications

Comparison between strip and rib SOI microwaveguides for intra-chip light distribution

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

Monolithic integration of erbium-doped amplifiers with silicon waveguides

Vernier-cascade silicon photonic label-free biosensor with very large sensitivity and low-cost interrogation

Wavelength-division multiplexing Si photonic crystal beam steering device for highthroughput parallel sensing

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

UNIT Explain the radiation from two-wire. Ans: Radiation from Two wire

Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform

Slot waveguide-based splitters for broadband terahertz radiation

Opto-VLSI-based reconfigurable photonic RF filter

Applications of Cladding Stress Induced Effects for Advanced Polarization Control in Silicon Photonics

Sinusoidal wavelength-scanning interferometer using an acousto-optic tunable filter for measurement of thickness and surface profile of a thin film

Test-station for flexible semi-automatic wafer-level silicon photonics testing

Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span

Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm

A tunable Si CMOS photonic multiplexer/de-multiplexer

Title. Author(s)Fujisawa, Takeshi; Koshiba, Masanori. CitationOptics Letters, 31(1): Issue Date Doc URL. Rights. Type.

Design of an 845-nm GaAs Vertical-Cavity Silicon-Integrated Laser with an Intracavity Grating for Coupling to a SiN Waveguide Circuit

Si-EPIC Workshop: Silicon Nanophotonics Fabrication Fibre Grating Couplers

Transcription:

Two-dimensional optical phased array antenna on silicon-on-insulator Karel Van Acoleyen, 1, Hendrik Rogier, and Roel Baets 1 1 Department of Information Technology (INTEC) - Photonics Research Group, Ghent University - imec, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium Department of Information Technology (INTEC) - Electromagnetics Group, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium *karel.vanacoleyen@intec.ugent.be Abstract: Optical wireless links can offer a very large bandwidth and can act as a complementary technology to radio-frequency links. However, optical components nowadays are rather bulky. Therefore, we have investigated the potential of silicon photonics to fabricate integrated components for wireless optical communication. This paper presents a two-dimensional phased array antenna consisting of grating couplers that couple light off-chip. Wavelength steering of 0.4 /nm is presented, reducing the need of active phase modulators. The required steering range is 1.5. The 3dB angular coverage range of these antennas is 0.007π sr with a directivity of more than 38dBi and antenna losses smaller than 3dB. 0 Optical Society of America OCIS codes: (050.1950) Diffraction gratings; (060.605) Free-space optical communication; (130.310) Integrated optics devices. References and links 1. J. M. Kahn and J. R. Barry, Wireless infrared communications, Proc. IEEE 85, 65 98 (1997).. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator, Opt. Lett. 34, 1477 1479 (009). 3. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Optical phased array technology, Proc. IEEE 84, 68 98 (1996). 4. R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, Recent developments in indoor optical wireless systems, IET Commun. Mag., 3 (008). 5. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography, J. Lightwave Technol. 7, 4076 4083 (009). 6. epixfab, The silicon photonics platform, http://www.epixfab.eu/. 7. G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-oninsulator waveguide circuit, Appl. Phys. Lett. 9, 1311 (008). 8. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O Faolain, D. Van Thourhout, and R. Baets, Compact focusing grating couplers for silicon-on-insulator integrated circuits, IEEE Photon. Technol. Lett. 19, 1919 191 (007). 9. N. Le Thomas, R. Houdré, M. V. Kotlyar, D. O Brien, and T. E. Krauss, Exploring light propagating in photonic crystals with Fourier optics, J. Opt. Soc. Am. B 4, 964 971 (007).. D. Vermeulen, S. Selvaraja, G. Verheyen, P. Lepage, W. Bogaerts, and G. Roelkens, High-efficiency Silicon- On-Insulator Fiber-to-Chip Grating Couplers Using a Silicon Overlay, in Group IV Photonics, (United States, 009), p. FPd1. 11. K. Van Acoleyen, H. Rogier, and R. Baets, Feasibility of Integrated Optical Phased Arrays for Indoor Wireless Optical Links, in Optical Communication, 009. ECOC 09. 35th European Conference on, (Vienna, Austria, 009), p. P4.18. (C) 0 OSA 1 June 0 / Vol. 18, No. 13 / OPTICS EXPRESS 13655

1. Introduction On the one hands, as the available radio spectrum is getting more and more congested, people are looking for solutions by either using a different carrier frequency (60GHz band), MIMO (Multiple-Input-Multiple-Output) communication or by applying UWB (UltraWide Band). The optical domain, on the other hand, has a virtually unlimited bandwidth available free from regulations. Optical systems do not suffer from electromagnetic interference, provide an increased security and could serve either as a stand-alone technology or in hybrid optical-rf systems. Therefore, these systems are getting increased attention for indoor wireless links [1]. As the present wireless optical systems consist of bulky components, we have investigated the use of an integrated technology to fabricate components for wireless optical links. For that purpose, we have made use of the CMOS (Complementary Metal-Oxide Semiconductor) compatible silicon-on-insulator (SOI) platform allowing dense integration. Beam scanning is important for directive links and can be done by wavelength scanning or active phase tuning. Whereas for an N N array, N phase tuners are needed to perform full two-dimensional beam scanning, this number can be reduced to N by using wavelength scanning in one direction. This paper presents a two-dimensional optical phased array (OPA) fabricated on SOI. OPAs allow very stable, rapid and precise beam steering without mechanical motion, making them robust and insensitive to external constraints such as acceleration [,3]. When choosing a large element spacing, we will obtain multiple higher-order grating lobes in the far-field. This usually unwanted effect can find applications in multipath optical links [4]. The beam direction is controlled by tuning the phase relationship between an array of transmitters. This is performed by wavelength tuning in one direction thanks to delay lines between the elements. Integration with N active phase tuners would result in full two-dimensional steering of an N N array. Furthermore, these OPAs could be used in coherent receiver schemes. Section describes the design and fabrication of the component using the SOI platform. Section 3 discusses the Fourier imaging measurement setup to investigate the far-field properties of the component. Section 4 provides the measurement results and section 5 presents a conclusion.. Design and Fabrication The component shown in Fig. 1 was fabricated on SOI with an oxide thickness of µm and a silicon top layer thickness of 0nm using standard CMOS processes in imec. This high index contrast platform allows a high level of integration with small, low-loss waveguides with bend radii down to 5µm []Selvaraja009, epixfab. Two etching steps are used, one of 0nm for etching the waveguides and the multimode interference (MMI) splitters and the second of 70nm to etch the grating couplers. The input waveguide in Fig. 1 is connected to a grating coupler to couple light into the waveguide system. Such a grating coupler uses the principle of diffraction to couple light from a single mode optical fiber into the TE-like mode of a µm waveguide [7]. The waveguide then tapers down to a 450nm wide photonic wire being the input waveguide in Fig. 1. This waveguide is then split by a MMI tree into K output waveguides, with K being 4 for a by array and 16 for a 4 by 4 array. The radiating elements consist of a focusing grating coupler that couples out light in a near vertical direction [8]. 3. Measurement Setup Figure schematically shows the Fourier-space imaging technique that was used to investigate the off-chip radiation pattern [9]. The far-field of the component is imaged on the back-focal plane of a microscope objective with numerical aperture NA=0.5. In this plane, one point corresponds to a unique direction of off-chip emission and can be parameterized by (sinθ, sinφ). This back-focal plane is then brought back to a CCD camera by means of two lenses. The pa- (C) 0 OSA 1 June 0 / Vol. 18, No. 13 / OPTICS EXPRESS 13656

Fig. 1. Two-dimensional OPA on SOI: schematic view (left), top-view SEM picture of the measured 4 4 OPA (right). Light coming from the input waveguide is split via a MMI tree and then coupled out-of-plane using focusing grating couplers. rameters θ and φ are defined as the out-coupling angles in the longitudinal plane and transverse plane (i.e. perpendicular to the waveguide axis) with respect to the normal of the sample surface (Fig. 1). Fig.. Schematic view of the Fourier imaging setup: the backfocal plane of the microscope objective (MO) is brought back to the CCD camera by means of two lenses. 4. Measurement Results and Discussion 4.1. Far-field pattern Figure 3(a) presents a schematic view of the cross section of a focusing grating coupler. The farfield of this focusing grating coupler is shown in Fig. 3(b). This far-field determines the steering range of the OPA. The envelope will shift in the θ-direction when changing the wavelength due to the grating equation sinθ = Λn ef f,gc λ 0, (1) n ct Λ with Λ = 65nm being the period of the grating, λ 0 the free-space wavelength, n ef f,gc the effective index of the guided mode of the coupler region (.67 at λ 0 = 1550nm) and n ct the refractive index of the background, which is air in this case. The shift in θ angle as well as the change in beam width can be found in Fig. 3(c). The latter does not change significantly. These grating couplers are placed in a N M array configuration with positions s mn = mλ x u x + nλ y u y with Λ x and Λ y the spacing of the elements in the x- and y-direction, respectively, and where m = 0...M 1 and n = 0...N 1. The far-field is calculated by multiplication of the far-field of one grating coupler with the array factor T (θ,φ): T (θ,φ)= M 1 N 1 m=0 n=0 A mn e jβ mn e jk s mn = M 1 N 1 m=0 n=0 A mn e jβ mn e jk 0[mΛ x sinθ+nλ y sinφ], () where β mn is the phase delay between the elements, k is the wave vector (in air) with magnitude k 0 and A mn is the amplitude of each element which is constant in our case and further assumed (C) 0 OSA 1 June 0 / Vol. 18, No. 13 / OPTICS EXPRESS 13657

(a) φ ( o ) 15 5 0 5 15 0 5 15 (b) θ ( o ) 1 0.8 0.6 0.4 0. (c) angle ( o ) 14 1 8 6 4 θ Δθ Δφ 1530 1540 1550 1560 1570 λ (nm) Fig. 3. (a) Schematic view of a cross section of a grating coupler. (b) Far-field pattern of the focusing grating coupler at a wavelength of 1550nm. The FWHM width in the θ-direction is 4.8 and in the φ-direction is 9.6. (c) Out-coupling angle θ (blue), FWHM θ (red) and FWHM φ (green) as a function of wavelength. to be 1. Having only a length difference ΔL between the elements in the x-direction, we obtain: π β mn = n ef f λ ΔL π mn = mn ef f ΔL, (3) λ with n ef f the effective index of the fundamental TE-like mode. The array factor is calculated in closed form: ( ) ( ) [ ] sin M k 0Λ x sinθ k 0 n ef f ΔL T (θ,φ)=e j (k 0 Λ x sinθ k 0 n ef f ΔL) M 1 +(k 0 Λ y sinφ) N 1 ( ) sin N k 0Λ y sinφ ( ) k0 Λ sin x sinθ k 0 n ef f ΔL k0. Λ sin y sinφ (4) The array factor exhibits a maximum in the θ-direction for sinθ = q λ Λ x + n ef fδl Λ x, (5) for integer q. Due to the delay lines, the absolute value of q will be large. The beams will shift at a rate of dθ dλ dsinθ = q + dn ef f ΔL, (6) dλ Λ x dλ Λ x where the angle θ is assumed to be relatively small. Note that q is negative so that the beam will shift in the negative θ-direction for increasing wavelength. The effect of dispersion cannot be neglected in this high index contrast platform. There are two main contributions to dispersion: material dispersion and waveguide dispersion. Whereas the former is relatively weak for the small wavelength range considered in this paper, the latter has a significant influence due to the extremely high confinement in the small photonic wires. The change of n ef f as a function of wavelength is negative as well, being about -0.013/nm around λ = 1.55µm. Figure 4 shows the measured far-field pattern of a OPA together with the theoretical far-field. Figure 5 shows a cross section of the far-field along the θ-direction for a and 4 4 OPA. The asymmetry of these patterns is due to the delay lines. The parameters of these OPAs are found in Table 1. The larger discrepancy for the 4 4 OPA is due to the saturation of (C) 0 OSA 1 June 0 / Vol. 18, No. 13 / OPTICS EXPRESS 13658

(a) (b) Fig. 4. Theoretical (a) and measured (b) far-field pattern of a OPA at a wavelength of 1550nm, the parameters are found in Table 1. the camera pixels at the higher intensities. When the OPA becomes large, the beams are only a few pixels wide resulting in less accurate measurements with our setup. 1 0.8 Theory Measurement 1 0.8 Theory Measurement I (a.u.) 0.6 0.4 I (a.u.) 0.6 0.4 0. 0. (a) 0 5 15 θ ( o ) (b) 0 5 15 θ ( o ) Fig. 5. Cross section at φ = 0 of the far-field pattern of a (a) and (b) 4 4OPAat a wavelength of 1550nm, the parameters of the OPA are found in Table 1. The indicated peak has a width of (a) 0.66 and (b) 0.36. 4.. Steering capability By changing the wavelength, the envelope of the far-field will shift [Fig. 3(c)], but also the array factor will shift due to the delay lines. Figure 6(a) shows the shift of the peak indicated in Fig. 5 by an arrow. For the OPA this shift is about 0.4 /nm whereas for the 4 4 OPA it is 0.0 /nm. The latter is smaller since the ratio ΔL/Λ x is smaller. The contribution of dispersion is about 0.11 /nm for the OPA and 0.09 /nm for the 4 4OPA. x OPA 4x4 OPA 0 FWHM grating coupler array factor 1 15 θ ( o ) 11 θ( o ) (a) 9 1545 1550 1555 λ (nm) (b) 5 1530 1540 1550 1560 1570 λ (nm) Fig. 6. (a) Shift of the peak shown in Fig. 5 by changing the wavelength. (b) Schematic view of wavelength steering capability. The red region represents the shift of the FWHM of the envelope of our far-field pattern (i.e. the far-field pattern of one grating coupler), while the blue dashed lines represents the shift of the individual emission lobes with wavelength. (C) 0 OSA 1 June 0 / Vol. 18, No. 13 / OPTICS EXPRESS 13659

Figure 6(b) shows the coverage range as a function of wavelength. Steering could be performed by first steering the envelope while fine tuning is done by steering the array factor. As the envelope shifts, the array factor peaks will shift out of the envelope while new peaks will shift in. Since the peaks are spaced about arcsin(λ/λ)=1.48 (at 1550nm for a 60µm spacing), the required wavelength shift for fine tuning is not more than 7nm. By making the delay lines longer, this number can be further decreased. Steering in the φ-direction can be performed by incorporating phase tuners. To steer the beam of an N N array in the φ-direction, N modulators are needed where in principle we only need to define the phase difference between each arm. 4.3. Efficiency The waveguide losses in the SOI platform were shown to be less than 3dB/cm while the bending loss is 0.013dB/bend. Since the total waveguide length is in the order of mm, this loss is not more than 1dB [5]. The grating couplers fabricated with one etch of 70nm in a 0nm silicon top layer have a mean efficiency of about -5.dB. The use of a silicon overlay can enhance the efficiency up to -1.6dB []. This is the efficiency of the grating coupler when it is used to guide light between an optical fiber and a photonic integrated circuit. The efficiency to free space, instead of to an optical fiber, will be better. The total loss from waveguide input to free space can thus be limited to less than 3dB. As shown in [11], the directivity of our OPA does not depend on element spacing but only on the effective total radiating aperture. The theoretical and measured directivity, calculated by D(θ,φ)=4π I(θ,φ) P tot, (7) with P tot the total power radiated by the OPA, for the peak indicated by an arrow in Fig. 5, is given in Table 1. A good agreement with the theory can be seen. For the OPA, the gain is even higher because the lower intensity levels are not measured very accurately. Table 1. Parameters of the measured OPAs. N = M Λ x = Λ y (µm) ΔL (µm) D th (dbi) D meas (dbi) 60 87. 34.9 37.0 4 60 7. 40.0 38.4 5. Conclusion A two-dimensional OPA on SOI has been presented. Steering in one direction has been shown by means of wavelength tuning. Thanks to delay lines between the elements and the dispersion of these delay lines, a steering speed of 0.4 /nm is presented. This speed is easily increased by increasing the delay line length between the elements. The lobes of the OPA are spaced 1.5 apart and the 3dB coverage range is about in both directions ( 0.007π sr), with a directivity of more than 38dBi while the antenna losses are smaller than 3dB. Complete twodimensional steering can be performed by adding phase tuners on the waveguides. In this way, full two-dimensional beam steering is possible with limited need of active phase tuning. Acknowledgment Karel Van Acoleyen and Hendrik Rogier acknowledge the Research Foundation - Flanders (FWO) for a research grant. The authors acknowledge the support of Ghent University (Methusalem project Smart Photonic ICs ). (C) 0 OSA 1 June 0 / Vol. 18, No. 13 / OPTICS EXPRESS 13660