The addition formulae

Similar documents
Cosecant, Secant & Cotangent

A Level. A Level Mathematics. Understand and use double angle formulae. AQA, Edexcel, OCR. Name: Total Marks:

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE)

( x "1) 2 = 25, x 3 " 2x 2 + 5x "12 " 0, 2sin" =1.

JUST THE MATHS SLIDES NUMBER 3.5. TRIGONOMETRY 5 (Trigonometric identities & wave-forms) A.J.Hobson

Trigonometric Identities. Copyright 2017, 2013, 2009 Pearson Education, Inc.

TRIGONOMETRIC R ATIOS & IDENTITIES

Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions. By Dr. Mohammed Ramidh

While you wait: For a-d: use a calculator to evaluate: Fill in the blank.

4.3. Trigonometric Identities. Introduction. Prerequisites. Learning Outcomes

Unit 7 Trigonometric Identities and Equations 7.1 Exploring Equivalent Trig Functions

Trigonometric identities

Trig/AP Calc A. Created by James Feng. Semester 1 Version fengerprints.weebly.com

Trigonometry. David R. Wilkins

Math 3 Trigonometry Part 2 Waves & Laws

Trig Graphs. What is a Trig graph? This is the graph of a trigonometrical function e.g.

P1 Chapter 10 :: Trigonometric Identities & Equations

Math 123 Discussion Session Week 4 Notes April 25, 2017

Honors Algebra 2 w/ Trigonometry Chapter 14: Trigonometric Identities & Equations Target Goals

Verifying Trigonometric Identities

Multiple-Angle and Product-to-Sum Formulas

F.TF.A.2: Reciprocal Trigonometric Relationships

Trigonometric Integrals Section 5.7

Logarithms. In spherical trigonometry

Trigonometric Functions

Year 10 Term 1 Homework

Trigonometric Functions

Chapter 2: Pythagoras Theorem and Trigonometry (Revision)

ASSIGNMENT ON TRIGONOMETRY LEVEL 1 (CBSE/NCERT/STATE BOARDS) Find the degree measure corresponding to the following radian measures :

Name Date Class. Identify whether each function is periodic. If the function is periodic, give the period

Section 2.7 Proving Trigonometric Identities

Trigonometric Identities

The reciprocal identities are obvious from the definitions of the six trigonometric functions.

INTRODUCTION TO TRIGONOMETRY

HIGHER MATHEMATICS. Unit 2 Topic 3.2 Compound Angle Formula

1 Trigonometric Functions

Math 102 Key Ideas. 1 Chapter 1: Triangle Trigonometry. 1. Consider the following right triangle: c b

Trig review. If θ is measured counterclockwise from the positive x axis and (x,y) is on the unit circle, we define sin and cos so that

#0 Theta Ciphering MA National Convention 2015 The two lines with equations 17x 8y 159 and intersect at the point, the least common multiple of

Math Problem Set 5. Name: Neal Nelson. Show Scored View #1 Points possible: 1. Total attempts: 2

Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan. Review Problems for Test #3

Double-Angle, Half-Angle, and Reduction Formulas

Trigonometric Identities. Copyright 2017, 2013, 2009 Pearson Education, Inc.

MATHEMATICS: PAPER II MARKING GUIDELINES

MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Math 1205 Trigonometry Review

CHAPTER 14 ALTERNATING VOLTAGES AND CURRENTS

Chapter 4/5 Part 2- Trig Identities and Equations

Chapter 1 and Section 2.1

We repeat this with 20 birds and get the following results (all in degrees):

Trigonometry Review Page 1 of 14

Principles of Global Positioning Systems Spring 2008

Fourier transforms and series

You found trigonometric values using the unit circle. (Lesson 4-3)

May 03, AdvAlg10 3PropertiesOfTrigonometricRatios.notebook. a. sin17 o b. cos 73 o c. sin 65 o d. cos 25 o. sin(a) = cos (90 A) Mar 9 10:08 PM

March 29, AdvAlg10 3PropertiesOfTrigonometricRatios.notebook. a. sin17 o b. cos 73 o c. sin 65 o d. cos 25 o. sin(a) = cos (90 A) Mar 9 10:08 PM

#9: Fundamentals of Trigonometry, Part II

Ready To Go On? Skills Intervention 14-1 Graphs of Sine and Cosine

Prerequisite Knowledge: Definitions of the trigonometric ratios for acute angles

APPENDIX MATHEMATICS OF DISTORTION PRODUCT OTOACOUSTIC EMISSION GENERATION: A TUTORIAL

= tanθ 3) cos2 θ. = tan θ. = 3cosθ 6) sinθ + cosθcotθ = cscθ. = 3cosθ. = 3cosθ sinθ

Exercise 1. Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ.

cos sin sin 2 60 = 1.

Math 36 "Fall 08" 5.2 "Sum and Di erence Identities" * Find exact values of functions of rational multiples of by using sum and di erence identities.

Unit 5. Algebra 2. Name:

MODELLING EQUATIONS. modules. preparation. an equation to model. basic: ADDER, AUDIO OSCILLATOR, PHASE SHIFTER optional basic: MULTIPLIER 1/10

SQUARE CUT ANGLES: General Model for Rafter and Purlin Angles

Trig Identities Packet

3.2 Proving Identities

Grade 10 Trigonometry

Pre-Calculus Unit 3 Standards-Based Worksheet

D.3. Angles and Degree Measure. Review of Trigonometric Functions

13-1 Trigonometric Identities. Find the exact value of each expression if 0 < θ < If cot θ = 2, find tan θ. ANSWER: 2. If, find cos θ.

Algebra 2/Trigonometry Review Sessions 1 & 2: Trigonometry Mega-Session. The Unit Circle

Principles of Mathematics 12: Explained!

Trig functions are examples of periodic functions because they repeat. All periodic functions have certain common characteristics.

MATH Week 10. Ferenc Balogh Winter. Concordia University

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MHF4U. Advanced Functions Grade 12 University Mitchell District High School. Unit 4 Radian Measure 5 Video Lessons

Tone Detection with a Quadrature Receiver

Georgia Standards of Excellence Frameworks. Mathematics. Accelerated GSE Pre-Calculus Unit 4: Trigonometric Identities

Figure 5.1. sin θ = AB. cos θ = OB. tan θ = AB OB = sin θ. sec θ = 1. cotan θ = 1

Section 7.1 Graphs of Sine and Cosine

MATH STUDENT BOOK. 12th Grade Unit 5

Puzzle Corner M/J Technology Review Page 1 INTRODUCTION

PROVING IDENTITIES TRIGONOMETRY 4. Dr Adrian Jannetta MIMA CMath FRAS INU0115/515 (MATHS 2) Proving identities 1/ 7 Adrian Jannetta

2. Be able to evaluate a trig function at a particular degree measure. Example: cos. again, just use the unit circle!

Trigonometry. An Overview of Important Topics

13-3The The Unit Unit Circle

How to Do Trigonometry Without Memorizing (Almost) Anything

Using Trigonometric Ratios Part 1: Solving For Unknown Sides

13-1 Trigonometric Identities. Find the exact value of each expression if 0 < θ < If cot θ = 2, find tan θ. SOLUTION: 2. If, find cos θ.

13.4 Chapter 13: Trigonometric Ratios and Functions. Section 13.4

C.3 Review of Trigonometric Functions

Lock in time calculation Wenlan Wu (

Lesson 16: The Computation of the Slope of a Non Vertical Line

Chapter 3, Part 1: Intro to the Trigonometric Functions

Trigonometric Equations

Module 5 Trigonometric Identities I

Chapter 7 Repetitive Change: Cyclic Functions

Transcription:

The addition formulae mc-ty-addnformulae-009-1 There are six so-called addition formulae often needed in the solution of trigonometric problems. Inthisunitwestartwithoneandderiveasecondfromthat.Thenwetakeanotheroneasgiven, andderiveasecondonefromthat. Finallyweusethesefourtohelpusderivethefinaltwo. This exercise will improve your familiarity and confidence in working with the addition formulae. The proofs of the formulae are left as structured exercises for you to complete. In order to master the techniques explained here it is vital that you undertake the practice exercises provided. Afterreadingthistext,and/orviewingthevideotutorialonthistopic,youshouldbeableto: work with the six addition formulae Contents 1. Introduction. Thefirsttwoadditionformulae: sin(a ± B) 3. Thesecondtwoadditionformulae: cos(a ± B) 3 4. Derivingthetwoformulaefor tan(a ± B) 5 5. Examplesoftheuseoftheformulae 6 www.mathcentre.ac.uk 1 c mathcentre 009

1. Introduction There are six so-called addition formulae often needed in the solution of trigonometric problems. Inthisunitwestartwithoneandderiveasecondfromthat.Thenwetakeanotheroneasgiven, andderiveasecondonefromthat.andthenwearegoingtousethesefourtohelpusderivethe final two. This exercise will improve your familiarity and confidence in working with the addition formulae.. The first two addition formulae: sin(a ± B) Theformulawearegoingtostartwithis Thisiscalledanadditionformulabecauseofthesum A + Bappearingtheformula. Notethat itenablesustoexpressthesineofthesumoftwoanglesintermsofthesinesandcosinesof the individual angles. Wenowwanttolookat sin(a B). Wecanobtainaformulafor sin(a B)byreplacingthe Bintheformulafor sin(a + B)by B.Then sin(a B) sin A cos( B) + cosasin( B) Wenowusethefollowingimportantfacts: cos( B) cosb,but sin( B) sin B.Then This is the second of our addition formulae. sin(a B) sin A cosb cos A sin B sin(a B) sin A cosb cosasin B www.mathcentre.ac.uk c mathcentre 009

Exercise 1 S 1 T R B O A P Q 1.ByusingrightangledtriangleOSR,inwhichthelengthofOSequals1,determinethe lengthoforintermsofangleb..byusingtheanswerofpart1andrightangledtriangleorqdeterminethelengthofqr intermsofanglesaandb. 3.ByusingtheanswerofpartdeterminethelengthofPT. 4.Whatis TRO? 5.Whatis TRS? 6.Whatis RST? 7.ByusingrightangledtriangleOSRdeterminethelengthofRS. 8.Byusingtheanswerofpart7andrightangledtriangleRSTdeterminethelengthofTS. 9.Byusingtheanswersofparts3and8determinethelengthofPS. 10. Byusingtheanswerofpart9andrightangledtriangleOSPdetermine sin(a + B). 3. The second two addition formulae: cos(a ± B) Thistime,theadditionformulawearegoingtostartwithis cos(a + B) cosacosb sin A sin B cos(a + B) cosacosb sin A sin B www.mathcentre.ac.uk 3 c mathcentre 009

Wewanttousethistoderiveanotherformulafor cos(a B).Todothis,asbefore,wereplace Bwith B.Thisgives cos(a B) cosacos( B) sin A sin( B) But cos( B) cosband sin( B) sin B,andso cos(a B) cos A cosb + sin A sin B cos(a B) cosacosb + sin A sin B So we ve now got four addition formulae. We will summarise them all here: sin(a B) sin A cosb cosasin B cos(a + B) cosacosb sin A sin B cos(a B) cosacosb + sin A sin B Exercise ReferbacktothefigureinExercise1.Useasimilarstrategytothatofexercise1todetermine lengthspq(tr),oqandhenceop.fromthisdetermine cos(a + B). www.mathcentre.ac.uk 4 c mathcentre 009

4. Deriving the two formulae for tan(a ± B) Fromthefourformulaewehaveseenalready,itispossibletoderivetwomoreformulae.Wecan deriveaformulafor tan(a + B)fromtheearlierformulaebynotingthat Then, sin(a + B) cos(a + B) sin(a + B) cos(a + B) sin A cosb + cosasin B cosacosb sin A sin B Thisresultgives tan(a + B)intermsofsinesandcosines.Wenowlookathowwecanwriteit directlyintermsof tan Aand tan B. Wedothisbydividingeveryterm,bothtopandbottom, ontheright-handsideby cosacosb.thisproduces sin A cos B cos A cosb cosacosb cosacosb Cancelling common factors where possible produces so that + cosa sin B cos A cos B sin A sin B cosacosb sin A cos B cos A cosb + cosa sin B cos A cos B cosa cosb sin A sin B cos A cosb cosacosb tana + tanb 1 tanatan B Wecandothesamewith tan(a B)whichwouldproduce tan(a B) tana tan B 1 + tanatan B tan A + tan B 1 tan A tanb tan A tanb tan(a B) 1 + tan A tanb www.mathcentre.ac.uk 5 c mathcentre 009

5. Examples of the use of the formulae Let shavealookatsomefairlytypicalexamplesofwhenweneedtousetheadditionformulae. Example Supposeweknowthat sin A 3 5 andthat cosb where Aand Bareacuteangles.Suppose 5 13 wewanttousethisinformationtofind sin(a+b)and cos(a B).Beforewecanusetheaddition formulaeweneedtoknowexpressionsfor cosaand sin B.Wecanfindthesebyreferringtothe right-angled triangle in Figure 1. 3 5 A Figure1.Aright-angledtriangleconstructedfromthegiveninformation: sin A 3 5 UsingPythagoras theoremwecandeducethatthelengthofthethirdsideis4asshownin Figure.Hence cosa 4 5. 3 4 5 A Figure.Fromtheright-angledtriangle, cos A 4 5 Similarly, giventhat cosb 5,thenbyreferencetothetriangleinFigure3andbyusing 13 Pythagoras theoremwecandeducethat sin B 1 13. 1 13 5 B Figure3.Fromthetriangle sin B 1 13. Wearenowinapositiontousetheadditionformulae: 3 5 5 13 + 4 5 1 13 15 65 + 48 65 63 65 cos(a B) cosacosb + sin A sin B 4 5 5 13 + 3 5 1 13 0 65 + 36 65 56 65 Thisisonewayinwhichtheformulaecanbeused. www.mathcentre.ac.uk 6 c mathcentre 009

Example Supposeweareaskedtofindanexpressionfor sin 75,notbyusingacalculatorbutbyusinga combinationofotherknownquantities. Notethatwecanrewrite sin 75 as sin(45 + 30 )and thenuseanadditionformula.wehavespecificallychosenthevalues 45 and 30 becauseofthe standardresultsthat sin 45 cos 45 1, sin 30 1 and cos 30 3.Then sin(45 + 30 ) sin 45 cos 30 + cos 45 sin 30 1 3 + 1 1 Example 3 + 1 3 + 1 Supposewewishtofindanexpressionfor tan15 usingknownresults.notethat 15 60 45 andalsothat tan 60 3and tan45 1. tan15 tan(60 45 ) tan60 tan 45 1 + tan60 tan45 3 1 1 + 3 1 3 1 3 + 1 Itwouldbemoreusualtotidythisresultuptoavoidleavingarootinthedenominator. This canbedonebymultiplyingtopandbottombythesamequantity,asfollows: 3 1 ( 3 1) ( 3 1) 3 + 1 3 + 1 3 1 3 3 3 + 1 3 1 4 3 3 www.mathcentre.ac.uk 7 c mathcentre 009

Example In this Example we use an addition formula to simplify an expression. Supposewehave sin(90 + A)andwewanttowriteitinadifferentform. Wecanusethefirstadditionformulaasfollows: sin(90 + A) sin 90 cos A + cos 90 sin A cosa since sin 90 1and cos 90 0.So sin(90 + A)canbewritteninthesimplerform cosa. Example Supposewewishtosimplify cos(180 A). since cos 180 1and sin 180 0. cos(180 A) cos 180 cosa + sin 180 sin A cos A So we can see that these addition formulae help us to simplify quite complicated expressions. Exercise 3 1.Verifyeachofthethreeadditionformulae(i.e. for sin(a + B), cos(a + B), tan(a + B)) for the cases: a) A 60, B 30 and b) A 45, B 45..Verifyeachofthethreesubtractionformulae(i.e.for sin(a B), cos(a B), tan(a B)) for the cases: a) A 90, B 60 and b) A 90, B 45. 3.Angles A, Band C areacuteanglessuchthat sin A 0.1, cosb 0.4, sin C 0.7. Withoutfindingangles A, Band C,usetheadditionformulaetocalculate,todecimal places, a) sin(a + B) b) cos(b C) c) sin(c A) d) cos(a + C) e) tan(b A) f) tan(c + B) [Hint:Workto4decimalplaceswhenfinding cosa, tan A,etc.] 4.Byfindingtheangles A, Band Cinquestion3verifyyouranswers. Answers Exercise 1 1. cosb. sin A cosb 3. sin A cosb 4. A 5.90 o A 6. A 7. sin B 8. cosasin B 9. sin A cosb + cos A sin B 10. sin A cosb + cosasin B Exercise PQTRRS sin A sin A sin B OQOR cosa cosacosb OPOQ-PQcosAcosB sin A sin B cos(a + B) OP cosacosb sin A sin B Exercise 3 3. a) 0.95 b) 0.93 c) 0.63 d) 0.64 e) 1.78 f)-.63 www.mathcentre.ac.uk 8 c mathcentre 009