Research on visual physiological characteristics via virtual driving platform

Similar documents
Fig.2 the simulation system model framework

Improving method of real-time offset tuning for arterial signal coordination using probe trajectory data

Research on the modeling of the impedance match bond at station track circuit in Chinese high-speed railway

Assessments of Grade Crossing Warning and Signalization Devices Driving Simulator Study

THE EFFECTS OF PC-BASED TRAINING ON NOVICE DRIVERS RISK AWARENESS IN A DRIVING SIMULATOR

Application of Gestalt psychology in product human-machine Interface design

The Impact of Road Familiarity on the Perception of Traffic Signs Eye Tracking Case Study

The Perception of Optical Flow in Driving Simulators

Open Access The Application of Digital Image Processing Method in Range Finding by Camera

Research on Design and Application of Self-made Simulation Test Platform for University Lab

EYE MOVEMENT STRATEGIES IN NAVIGATIONAL TASKS Austin Ducworth, Melissa Falzetta, Lindsay Hyma, Katie Kimble & James Michalak Group 1

TRAFFIC SIGN DETECTION AND IDENTIFICATION.

A Method of Measuring Distances between Cars. Using Vehicle Black Box Images

Comparison of Wrap Around Screens and HMDs on a Driver s Response to an Unexpected Pedestrian Crossing Using Simulator Vehicle Parameters

Häkkinen, Jukka; Gröhn, Lauri Turning water into rock

Dynamic Visual Performance of LED with Different Color Temperature

Evaluation of High Intensity Discharge Automotive Forward Lighting

Driver Education Classroom and In-Car Curriculum Unit 3 Space Management System

Real Time and Non-intrusive Driver Fatigue Monitoring

CCD Automatic Gain Algorithm Design of Noncontact Measurement System Based on High-speed Circuit Breaker

Design of High-Precision Infrared Multi-Touch Screen Based on the EFM32

Analysis of Gaze on Optical Illusions

A STUDY OF WAYFINDING IN TAIPEI METRO STATION TRANSFER: MULTI-AGENT SIMULATION APPROACH

Multi variable strategy reduces symptoms of simulator sickness

Engineering Fundamentals and Problem Solving, 6e

Verification for Proving the Route Choice Dependence of Motorists Yi Dan 1, a, Shunying Zhu 2, b, Xiaohu Nie 3, c, Yin Chen 4, d, Zipei Zhang 5, e

Frank Heymann 1.

THE EFFECTIVENESS OF SAFETY CAMPAIGN VMS MESSAGES - A DRIVING SIMULATOR INVESTIGATION

Spectral Analysis of the LUND/DMI Earthshine Telescope and Filters

Surface Contents Author Index

Path Planning for Mobile Robots Based on Hybrid Architecture Platform

76-GHz High-Resolution Radar for Autonomous Driving Support

Iowa Research Online. University of Iowa. Robert E. Llaneras Virginia Tech Transportation Institute, Blacksburg. Jul 11th, 12:00 AM

AGING AND STEERING CONTROL UNDER REDUCED VISIBILITY CONDITIONS. Wichita State University, Wichita, Kansas, USA

Image Characteristics and Their Effect on Driving Simulator Validity

Uncertainty in CT Metrology: Visualizations for Exploration and Analysis of Geometric Tolerances

A rapid automatic analyzer and its methodology for effective bentonite content based on image recognition technology

Huang Ke 1,2 *, Weng Ji 1 1 Faculty of Architecture and Urban Planning, Chongqing University, Chongqing,

Design of intelligent vehicle control system based on machine visual

Effects of Measuring Instrument and Measuring Points on Circular Coordinate Measurement Precision

The Effect of Display Type and Video Game Type on Visual Fatigue and Mental Workload

Limitations of the Oriented Difference of Gaussian Filter in Special Cases of Brightness Perception Illusions

Self-optimization Technologies for Small Cells: Challenges and Opportunities. Zhang Qixun Yang Tuo Feng Zhiyong Wei Zhiqing

Automated Driving Car Using Image Processing

Evaluation of Guidance Systems in Public Infrastructures Using Eye Tracking in an Immersive Virtual Environment

Combined Approach for Face Detection, Eye Region Detection and Eye State Analysis- Extended Paper

Subjective evaluation of image color damage based on JPEG compression

Study of Effectiveness of Collision Avoidance Technology

Wheeled Mobile Robot Kuzma I

F=MA. W=F d = -F FACILITATOR - APPENDICES

Application of Wavelet Transform to Process Electromagnetic Pulses from Explosion of Flexible Linear Shaped Charge

Preliminary evaluation of a virtual reality-based driving assessment test

STUDY OF VARIOUS TECHNIQUES FOR DRIVER BEHAVIOR MONITORING AND RECOGNITION SYSTEM

Virtual Digital Control Experimental System

ANALYSIS OF ELECTRON CURRENT INSTABILITY IN E-BEAM WRITER. Jan BOK, Miroslav HORÁČEK, Stanislav KRÁL, Vladimír KOLAŘÍK, František MATĚJKA

TYPICALLY, a two-stage microinverter includes (a) the

Use of Probe Vehicles to Increase Traffic Estimation Accuracy in Brisbane

Early Take-Over Preparation in Stereoscopic 3D

License Plate Localisation based on Morphological Operations

Comparison of Three Eye Tracking Devices in Psychology of Programming Research

Knowledge-based Reconfiguration of Driving Styles for Intelligent Transport Systems

Exploring QAM using LabView Simulation *

Analysis on Privacy and Reliability of Ad Hoc Network-Based in Protecting Agricultural Data

A Spiral Development Model for an Advanced Traffic Management System (ATMS) Architecture Based on Prototype

Image Processing Based Vehicle Detection And Tracking System

International Journal Of Recent Scientific Research

Number Plate Detection with a Multi-Convolutional Neural Network Approach with Optical Character Recognition for Mobile Devices

Research on Optical Fiber Flow Test Method With Non-Intrusion

Design of Automatic Control System for NDT Device

Development and Validation of Virtual Driving Simulator for the Spinal Injury Patient

Characteristics of Routes in a Road Traffic Assignment

Intelligent Traffic Signal Control System Using Embedded System

ELECTROMAGNETIC FIELD APPLICATION TO UNDERGROUND POWER CABLE DETECTION

Application of 3D Terrain Representation System for Highway Landscape Design

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

ESTIMATING ROAD TRAFFIC PARAMETERS FROM MOBILE COMMUNICATIONS

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

The Application of EDA Technology in the Teaching of Communication Circuits

Introduction to NeuroScript MovAlyzeR Handwriting Movement Software (Draft 14 August 2015)

Traffic Controller Timing Processes

Laboratory 1: Motion in One Dimension

Key-Words: - Neural Networks, Cerebellum, Cerebellar Model Articulation Controller (CMAC), Auto-pilot

Traffic Control for a Swarm of Robots: Avoiding Group Conflicts

Development of Gaze Detection Technology toward Driver's State Estimation

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

An Experimental Analysis on the Characteristics of Muller-Lyer Illusion About Young People

Experimental study of single cubic boron nitride grains in the ultrasoundassisted high-speed grinding

The Color Application of the Representative Pop Art in Modern Design Illustrated by the Case of MAOS Design i

The Study of Driving Simulator Validation for Physiological Signal Measures

Graphing Techniques. Figure 1. c 2011 Advanced Instructional Systems, Inc. and the University of North Carolina 1

This manual describes the Motion Sensor hardware and the locally written software that interfaces to it.

Roadside Range Sensors for Intersection Decision Support

DAARIA: Driver Assistance by Augmented Reality for Intelligent Automotive

DEVELOPMENT OF A MICROSCOPIC TRAFFIC SIMULATION MODEL FOR INTERACTIVE TRAFFIC ENVIRONMENT

04. REFRACTION OF LIGHT AT CURVED SURFACES

Lecture 26: Eye Tracking

Research Article Study on Noise Prediction Model and Control Schemes for Substation

Appendix III Graphs in the Introductory Physics Laboratory

AN ARCHITECTURE-BASED MODEL FOR UNDERGROUND SPACE EVACUATION SIMULATION

PCB Board Design of Switching Power Supply with High Power Factor in. Communication Equipment

Transcription:

Special Issue Article Research on visual physiological characteristics via virtual driving platform Advances in Mechanical Engineering 2018, Vol. 10(1) 1 10 Ó The Author(s) 2018 DOI: 10.1177/1687814017717664 journals.sagepub.com/home/ade Jieyu Fan 1, Shengdi Chen 2, Mingzhang Liang 3 and Fengyuan Wang 4 Abstract The transportation system is synthesized by people, vehicles, roads, and environment, and people factor is initiative and plays a key role in the intermediate link between complex environment and vehicles. Virtual driving test is designed to research driver s dynamic visual characteristics under different road conditions. This article applies facelab 5.0 eye tracker, Blue Tiger virtual driving device, and others to record eye movement changes of a driver in different road conditions, collect driver s eye movement data, and analyze eye movement variation. Also, by comparing, checking, and disciplinary analyzing the measured data in different driving phases, this article conducts an analysis of eye movement changes of a driver while driving. In virtual driving test, drivers have low blinking frequency and long blinking duration in started section. When the section is complicated, drivers have increasing blinking frequency but shorter blinking duration and disperse visual fixation points. In decelerating section, drivers slow down and stop the vehicle. The research results provide the basis for safe driving, when date is more than a variable value, which can determine the driver unsafe driving. The research also has an important and practical role in the research of the driver s behavior process in multi-source information environment. Keywords Driver, virtual driving, driving behavior, eye movement changes Date received: 31 August 2016; accepted: 29 May 2017 Handling Editor: Yongjun Shen Introduction With the development of our national transportation infrastructure, traffic environment has become increasingly complicated with a rising trend of traffic accidents. From 1996, the traffic accident has become a worldwide public hazard. 1 According to statistics, traffic accidents caused by the driver s negligence accounts for 78.55% of all traffic accidents. According to a traffic accident analysis 2 in seven countries by International Association for Driver Behavior (IDBRA), the impact of the driver factor on traffic accidents is the most important. Being stimulated by the outside, a driver experiences psychological stress, distraction, and suffers a reduced judgment and visual acuity with a narrow vision field, slow movements, behavior disorders, and other physiological changes. 3 Therefore, it is of great importance to analyze relationship between driving and eye movement changes as a way to research safe driving. 1 The Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, China 2 Shanghai Maritime University, Shanghai, China 3 Southeast University, Nanjing, China 4 Qingdao University of Technology, Qingdao, China Corresponding author: Shengdi Chen, Shanghai Maritime University, Shanghai 201306, China. Email: sdchen@shmtu.edu.cn Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/ open-access-at-sage).

2 Advances in Mechanical Engineering Virtual driving system is featured by real time, safety, accuracy, and other characteristics. When simulating a traffic environment in a virtual driving system, 4 people can avoid actual traffic and accident loss, such as real property loss and casualties. This article analyzes driving safety via the Virtual Driving Test. Two groups of candidates, including experienced and inexperienced drivers, are chosen for virtual driving test. Experienced drivers need to have more than 5 years of driving experience and can be skilled in a variety of road driving; inexperienced drivers are novice drivers. By collecting and analyzing eye movement change data, the Virtual Driving System reports the relationship between eye movement change and traffic environment. Research results provide a basis for traffic accident analysis. Despite significant efforts to improve driving safety, many studies have been done. Dynamic vision is a complex eye movement activity. Currently, researches on driver dynamic vision focus on visual search scope, visual attentional 5 region scope, and visual fixation order, but are short of researches on specific eye movement parameters. Until now, there are few comprehensive researches on the relationship of virtual driving scene, the driver s blink frequency, blink duration, and visual fixation. 6 This article combine virtual driving scene with the driver s eye movement test to study the driver s driving the process blink frequency, blink duration, visual fixation. This article conducts an analysis of eye movement changes of a driver while driving, and the research results provide the basis for safe driving. Research contents and test design Research contents Virtual Driving Test is mainly designed to research the direct relationship of the change of the driver s visual characteristics and the change of the road environment. The experimentation includes the following contents: 1. In virtual driving test, it need to conduct base driving (driving without any obstructions) test for drivers to measure the free eye movement without any interference. 2. Experienced (more than 5 years driving experience) and inexperienced (novice driving) drivers are selected for testing. In a virtual operational laboratory conditions, use the eye tracker facelab 5.0 to accurately locate the driver s pupil, eyes, and face, and obtain eye movement test data. 3. Virtualize driving behaviors under different road conditions, including at corners, junctions, and traffic lights. Different drivers are repeatedly tested on the same route to analyze the driver s eye movement changes and reasons. 4. Select different drivers to analyze personality and states of different drivers so as to determine the driver s driving behavior more accurately. The use of different data to judge a driver s adaptive state provides a basis for driving behavior analysis. 5. Integrate multiple visual information data for analysis. Changes in driving behavior may not be caused by a single factor. Only the objective analysis is able to make an accurate decision. For example, by combining the visual system, we can determine whether the driver s blinking frequency change is caused by driver fatigue or the road condition. Test design Select the driver and the virtual driving route, through the virtual driving; collect driver s eye movement data through the virtual driving; mark the driving behavior; and analyze eye movement data. The specific process is shown in Figure 1. Two groups of testing drivers are selected, and each group contains 50 people. One group contains experienced drivers (more than 5 years of driving experience), and another contains inexperienced drivers (novice driving). Two groups of testing drivers are familiar with virtual driving. Every testing driver is not familiar with the driving route; they are tested on the same route under fixed conditions. 7 In this way, test results can greatly avoid route changes and environmental differences caused by the external interference. The selected virtual driving route is shown in Figure 2. The route selection strategy. The selected route is a circular route with the same start point and end point, and many turnings. The selected route can examine drive coordination of drivers. For inexperienced drivers, they are easy to have collisions caused by operational errors. There are no interference branches in the route. If a driver wants to successfully reach the end, he has to make the right traveling decision at the intersection. The correct traveling direction on the route has been indicated by the black arrow. The facelab 5.0 eye tracker is fixed on the Blue Tiger virtual drive machine. For every driver, the eye tracker can accurately track changes in pupil angle, blinking frequency, blinking duration, and visual fixation duration and collect the accurate experimental data. The virtual driving operation follows the above location process. When a driver changes gear to start, the driver activates the data recording mode. The virtual driving operation is shown in Figure 3.

Fan et al. 3 Figure 1. Virtual driving test design. Figure 2. Virtual driving road map. Eye movement analysis in virtual driving The output of Blue Tiger virtual driving machine is in accordance with the basic features of human vision. Virtual reality technology makes the scene presented on the computer screen in front of the driver. By fixing facelab 5.0 eye tracker, calibrating the eye tracker, tracking the location of the driver s face, pupil, and

4 Advances in Mechanical Engineering ensure certain traffic condition; the changes in eye movement data will not occur at the same time. 9 Data samples are then analyzed. Each driving behavior will go through correlation analysis by taking 300 pieces of data. This article then analyzes driving behavior related eye movement change data, plots curve graph, and analyzes the trend of eye movement. 10 Blinking frequency, blinking duration, and visual fixation can reflect drivers driving and physiological state. Furthermore, this article compares the curve graph of eye movement with different road conditions in order to get the impact of road conditions on the changes of driver s eye movement. Figure 3. Virtual driving device operation. eyes, and selecting the lane, the driver data can be collected when driving on the virtual route. It is shown in Figure 4. For the selected route, experienced drivers take, on average, 101 s to complete the whole virtual driving, but inexperienced drivers spend 106 s to complete the whole virtual driving on average, 5 s more than experienced drivers; inexperienced drivers are slower than experienced drivers. Based on the virtual driving duration, the base driving (driving without any obstructions) duration is limited to around 100 s. Different drivers take virtual driving on the same lane, and initial eye movement data can be obtained. The collected data are labeled after experiment. SPSS software is applied to analyze the imported eye movement data 8 and to verify the correlation, in order to Blinking frequency analysis Under complex road conditions, eyes need to accept more external signals to determine road conditions. Suppose in the virtual driving test, the blinking frequency increases as the traffic becomes complex and is higher than that when driving in the base. During the test, each blinking generates a pulse signal. The test can obtain images of blinking pulse variation in different driving phases of the experiment, as shown in Figure 5. According to Figure 5, it can be concluded that when traveling in the base, blink pulses are the minimum, and so does the eye beat frequency; in started section, blinking pulses blinking increases and eyes beat frequency arises; in complex section, blinking pulses become dense and sometimes there will be a continuous blinking; in decelerating section, blinking pulses reduce and eye beat frequency decreases. Figure 4. Eye movement data collection of virtual driving.

Fan et al. 5 Figure 5. Driver s eye beat frequency in different sections: (a) driver s eye beat frequency of driving in base, (b) driver s eye beat frequency of starting in field driving, (c) driver s eye beat frequency of field driving in complex section, and (d) driver s eye beat frequency of deceleration and stop in field driving. Figure 6. Driver s blink frequency curve of driving in base. According to the measured eye movement data, data curve graph can be plotted. Based on the pattern variation analysis, the rule of blinking frequency in base driving and virtual driving can be studied. In base driving section, the data curve about blinking frequency versus time is shown in Figure 6. From Figure 6, it can be concluded that in base driving section, the experienced drivers have smaller blinking frequency than inexperienced drivers, and blinking frequency does not range greatly, from 0.1 to 0.2 Hz. In virtual driving, curve graph about blinking frequency versus time is shown in Figure 7. From Figure 7, it can be concluded that blinking frequency in the virtual driving environment is higher than that in base driving environment. In virtual driving environment, experienced drivers have lower blinking frequency than inexperienced drivers. The virtual driving environment includes started section, complex section, and decelerating section. At the started section, blinking frequency is low. In initial complex section, the driver s blinking frequency increases. In complex section, drivers need to receive more traffic information, and blinking frequency becomes consistently high. At the stage of parking, drivers stop their cars stables and do not experience any interference of other complex roads; so the blinking frequency decreases. Blinking duration analysis In base driving section, curve graph about blinking duration versus time is shown in Figure 8. From Figure 8, it can be concluded that in base driving section, experienced drivers have very small blink duration variation and have a higher duration, inexperienced drivers have large blinking duration variation, range from 0.1 to 0.2 s (the normal range is 0.1 0.2 s). In started section, curve plot about driver s blink duration is shown in Figure 9.

6 Advances in Mechanical Engineering Figure 7. Driver s blink frequency curve of virtual driving. Figure 8. Driver s blink duration curve of driving in base. Figure 9. Driver s blink duration curve of virtual driving. From Figure 9, it can be concluded that the blinking duration of testing drivers is located within the normal range (0.1 0.2 s). In the testing process, blinking frequency in virtual driving is smaller than that in base driving. In the entire virtual driving environment, experienced drivers have longer blinking duration than inexperienced drivers. In started section, blink duration is relatively long. In complex section, blinking duration is reduced. In decelerating section, drivers stop near a road with safety, but blinking duration increases continuously. Data collected are put into SPSS software to do variables import analysis. For the analysis, the standard deviation of the sample data is obtained, and the standard deviation reflects the degree of deviation of the data and the data mean in the group and the degree of discretization (Table 1).

Fan et al. 7 Table 1. Correlation analysis of virtual driving eye movement data sample. Parameter Average Number of samples Standard deviation Mean standard error Experienced driver s blink frequency curve of driving in base 0.14330 300 0.3510000 0.0202600 Inexperienced driver s blink frequency curve of driving in base 0.176727 300 0.47982 0.057700 Experienced driver s blink frequency curve of virtual driving 0.31000 300 0.2183100 0.0126000 Inexperienced driver s blink frequency curve of virtual driving 0.386667 300 0.4618802 0.0266667 Experienced driver s blink duration curve of driving in base 0.121655 300 0.0027392 0.0001581 Inexperienced driver s blink duration curve of driving in base 0.116782 300 0.0114999 0.0006639 Experienced driver s blink duration curve of virtual driving 0.131227 300 0.0035989 0.0002078 Inexperienced driver s blink duration curve of virtual driving 0.119192 300 0.0162610 0.0073151 Figure 10. The schematic of driver s head model and computer graphic model of virtual driving. Figure 11. Driver s visual fixations in started section. The mean standard error is used to measure the sampling error. The mean standard error is smaller, indicating that the smaller the accidental error caused by the sample heterogeneity, the greater the reliability of the extracted sample. Visual fixation analysis At the stage of driving, intersection of two formed angle vision is called visual fixations. Virtual driving computer screen (48-cm wide, 28-cm high) is used as visual distribution plane, with the diagonal center as a reference point, as shown in Figure 10. In the process of data collection, the eye fixation point of head model falls on the front of the computer graphic model, and a yellow dot is in the projected position, or the position of visual fixations is located on the computer screen. In the virtual driving environment, 11 the position and the distribution of a driver s fixation points are obtained and the driver s visual rule according to discrete variation degree of the driver s fixation point is analyzed. 12 Next, selected the average time of 1 min in the started section, the complex section, and the decelerating section to note video views in the unit of centimeters in diameter. The distribution of driver visual fixations points in virtual driving is shown in Figures 11 13. The position of a circle is the location of the driver s visual fixation on the computer screen. Larger diameter

8 Advances in Mechanical Engineering Figure 12. Driver s visual fixations in complex section. Figure 13. Driver s visual fixations in decelerating section. indicates the higher visual fixation frequency. It should be noted that the number visual fixation represents the number of driver s visual point of interest. 13 More fixation points represent that driving information in the area is more important. From Figure 11, it can be concluded that in started section, the driver s visual fixations are the most concentrated. From Figure 12, in complex section, visual fixations become disperse. From Figure 13, in decelerating section, visual fixations are relatively concentrated. In the virtual driving environment, a comparative analysis on visual fixation points between experienced drivers and inexperienced drivers in complex section are conducted, as shown in Figures 14 and 15. From Figures 14 and 15, it can be concluded that inexperienced drivers have longer visual fixation duration and more visual fixation times in vertical direction, but shorter visual fixation duration and fewer visual fixation times in horizontal direction. Furthermore, inexperienced drivers do not have many point of interest in the surrounding road or large search scope. On the contrary, experienced drivers have shorter visual fixation duration and fewer visual fixation times in vertical direction, but longer visual fixation duration and more visual fixation times in horizontal direction. Therefore, for experienced drivers, their visual points of interest are mainly concentrated in the horizontal direction, with more points of interest in the surrounding road and large search scope. Conclusion Using facelab 5.0 eye tracker, Blue Tiger virtual driving device, and other equipment, this article record the drivers eye movement variation under different traffic states in virtual driving test. From the analysis on eye movement variation in virtual driving test changes, conclusions are as the following: 1. When driving on the same road under the same traffic environment, experienced drivers have smaller blink frequency and longer blinking duration than inexperienced drivers do. 2. Test analysis indicates that blinking frequency is related with blinking duration. The higher the blinking frequency, the shorter the blinking duration. The shorter the blinking frequency, the longer the blinking duration. 3. In virtual driving test, visual fixation points of experienced drivers are mainly distributed in horizontal direction, and visual fixation points

Fan et al. 9 Figure 14. Inexperienced driver s visual fixations in complex section. Figure 15. Experienced driver s visual fixations in complex section. of inexperienced drivers are mainly distributed in vertical direction. 4. In started section of virtual driving test, road conditions are simple, and drivers have low blinking frequency, long blinking duration, and centralized visual fixation points. When entering the selected route, drivers have wider search scope, shorter fixation duration, higher blinking frequency, shorter blinking duration, and disperse visual fixation points. In safe decelerating section, drivers slow down and stop the vehicle and experience shorter blinking frequency, longer blinking duration, and somewhat centralized visual fixation points. Eye tracking system used in the vehicle can effectively track the eye movement of the driver changes. It can be used in driving safety and reliability by eye movement analysis of the driver s driving state and physiological changes in the driver during driving. In future, there is a need to study the differences of eye movement between different groups and analyze drivers microscopic differences with data. Declaration of conflicting interests The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. Funding The author(s) received no financial support for the research, authorship, and/or publication of this article. References 1. Zhongli Z. The causes and prevention of the driver s traffic offense behavior. J Jinan Commun Coll 1996; 9: 149 153. 2. Fuquan P, Qiaojun X and Jian L. Research of highway plane intersection driving behavior. Road Traffic Saf 2007; 10: 16 19. 3. Yingshi G, Rui F, Wei Y, et al. Influences of channel width on the driver s dynamic visual and operational behavior. China J Highw Transp 2006; 19: 83 87. 4. Geoffrey U, Peter C, Neil B, et al. Visual attention while driving: sequence soft eye fixations made by experienced and novice drivers. Ergon 2003; 46: 629 646. 5. Hiroyuki S, Mary MH and Anurag S. What controls attention in natural environments. Vis Res 2001; 41: 3535 3545. 6. Lyu NC, Fu Q and Wu CZ. Analysis traffic safety for highway off-ramp based on visual reaction time on traffic signs. In: Proceedings of the 3rd international conference on transportation information and safety, Wuhan, China, 25 28 June 2015; pp.235 239. New York: IEEE. 7. Lyu NC, Xie L, Wu CZ, et al. Driver s cognitive workload and driving performance under traffic sign information exposure in complex environments: a case study of the highways in China. Int J Environ Res Public Health 2017; 14: 203.

10 Advances in Mechanical Engineering 8. Zhenyan L. Multivariate analysis the operation and application of SPSS. Beijing: Peking University Press, 2007. 9. Baojin W. Multivariate statistical analysis software and data analysis. Beijing: Peking University Press, 2007. 10. Sodhi M, Reimer B, Cohen JL, et al. On-road driver eye movement tracking using head mounted devices. In: Proceedings of the eye tracking research and applications symposium, New Orleans, LA, 25 27 March 2002, pp.61 68. New York: ACM Press. 11. Dukic T, Hanson L, Holmqvist K, et al. Effect of button location on driver s visual behaviour and safety perception. Ergon 2005; 48: 399 410. 12. Liechty J, Pieters FGM and Wedel M. The representation of local and global exploration modes in eye movements through Bayesian hidden Markov models. Psychom 2001; 68: 519 542. 13. Luke F, Nicholas A, Lars P, et al. Vision in and out of vehicles. IEEE Comp Soc 2003; 5: 12 17.