Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon

Similar documents
Fully-Etched Grating Coupler with Low Back Reflection

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

Subwavelength grating filtering devices

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

Variable splitting ratio 2 2 MMI couplers using multimode waveguide holograms

Optics Communications

Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement

LASER &PHOTONICS REVIEWS

Wavelength tracking with thermally controlled silicon resonators

GHz-bandwidth optical filters based on highorder silicon ring resonators

Investigation of ultrasmall 1 x N AWG for SOI- Based AWG demodulation integration microsystem

Silicon photonic devices based on binary blazed gratings

Low-loss Si 3 N 4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides

A tunable Si CMOS photonic multiplexer/de-multiplexer

Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm

High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations

Comparison of AWGs and Echelle Gratings for Wavelength Division Multiplexing on Silicon-on-Insulator

Figure 1 Basic waveguide structure

Numerical Analysis and Optimization of a Multi-Mode Interference Polarization Beam Splitter

CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler

Ultracompact Adiabatic Bi-sectional Tapered Coupler for the Si/III-V Heterogeneous Integration

Silicon Photonic Device Based on Bragg Grating Waveguide

A GENERAL RULE FOR DESIGNING MULTIBRANCH HIGH-ORDER MODE CONVERTER. of Applied Sciences, Kaohsiung 807, Taiwan, R.O.C.

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit

A Low-loss Integrated Beam Combiner based on Polarization Multiplexing

Hybrid multimode resonators based on grating-assisted counter-directional couplers

Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography

Title. Author(s)Saitoh, Fumiya; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 18(5): Issue Date Doc URL.

High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform

All-optical logic based on silicon micro-ring resonators

Title. Author(s)Fujisawa, Takeshi; Koshiba, Masanori. CitationOptics Letters, 31(1): Issue Date Doc URL. Rights. Type.

Integrated Photonics based on Planar Holographic Bragg Reflectors

Applications of Cladding Stress Induced Effects for Advanced Polarization Control in Silicon Photonics

Design and characterization of low loss 50 picoseconds delay line on SOI platform

AMACH Zehnder interferometer (MZI) based on the

On-chip interrogation of a silicon-on-insulator microring resonator based ethanol vapor sensor with an arrayed waveguide grating (AWG) spectrometer

Compact hybrid TM-pass polarizer for silicon-on-insulator platform

Reduction in Sidelobe Level in Ultracompact Arrayed Waveguide Grating Demultiplexer Based on Si Wire Waveguide

Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array

Wide bandwidth and high coupling efficiency Si 3 N 4 -on-soi dual-level grating coupler

On-chip silicon mode blocking filter employing subwavelength-grating based contra-directional coupler

Si-EPIC Workshop: Silicon Nanophotonics Fabrication Fibre Grating Couplers

High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers

UC Santa Barbara UC Santa Barbara Previously Published Works

AWG OPTICAL DEMULTIPLEXERS: FROM DESIGN TO CHIP. D. Seyringer

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Compact Trench-Based Silicon-On-Insulator Rib Waveguide Ring Resonator With Large Free Spectral Range

Plane wave excitation by taper array for optical leaky waveguide antenna

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Compact Silicon Waveguide Mode Converter Employing Dielectric Metasurface Structure

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects

Reduction in Sidelobe Level in Ultracompact Arrayed Waveguide Grating Demultiplexer Based on Si Wire Waveguide

Polarization Splitting Rotator (PSR) based on Sub-Wavelength Grating (SWG) waveguides

Controlling normal incident optical waves with an integrated resonator

Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler

Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects

Highly sensitive silicon microring sensor with sharp asymmetrical resonance

Birefringence compensated AWG demultiplexer with angled star couplers

Holographic Bragg Reflectors: Designs and Applications

Opto-VLSI-based reconfigurable photonic RF filter

Si-EPIC Workshop: Silicon Nanophotonics Fabrication Directional Couplers

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Ali A. Hussein Sawsan A. Majid Trevor J. Hall

Two bit optical analog-to-digital converter based on photonic crystals

NANOPHOTONIC devices in the well developed silicon

H.-W. Wu Department of Computer and Communication Kun Shan University No. 949, Dawan Road, Yongkang City, Tainan County 710, Taiwan

Evaluation of RF power degradation in microwave photonic systems employing uniform period fibre Bragg gratings

Hitless tunable WDM transmitter using Si photonic crystal optical modulators

Design of Three-mode Multi/Demultiplexer Based on 2-D Photonic Crystals for Mode-Division Multiplexing Transmission

Narrowing spectral width of green LED by GMR structure to expand color mixing field

On-chip Si-based Bragg cladding waveguide with high index contrast bilayers

All-Fiber Wavelength-Tunable Acoustooptic Switches Based on Intermodal Coupling in Fibers

A WDM passive optical network enabling multicasting with color-free ONUs

Achievement of Arbitrary Bandwidth of a Narrow Bandpass Filter

WAVELENGTH division multiplexing (WDM) is now

UC Santa Barbara UC Santa Barbara Previously Published Works

Directional coupler (2 Students)

OPTICAL COMMUNICATIONS S

High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology

Demonstration of Silicon-on-insulator midinfrared spectrometers operating at 3.8μm

Analysis and Design of Box-like Filters based on 3 2 Microring Resonator Arrays

Opto-VLSI based Broadband Reconfigurable Optical Add-Drop Multiplexer

Numerical Analysis and Optimization of a Multi-Mode Interference Based Polarization Beam Splitter

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 16, AUGUST 15,

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

160MER, Austin, TX-78758, USA ABSTRACT 1. INTRODUCTION

Integrated grating-assisted coarse/dense WDM multiplexers

Demonstration of a curved sidewall grating demultiplexer on silicon

Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures

Research Article Subwavelength Grating Structures in Silicon-on-Insulator Waveguides

Novel High-Q Spectrum Sliced Photonic Microwave Transversal Filter Using Cascaded Fabry-Pérot Filters

A thin foil optical strain gage based on silicon-on-insulator microresonators

Arbitrary Power Splitting Couplers Based on 3x3 Multimode Interference Structures for All-optical Computing

Ti: LiNbO 3 Acousto-Optic Tunable Filter (AOTF)

Compact silicon microring resonators with ultralow propagation loss in the C band

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Experimental realization of an O-band compact polarization splitter and rotator

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers

Transcription:

Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon Wei Shi, Han Yun, Charlie Lin, Mark Greenberg, Xu Wang, Yun Wang, Sahba Talebi Fard, Jonas Flueckiger, Nicolas A F Jaeger, and Lukas Chrostowski Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada weis@eceubcca Abstract: Wavelength-division-multiplexing (WDM) networks with wide channel grids and bandwidths are promising for low-cost, low-power optical interconnects Wide-bandwidth, single-band (ie, no free-spectral range) add-drop filters have been developed on silicon using anti-reflection contradirectional couplers with out-of-phase Bragg gratings Using such filter components, we demonstrate a 4-channel, coarse-wdm demultiplexer with flat passbands of up to 13 nm and an ultra-compact size of 12 1 3 mm 2 213 Optical Society of America OCIS codes: (5277) Gratings; (13312) Integrated optics devices; (23737) Waveguides; (13748) Wavelength filtering devices References and links 1 Y Vlasov, Silicon CMOS-integrated nano-photonics for computer and data communications beyond 1G, IEEE Communications Magazine 5, s67 s72 (212) 2 M Hochberg and T Baehr-Jones, Towards fabless silicon photonics, Nature Photonics 4, 492 494 (21) 3 W Shi, R Vafaei, M Á G Torres, N A F Jaeger, and L Chrostowski, Design and characterization of microring reflectors with a waveguide crossing, Optics Letters 35, 291 293 (21) 4 W A Zortman, D C Trotter, and M R Watts, Silicon photonics manufacturing, Opt Express 18, 23598 2367 (21) 5 D Feng, W Qian, H Liang, C-C Kung, J Fong, B J Luff, and M Asghari, Fabrication insensitive echelle grating in silicon-on-insulator platform, IEEE Photon Technol Lett 23, 284 286 (211) 6 L Chen, L Buhl, and Y Chen, Eight-channel SiO 2 /Si 3 N 4 /Si/Ge CWDM receiver, IEEE Photon Technol Lett 23, 121 123 (211) 7 J Brouckaert, G Roelkens, S K Selvaraja, W Bogaerts, P Dumon, S Verstuyft, D V Thourhout, and R Baets, Silicon-on-insulator CWDM power monitor/receiver with integrated thin-film InGaAs photodetectors, IEEE Photon Technol Lett 21, 1423 1425 (29) 8 P J Bock, P Cheben, J H Schmid, A V Velasco, A Delâge, S Janz, D-X Xu, J Lapointe, T J Hall, and M L Calvo, Demonstration of a curved sidewall grating demultiplexer on silicon, Optics Express 2, 19882 19892 (212) 9 P Yeh and H F Taylor, Contradirectional frequency-selective couplers for guided-wave optics, Appl Opt 19, 2848 2855 (198) 1 W Shi, X Wang, C Lin, H Yun, Y Liu, T Baehr-Jones, M Hochberg, N A F Jaeger, and L Chrostowski, Silicon photonic grating-assisted, contra-directional couplers, Optics Express 21, 3633 365 (212) 11 W Shi, X Wang, W Zhang, H Yun, C Lin, L Chrostowski, and N A F Jaeger, Grating-coupled silicon microring resonators, Appl Phys Lett 1, 121118 (212) 12 D T H Tan, K Ikeda, S Zamek, A Mizrahi, M P Nezhad, A V Krishnamoorthy, J E C K Raj, X Zheng, I Shubin, Y Luo, and Y Fainman, Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects, Optics Express 19, 241 249 (211) (C) 213 OSA 25 March 213 / Vol 21, No 6 / OPTICS EXPRESS 6733

13 W Shi, M Greenberg, X Wang, C Lin, N A F Jaeger, and L Chrostowski, Single-band add-drop filters using anti-reflection, contradirectional couplers, IEEE Group IV Photonics Conference (San Diego, CA, USA 212), paper WA7 14 H Qiu, G Jiang, T Hu, H Shao, P Yu, J Yang, and X Jiang, FSR-free add drop filter based on silicon grating-assisted contradirectional couplers, Optics Letters 38, 1 3 (213) 15 W Shi, X Wang, W Zhang, L Chrostowski, and N A F Jaeger, Contradirectional couplers in silicon-oninsulator rib waveguides, Optics Letters 36, 3999 41 (211) 1 Introduction Broadband optical communications for Internet data centres and high-performance communications have been a significant driving force for silicon photonics [1], which is promising for large-scale electronic-photonic integration [2] For these applications, wavelength-division multiplexing (WDM) networks are promising, if not necessary, to satisfy ever increasing demands for bandwidth [1] One of the main challenges facing WDM systems on silicon lies in the wavelength drift due to the high thermal sensitivity of the effective indices [3] and the fabrication-induced non-uniformity [4] of silicon optical waveguides It is anticipated that frequency trimming/tuning will take a significant portion of the overall power budget of a silicon photonic chip [4] This has been a big issue, since power efficiency (J/bit) is one of the most important criteria for short-reach communications WDM technologies with wide channel grids within a broad band, eg, coarse WDM (CWDM), can tolerate higher temperature fluctuations and fabrication errors and, therefore, may be more promising as compared to finer-grid technologies, eg, dense WDM (DWDM), for above mentioned applications in the near future High-performance CWDM demultiplexers have been demonstrated on silicon using echelle and arrayed waveguide gratings [5, 6], nevertheless, these devices are relatively bulky (on a scale of 1 mm 2 ) Compact demultiplexers, smaller than 1 mm 2, were recently demonstrated for CWDM networks on the sub-micron silicon platform, eg, using planar concave gratings [7] or curved sidewall gratings [8] However, these devices do not have flat-top responses and, therefore, still have challenges to achieve reliable operation without thermal control Here, we demonstrate a CWDM demultiplexer using anti-reflection (AR) contra-directional couplers (contra-dcs) Contra-DCs are add-drop filters with Bragg-grating defined wavelengthselective functions [9,1] Compared to add-drop filters using microring resonators, contra-dcs do not have the issue of multiple longitudinal modes [11] and can provide wider channel bandwidths [1] For example, a 4-channel demultiplexer using cascaded contra-dcs was recently demonstrated with a 3-nm channel bandwidth and a 6-nm channel spacing [12] However, these contra-dcs suffer from back reflections which limit their usable spectral ranges (2 4 nm) and make them unsuitable for CWDM networks which require a broad spectrum of > 1 nm and a wide channel spacing of 2 nm To overcome this issue, we proposed and demonstrated an anti-reflection (AR) design using out-of-phase gratings, which enabled a single-band (no FSR), wide-bandwidth add-drop filter [13] In this paper, we firstly describe the principle of AR contra-dcs in comparison with a conventional contra-dc Then, we extent the concept to a dual-coupler structure and demonstrate an ultra-compact, 4-channel demultiplexer with wide passbands (> 1 nm) and flat-top responses for CWDM networks As shown in Fig 1, a conventional contra-dc consists of two optical waveguides with dielectric perturbations, ie, Bragg gratings, formed in the coupling region The two waveguides have different widths and, thus, different propagation constants This asymmetric coupler design results in very weak co-directional coupling due to the phase mismatch The grating pitch, Λ, is chosen so that efficient contra-directional coupling occurs between the first two transverse modes (supermodes), E 1 and E 2, of the coupler at the drop-port central wavelength, λ D, which satisfies the phase-match condition [9], ie, λ D = 2n av Λ, where n av =(n 1 + n 2 )/2 and n 1 and n 2 are the effective indices of the two modes Coupling between the forward and backward (C) 213 OSA 25 March 213 / Vol 21, No 6 / OPTICS EXPRESS 6734

propagating waves of each mode (ie, back reflection) also exists centred at the Bragg wavelength, ie, λ r1,2 = 2n 1,2 Λ The spacing between λ D and λ r2 (or λ r1 ) limits the usable spectral range and may distort the filter response [1] Figure 1 shows the mode distributions and effective indices of a contra-dc simulated using a mode solver with the designed parameters given below in next section Each supermode has its energy localized to one waveguide due to the high coupler assymetry [1], as opposed to a symmetric directional coupler where the energy is present in both waveguides Using the phase-match conditions, we can find the central wavelengths, as labeled in Fig 1 The back reflection can be reduced by putting the dielectric perturbation away from the input waveguide (eg, by forming the grating only on the drop waveguide and using a large coupler gap [14]) However, this is unsuitable for wide-bandwidth filters (that require large perturbations and narrow coupler gaps for strong coupling) and would still have strong reflection for add or multiplexing operation (ie, combining optical signals through the add port) Through ΔW In W In Add Λ ΔWD W D Effective index 255 25 245 24 λ/(2λ) TE1 TE2 W In W D h n av n 1 Input λr2 λd Drop 235 λ r2 λ D λ r1 23 15 152 154 156 158 16 Wavelength, nm n 2 Fig 1 Schematic of a conventional contra-dc; Calculated effective indices of the first two TE-like modes in the device illustrated in The insets are the calculated intensity distributions of the electric fields for the two modes 2 Anti-reflection, contra-directional couplers In order to extend the usable spectral range for CWDM networks, we proposed using out-ofphase gratings to suppress the back reflections [13] Using sidewall gratings as an example, the schematic of an AR contra-dc is shown in Fig 2 Compared to the structure shown in Fig 1, the AR contra-dc has extra gratings (AR gratings) formed on the external sides of the waveguides The AR gratings are designed to have a Λ/2 mismatch with respect to the gratings in the coupler region As a result of destructive interference, the back reflections of each mode can be significantly suppressed Since inter-waveguide coupling relies on the perturbations between the waveguides, efficient contra-directional coupling can be maintained even in the presence of AR gratings In contrast to AR coatings where 1/4-lambda-thick materials are used for destructive interference, here, the AR effect is implemented by creating a grating structure such that its effective index is constant in the propagation direction From the perspective of coupled-mode theory, the coupling efficiency depends on the overlap of E 1 and E 2 with the dielectric perturbation [9, 1] Therefore, to achieve complete destructive interference, each mode should see the same magnitudes of the perturbations due to the AR gratings and coupler gratings Because each mode is not symmetric with respect to the centre of each waveguide, the grating widths and coupler gaps should be carefully designed to balance the magnitudes of the perturbations Also, it is worth pointing out that this concept of AR gratings can be easily transferred into contra-dcs based on cladding- or slab-modulated rib waveguide structures [15] (C) 213 OSA 25 March 213 / Vol 21, No 6 / OPTICS EXPRESS 6735

Through Add ΔW In Λ W In W D ΔW D 32 nm Input Drop 1 nm 5 nm λd Fig 2 Schematic of an AR contra-dc; SEM image of a fabricated AR contra-dc The designed contra-dcs were fabricated using e-beam lithography and plasma etch to verify the concept of AR gratings, as previously reported in [13] The devices are in 22-nm-high silicon-on-insulator waveguides without top cladding The widths of the input and drop waveguides, W In and W D, are 45 and 5 nm, respectively The gratings are formed by corrugating the side-walls of strip waveguides, with a 32-nm pitch, a 5% duty cycle, and 8 periods The corrugation widths on W In and W D are 2 and 3 nm, respectively The average gap between the waveguides is 75 nm An SEM image of a fabricated AR contra-dc is shown in Fig 2 We measured the through-port spectra of the contra-dcs As seen in Fig 3, there are two notches (stop bands) in the spectrum of the device without the AR gratings The first notch at 1528 nm (λ r2 ) is due to the back reflections of E 2 The second notch at 155 nm (λ D ) corresponds to the contra-directional coupling between E 1 and E 2 Thus, the spectral range between λ D and λ r2 in this case is about 2-nm wide, in good agreement with the calculation shown in Fig 1 In contrast, in the spectrum of the AR contra-dc shown in Fig 3, only one stop band at λ D can be identified within a broad spectrum across 18 nm, ie, the entire span of the tunable laser used for the measurement This single stop band shows a wide bandwidth of 65 nm and a high extinction ratio of 2 db, indicating that the back reflections have been significantly suppressed, while a strong contra-directional coupling remains Normalized Transmission (db) 2 Normalized Transmission (db) 2 65 nm λ r2 λ D 25 146 149 152 155 158 161 164 λ D 25 146 149 152 155 158 161 164 Fig 3 Measured through-port optical spectra: conventional contra-dc without the AR gratings; AR contra-dc The insets are the SEM images of the devices (C) 213 OSA 25 March 213 / Vol 21, No 6 / OPTICS EXPRESS 6736

3 CWDM demultiplexer Using the AR contra-dcs, we developed a 4-channel CWDM demultiplexer, for which a schematic is shown in Fig 4 In order to obtain a more compact device, the contra-dcs are designed in pairs using a dual-coupler structure (ie, a three-waveguide structure [9, 12]) Each coupler pair has two drop waveguides with different waveguide widths (W 1 = 47 nm and W 2 = 56 nm), but, the same grating pitch The input waveguide has a width, W In, of 42 nm It is important to note that the gratings on opposite sides of each waveguide are out of phase to suppress the back reflections The amplitudes of the side-wall corrugations on W In, W 1, and W 2 are designed to be 3, 4, and 5 nm, respectively The average coupler gaps between W 1 and W In and between W 2 and W In are 115 and 12 nm, respectively The demultiplexing function is related to the first three TE-like modes (supermodes) of the dual-coupler structure, ie, E 1, E 2, and E 3, which are mainly confined within W 2, W 1, and W In, respectively The calculated electric-field intensity distributions are shown in Fig 5 Each coupler pair drops two wavelengths; one corresponds to the coupling between E 3 and E 2 and the other corresponds to the coupling between E 3 and E 1 The parameters mentioned above ensure that the magnitudes of the perturbations, due to the gratings on both sides of the input waveguides, seen by the input mode (E 3 ) would be the same The 4-channel demultiplexer was implemented by cascading two pairs of such dual-coupler filters The grating pitches of the first pair (Drop 1 and 2) and second pair (Drop 3 and 4) are designed to be Λ 1 (325 nm) and Λ 2 (34 nm), respectively The dropped wavelengths predicted using the phase-match conditions, as shown in Fig 5 (where n av1 =(n 3 + n 2 )/2 and n av2 = (n 3 + n 1 )/2 have been used), range from 153 nm to 159 nm with spacings of 2 nm between adjacent channels One thousand grating periods have been used for each of the contra-dcs The total length of the coupling regions, including both the coupler pairs, is 665 µm The total area of the four contra-dcs, not including the routing waveguides, is less than 12 1 3 mm 2 Drop2 W2 Drop4 W2 out of phase Input 1 2 Through WIn out of phase Drop1 W1 Drop3 W1 Fig 4 Schematic of a demultiplexer using AR contra-dcs The designed demultiplexer was fabricated using the same e-beam lithography and plasma etch process An SEM image of the device is shown in Fig 6 The measured spectra of the demultiplexer are plotted in Fig 6 The channel bandwidths are in a range of 11 to 13 nm Taking the typical wavelength dependence of 9 nm/k on temperature [3], we expect that these wide passbands will allow a temperature swing of±6 K Insertion loss is less than 1 db for each channel Channel crosstalk is better than 12 db and is limited by the strong sidelobes and the residual co-directional couplings, which can be improved upon by using apodization techniques and adiabatic tapers between the individual waveguides and the coupler regions [1] The zoomed spectrum of the second channel is shown in Fig 6(c), in comparison with simulation using the coupled-mode analysis [1], indicating a flat-top response The ripples within the passband are likely due to the relatively large shot-pitch grid (6 nm) used in the e-beam lithography and can be suppressed by using a finer grid (eg, 2 nm) and apodization (C) 213 OSA 25 March 213 / Vol 21, No 6 / OPTICS EXPRESS 6737

25 245 n av2 λ/(2λ 1 ) Effective index 24 235 n av1 λ/(2λ 2 ) 23 225 λ 1 λ λ λ 2 3 4 153 155 157 159 Fig 5 Calculated electric-fields of the first three TE-like modes of an AR contra-dc with a dual-coupler structure: intensity distributions at 156 nm; average effective indices and predicted central wavelengths of the demultiplexer W 2 W 1 W in Drop port response (db) 2 1 µm 25 Simulation Measurement 3 152 154 156 158 16 162 2 154 1545 155 1555 156 1565 157 1575 (c) Measurement (db) Fig 6 SEM image of a pair of AR contra-dcs; drop-port responses of a 4-channel CWDM demultiplexer; (c) measured and curve-fit spectra of the second channel 4 Conclusion We have demonstrated silicon AR contra-dcs using out-of-phase gratings to significantly extend their usable spectral ranges A wide-bandwidth add-drop filter, with single-band operation (ie, without an FSR) has been obtained in a wide spectral span of 18 nm Using such AR contra-dcs, we have achieved a 4-channel CWDM demultiplexer with flat-top passbands, channel bandwidths of up to 13 nm, and an effective area as small as 12 1 3 mm 2 We expect that it can also perform as a multiplexer by using the add ports as inputs These widebandwidth WDM filters are highly tolerant to temperature fluctuations and have great potential for low-cost, power-efficient WDM networks using CMOS-compatible photonic technology Acknowledgement We acknowledge Lumerical Solutions, Inc for the design software (MODE Solutions) and the Natural Sciences and Engineering Research Council of Canada for their financial support Fabrication was conducted at the University of Washington Microfabrication/Nanotechnology User Facility, a member of the NSF National Nanotechnology Infrastructure Network (C) 213 OSA 25 March 213 / Vol 21, No 6 / OPTICS EXPRESS 6738