STK5F1U3E2D-E. Advance Information

Similar documents
STK541UC60C-E/D. Intelligent Power Module (IPM) 600 V, 10 A

STK581U3C2D-E/D. Intelligent Power Module (IPM) 600 V, 30 A

STK5F4U3E2D-E/D. Intelligent Power Module (IPM) 600 V, 50 A

STK551U3A2A-E/D. Intelligent Power Module (IPM) 600 V, 20 A

Withstand Voltage Vis 50Hz sine wave AC 1 minute * VRMS

This Inverter Power H-IC includes the output stage of a 3-phase inverter, pre-drive circuits, as well as protection circuits in one package.

Tc IPM case temperature 40 to +100 C

STK554U362C-E. Certification UL1557 (File number: E339285). Specifications. Thick-Film Hybrid IC Inverter Power H-IC for 3-phase Motor Drive

STK544UC62K-E/D. Intelligent Power Module (IPM) 600 V, 10 A

STK554U362A-E/D. Intelligent Power Module (IPM) 600 V, 10 A

STK57FU391A-E. Advance Information

Value Parameter Symbol Conditions

NGTB30N60L2WG. N-Channel IGBT With Low VF Switching Diode 600V, 30A, VCE(sat);1.4V

NGTB20N60L2TF1G. N-Channel IGBT 600V, 20A, VCE(sat);1.45V TO-3PF-3L with Low VF Switching Diode

Excellent Power Device Dual inverter driver for general purpose, Dual SOIC8

LV8400V. Forward/Reverse Motor Driver. Bi-CMOS IC

STK5Q4U352J-E/D. Advance Information 8A/600V Integrated Power Module in Compact DIP package

STK A-E. Applications Air conditioner three-phase compressor motor driver.

LA6581DM. Fan Motor Driver BLT Driver Single-Phase Full-Wave

Overview The STK A-E is a hybrid IC designed to be used in Brush-less DC Motor.

Excellent Power Device Dual buffer driver for general purpose, Dual SOIC8

TIG067SS. N-Channel IGBT 400V, 150A, VCE(sat);3.8V Single SOIC8. Features. Specifications. TIG 067 LOT No.

LV8402V. 2ch Forward/Reverse Motor Driver. Bi-CMOS IC

Built-in low voltage reset and thermal shutdown circuit Output ON resistance (Upper and lower total 0.27Ω; Ts=25 C, IO=1.0A)

The STK SL-E is a hybrid IC for use as a unipolar, 2-phase stepping motor driver with PWM current control.

LB1668 LB1668M. Monolithic Digital IC 2-Phase Unipolar Brushless Motor Drivers. Ordering number : EN4944C.

The STK is a hybrid IC for use in current control forward/reverse DC motor driver with brush.

Overview The LA5735MC is a separately-excited step-down switching regulator (variable type).

LA5774. Overview The LA5774 is a Separately-excited step-down switching regulator (variable type).

Overview The LA5744MP is a separately-excited step-down switching regulator (variable type).

Built-in low voltage reset and thermal shutdown circuit Compact TSSOP-24 package

High Speed Switching ESD Diode-Protected Gate C/W

SBT700-06RH. Schottky Barrier Diode 60V, 70A, VF; 0.66V Dual To-3PF-3L Cathode Common

Value Parameter Symbol Conditions

STK E. Overview. Applications. Features. Thick-Film Hybrid IC 3-Phase Stepping Motor Driver

NGTB03N60R2DT4G IGBT 600V, 4.5A, N-Channel

LV56351JA. Overview. Functions. Specifications Maximum Ratings at Ta = 25 C. Bi-CMOS IC 1ch DC/DC boost converter

LB11851FA. Monolithic Digital IC Microprocessor Fan Motor Interface Driver. Ordering number: ENA

LB1945D. PWM Current Control Stepping Motor Driver

Planar Ultrafast Rectifier Fast trr type, 20A, 600V, 50ns, TO-220F-2FS

LV8163QA. Specifications Absolute Maximum Ratings at Ta = 25 C. Bi-CMOS IC Fan Motor Driver Single-Phase Full-Wave Driver

STK5DFU340D-E/D. Advance Information 2-in-1 PFC and Inverter Intelligent Power Module (IPM), 600 V, 5 A TBD

Fast reverse recovery time (trr max=10ns) Low switching noise Low leakage current and high reliability due to highly reliable planar structure

STK E. Overview. Applications. Features. Thick-Film Hybrid IC Single-phase rectification Active Converter Hybrid IC

Is Now Part of. To learn more about ON Semiconductor, please visit our website at

LV56351HA. Overview. Functions. Specifications Maximum Ratings at Ta = 25 C. Bi-CMOS IC 1ch DC/DC boost converter

3.5 W (reference value) : mm 76.1 mm 1.6 mm Operating temperature Topr 20 to +85 C Storage temperature Tstg 55 to +150 C

SBE805. Schottky Barrier Diode 30V, 0.5A, Low IR. Features. Specifications

Monolithic Digital IC 2-ch H-Bridge Constant Current Driver

LV8860V. Overview. Functions. Specifications Maximum Ratings at Ta = 25 C. Bi-CMOS IC Fan Motor Driver Single-Phase Full-Wave Driver

ATP114. P-Channel Power MOSFET 60V, 55A, 16mΩ, Single ATPAK. Features. Specifications. ON-resistance RDS(on)1=12mΩ(typ.) 4V drive Protection diode in

This product is designed to ESD immunity < 200V*, so please take care when handling. * Machine Model

Overview The STK E is a hybrid IC for use in current control forward/reverse DC motor driver with brush.

LV8711T. Overview. Features. Specifications. Bi-CMOS LSI PWM Constant-Current Control Stepping Motor Driver

Tc=25 C 3.5 W When mounted on ceramic substrate (600mm 2 0.8mm) 1.3 W Junction Temperature Tj 150 C Storage Temperature Tstg - 55 to +150 C

ELECTRICAL CONNECTION

CPH3360. Power MOSFET 30V, 303mΩ, 1.6A, Single P-Channel

LB11685VH. Specifications Maximum Ratings at Ta = 25 C. Monolithic Digital IC 3-phase sensor less Motor driver

LB8503V. Monolithic Digital IC DC Fan Motor Speed Control IC. Ordering number : ENA

LB11961V. Monolithic Digital IC Single-Phase Full-Wave Fan Motor Driver. Ordering number : EN8794B.

50V, 0.5A, Low IR, Monolithic Dual CP Common Cathode

1HP04CH. Small Signal MOSFET 100V, 18Ω, 170mA, Single P-Channel

MCH3382. Power MOSFET 12V, 198mΩ, 2A, Single P-Channel

MCH3383. Power MOSFET 12V, 69mΩ, 3.5A, Single P-Channel

CPH6532. Bipolar Transistor 50V, 1A, Low VCE(sat) NPN Dual CPH6. Applications. Features. Specifications

MCH6331. Power MOSFET 30V, 98mΩ, 3.5A, Single P-Channel

EMH1307. P-Channel Power MOSFET 20V, 6.5A, 26mΩ, Single EMH8. Features. Specifications. Input Capacitance Ciss=1100pF(typ.) Halogen free compliance

MCH6541. Bipolar Transistor. ( )30V, ( )3A, Low VCE(sat) Complementary Dual MCPH6

Collector Dissipation Tc=25 C 30 W Junction Temperature Tj 150 C Storage Temperature Tstg --55 to +150 C

(-)50V, (-)10A, Low VCE(sat), (PNP)NPN Single TP/TP-FA. Large current capacity High-speed switching

MCH6664. P-Channel Power MOSFET 30V, 1.5A, 325mΩ, Dual MCPH6. Features

MCH5541 PNP/NPN Bipolar Transistor ( )30V, ( )700mA, VCE(sat) ; ( 220)190mV (max)

CPH6443. Power MOSFET 35V, 37mΩ, 6A, Single N-Channel

CPH3455. Power MOSFET 35V, 104mΩ, 3A, Single N-Channel

1.05 W epoxy board Operating temperature Topr 20 to +100 C Storage temperature Tstg 55 to +150 C

2SK4177. N-Channel Power MOSFET 1500V, 2A, 13Ω, TO-263-2L. Features. Specifications. ON-resistance RDS(on)=10Ω(typ.) 10V drive

SMP3003. P-Channel Power MOSFET 75V, 100A, 8.0mΩ, TO-263-2L/TO-263. Features. Specifications TO-263

Large current capacitance (IC=10A) Low collector-to-emitter saturation voltage (VCE(sat)=180mV(typ.)) High-speed switching (tf=25ns(typ.

ECH8659. Power MOSFET 30V, 24mΩ, 7A, Dual N-Channel

Parameter Symbol Conditions Ratings Unit

LB1843V. Specifications. Monolithic Linear IC Low-saturation, current-controlled bidirectional motor driver. SSOP20 (225mil)

LV5749NV. Application The LV5749NV is a 1-channel step-down switching regulator.

6HP04MH. P-Channel Small Single MOSFET 60V, 370mA, 4.2Ω Single MCPH3. Features. Specifications Absolute Maximum Ratings at Ta=25 C

SCH1436. Power MOSFET 30V, 180mΩ, 1.8A, Single N-Channel

3LP01S. P-Channel Small Signal MOSFET 30V, 0.1A, 10.4Ω, Single SMCP. Features. Specifications. Low ON-resistance Ultrahigh-speed switching 2.

ECH8663R. N-Channel Power MOSFET 30V, 8A, 20.5mΩ, Dual ECH8. Features. Specifications

High-speed switching applications (switching regulator, driver circuit) Parameter Symbol Conditions Ratings Unit Collector-to-Base Voltage VCBO 60 V

Overview The LA5757TP is a separately-excited step-down switching regulator (variable type).

Is Now Part of To learn more about ON Semiconductor, please visit our website at

ATP206. N-Channel Power MOSFET 40V, 40A, 16mΩ, Single ATPAK. Features. Specifications. Low ON-resistance 4.5V drive Halogen free compliance

High-speed switching Ultrasmall package facilitates miniaturization in end products (mounting height : 0.85mm) High allowable power dissipation

LA4450. Specifications. Monolithic Linear IC 2-Channel, 26V, Power Amplifier for Bus and Track in Car Stereo. SIP x13.

Strobe DC-DC converters, relay drivers, hammer drivers, lamp drivers, motor drovers

CPH6354. Power MOSFET 60V, 100mΩ, 4A, Single P-Channel. Features. Specifications

Is Now Part of To learn more about ON Semiconductor, please visit our website at

2SJ661. P-Channel Power MOSFET 60V, 38A, 39mΩ, TO-262-3L/TO-263-2L. Features. Specifications. ON-resistance RDS(on)1=29.5mΩ(typ.

BBS3002. P-Channel Power MOSFET 60V, 100A, 5.8mΩ, TO-263-2L/TO-263. Features. Specifications TO-263

PIN Diode Dual series Pin Diode for VHF, UHF and AGC 50V, 50mA, rs=max 4.5Ω, MCP

LB1939T 2 Channel H Bridge Constant Voltage/Constant Current Driver

Overview The LA1225MC is a Low-voltage operation (1.8V or higher) FM IF detector IC for the electronic tuning system.

Transcription:

Ordering number : EN*A2228A STK5F1U3E2D-E Advance Information Thick-Film Hybrid IC Inverter Power IPM for 3-phase Motor Drive http://onsemi.com Overview This Inverter Power IPM is highly integrated device containing all High Voltage (HV) control from HV-DC to 3-phase outputs in a single DIP module (Dual-In line Package). Output stage uses IGBT/FRD technology and implements Under Voltage Protection (UVP) and Over Current Protection (OCP) with a Fault Detection output flag. Internal Boost diodes are provided for high side gate boost drive. Function Single control power supply due to Internal bootstrap circuit for high side pre-driver circuit All control input and status output are at low voltage levels directly compatible with microcontrollers Cross conduction prevention Externally accessible embedded thermistor for substrate temperature measurement The level of the over-current protection current is adjustable with the external resistor, RSD Certification UL1557 (File Number: E339285) Specifications Absolute Maximum Ratings at Tc = 25 C Parameter Symbol Remarks Ratings Unit Supply voltage VCC P to N, surge < 500V *1 450 V Collector-emitter voltage VCE P to U, V, W or U, V, W to N 600 V P, N, U, V, W terminal current ±50 Output current Io A P, N, U, V, W terminal current, Tc=100 C ±25 Output peak current Iop P, N, U, V, W terminal current, PW=1ms ±76 A Pre-driver supply voltage VD1, 2, 3, 4 VB1 to VS1, VB2 to VS2, VB3 to VS3, VDD to VSS *2 20 V Input signal voltage VIN HIN1, 2, 3, LIN1, 2, 3 0.3 to VDD V FAULT terminal voltage VFAULT FAULT terminal 0.3 to VDD V Maximum loss Pd IGBT per channel 67.5 W Junction temperature Tj IGBT,FRD 150 C Storage temperature Tstg 40 to +125 C Operating temperature Tc IPM case 20 to +100 C Tightening torque MT A screw part at use M4 type screw *3 1.17 Nm Withstand voltage Vis 50Hz sine wave AC 1 minute *4 2000 VRMS Reference voltage is N terminal = VSS terminal voltage unless otherwise specified. *1: Surge voltage developed by the switching operation due to the wiring inductance between the P and N terminals. *2: Terminal voltage: VD1=VB1 VS1, VD2=VB2 VS2, VD3=VB3 VS3, VD4=VDD VSS. *3: Flatness of the heat-sink should be 0.25mm and below. *4: Test conditions: AC 2500V, 1 second. Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. This document contains information on a new product. Specifications and information herein are subject to change without notice. ORDERING INFORMATION See detailed ordering and shipping information on page 15 of this data sheet. Semiconductor Components Industries, LLC, 2014 July, 2014 Ver.140520DS 71114HK/O0913HK No.A2228-1/15

Electrical Characteristics at Tc 25 C, VD1, VD2, VD3, VD4=15V Power output section Parameter Symbol Conditions Test circuit Ratings Min. Typ. Max. Collector to emitter cut-off current ICE VCE=600V - - 100 μa Fig.1 Bootstrap diode reverse current IR(BD) VR(BD)=600V - - 100 μa Collector to emitter saturation voltage Diode forward voltage Junction to case thermal resistance Control (Pre-driver) section Pre-drive power supply consumption current VCE(sat) VF Ic=50A Ic=25A, Tj=100 C IF=50A IF=25A, Tj=100 C Upper side - 1.7 2.6 Lower side - 2.3 3.2 Fig.2 Upper side - 1.35 - Lower side - 1.75 - Upper side - 1.8 2.7 Lower side Fig.3-2.4 3.3 Upper side - 1.45 - Lower side - 1.85 - θj-c(t) IGBT - - 1.5 - C/W θj-c(d) FWD - - 1.8 - C/W ID VD1,2,3=15V Fig.4-0.05 0.4 VD4=15V - 1.0 4.0 High level input voltage Vin H HIN1,HIN2,HIN3, - 2.5 - - V Low level input voltage Vin L LIN1,LIN2,LIN3 to VSS - - - 0.8 V Logic 1 input leakage current I IN+ VIN=+3.3V 100 195 μa Logic 0 input leakage current I IN- VIN=0V 1 μa Protection section Over-current protection electric current V dd and V Bx supply undervoltage positive going input threshold V dd and V Bx supply undervoltage negative going input threshold V dd and V Bx supply undervoltage I lockout hysteresis ISD PW=100μs,RSD=0Ω Fig.5 57-76 A V dduv+ V BxUV+ V dduv- V BxUV- V dduvh V BxUVH Unit V V ma 10.6 11.1 11.6 V 10.4 10.9 11.4 V 0.2 V FAULT terminal input electric current IOSD VFAULT=0.1V - 1 1.5 - ma FAULT clearance delay time FLTCLR From time fault condition clear - 18-80 ms Thermistor for substrate temperature monitor Switching character Switching time Rt Resistance between the TH(18) and VSS(20) terminals - 90-110 kω ton - 0.7 1.5 μs Io=50A, Inductive load toff - 1.1 2.1 μs Turn-on switching loss Eon - 1100 - μj Io=50A, VCC=300V, Turn-off switching loss Eoff VD=15V, L=280μH Fig.6-1220 - μj Total switching loss Etot - 2320 - μj Turn-on switching loss Eon Io=25A, VCC=300V, - 620 - μj Turn-off switching loss Eoff VD=15V, L=280μH, - 790 - μj Total switching loss Etot Tc=100 C - 1410 - μj Diode reverse recovery energy Erec Io=25A, VCC=300V, - 27 - μj Diode reverse recovery time Trr VD=15V, L=280μH, Tc=100 C - 80 - ns Reverse bias safe operating area RBSOA Io = 76A, VCE= 450V Full square Short circuit safe operating area SCSOA VCE = 400V, Tc=100 C 4 μs Electric current output signal level ISO Io=50A - 0.427 0.45 0.474 V Reference voltage is N terminal = VSS terminal voltage unless otherwise specified. Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. No.A2228-2/15

Notes 1. When the internal protection circuit operates, a Fault signal is turned ON (When the Fault terminal is low level, Fault signal is ON state : output form is open DRAIN) but the Fault signal does not latch.after protection operation ends,it returns automatically within about 18ms to 80ms and resumes operation beginning condition. So, after Fault signal detection, set all input signals to OFF (Low) at once.however, the operation of pre-drive power supply low voltage protection (UVLO:with hysteresis about 0.2V) is as follows. Upper side: The gate is turned off and will return to regular operation when recovering to the normal voltage, but the latch will continue till the input signal will turn low. Lower side: The gate is turned off and will automatically reset when recovering to normal voltage. It does not depend on input signal voltage. 2. When assembling the IPM on the heat sink with M4 type screw, tightening torque range is 0.79 Nm to 1.17 Nm. 3. The pre-drive low voltage protection is the feature to protect devices when the pre-driver supply voltage falls due to an operating malfunction. Pin Assignment Pin No. Name Description Pin No. Name Description 1 VB1 High side floating supply voltage 1 44 P Positive bus input voltage 2 VS1 High side floating supply offset voltage 43 P Positive bus input voltage 3 - Without pin 42 P Positive bus input voltage 4 VB2 High side floating supply voltage 2 41 - Without pin 5 VS2 High side floating supply offset voltage 40 N Negative bus input voltage 6 - Without pin 39 N Negative bus input voltage 7 VB3 High side floating supply voltage 3 38 N Negative bus input voltage 8 VS3 High side floating supply offset voltage 37 - Without pin 9 - Without pin 36 U U-phase output 10 HIN1 Logic input high side driver-phase1 35 U U-phase output 11 HIN2 Logic input high side driver-phase2 34 U U-phase output 12 HIN3 Logic input high side driver-phase3 33 - Without pin 13 LIN1 Logic input low side driver-phase1 32 V V-phase output 14 LIN2 Logic input low side driver-phase2 31 V V-phase output 15 LIN3 Logic input low side driver-phase3 30 V V-phase output 16 FAULT Fault out (open drain) 29 - Without pin 17 ISO Current monitor pin 28 W W-phase output 18 TH Thermistor out 27 W W-phase output 19 VDD +15V main supply 26 W W-phase output 20 VSS Negative main supply 25 - Without pin 21 ISD Over-current protection level setting pin 24 NC - 22 NC - 23 NC - No.A2228-3/15

Block Diagram STK5F1U3E2D-E NC(23,24) U(34,35,36) V(30,31,32) W(26,27,28) VB1(1) VS1(2) VB2(4) VS2(5) VB3(7) VS3(8) P (42,43,44) DB DB DB U.V. U.V. U.V. RB N (38,39,40) Shunt- Resistor ISO(17) TH(18) Thermistor Level Shifter Level Shifter Level Shifter HIN1(10) HIN2(11) HIN3(12) LIN1(13) LIN2(14) LIN3(15) Logic Logic Logic Shutdown VDD(19) VSS(20) ISD(21) Under voltage Detect Vref + - S Q Timer R Latch time about 18 to 80ms FAULT(16) NC(22) No.A2228-4/15

Test Circuit (The tested phase: U+ shows the upper side of the U phase and U- shows the lower side of the U phase.) ICE / IR(BD) U+ V+ W+ U- V- W- M 42 42 42 34 30 26 N 34 30 26 38 38 38 VD1=15V 1 M A 2 ICE U(BD) V(BD) W(BD) M 1 4 7 N 20 20 20 VCE(SAT) (Test by pulse) VD2=15V VD3=15V VD4=15V 4 5 VCE 7 8 19 20 N Fig.1 U+ V+ W+ U- V- W- M 42 42 42 34 30 26 N 34 30 26 17 19 21 m 10 11 12 13 14 15 VD1=15V VD2=15V VD3=15V 1 M 2 4 5 7 8 V VCE(SAT) Ic 19 VD4=15V 5V m N 20 21 VF (Test by pulse) U+ V+ W+ U- V- W- M 42 42 42 34 30 26 N 34 30 26 38 38 38 Fig.2 M V VF IF N Fig.3 ID VD1 VD2 VD3 VD4 M 1 4 7 19 N 2 5 8 20 VD* ID A M N Fig.4 No.A2228-5/15

ISD Input signal (0 to 5V) Io 100μs ISD VD1=15V VD2=15V VD3=15V VD4=15V Input signal 1 2 4 5 7 8 19 13 20 34 38 Io 21 Fig.5 Switching time (The circuit is a representative example of the lower side U phase.) Input signal (0 to 5V) Io 90% ton toff 10% VD1=15V VD2=15V VD3=15V VD4=15V Input signal 1 2 4 5 7 8 19 13 20 42 34 38 CS Io Vcc 21 Fig.6 RB-SOA (The circuit is a representative example of the lower side U phase.) Input signal (0 to 5V) VD1=15V 1 2 42 Io VD2=15V VD3=15V VD4=15V Input signal 4 5 7 8 19 13 20 34 38 CS Io Vcc 21 Fig.7 No.A2228-6/15

Logic Timing Chart STK5F1U3E2D-E VBS undervoltage protection reset signal HIN1,2,3 ON OFF LIN1,2,3 VDD *2 VDD undervoltage protection reset voltage VB1,2,3 VBS undervoltage protection reset voltage *3 *4 -------------------------------------------------------ISD operation current level------------------------------------------------------- ITRIP-terminal (BUS line) Current FAULT terminal Voltage (at pulled-up) Upper U, V, W OFF ON *1 Lower U,V, W *1 Automatically reset after protection (18ms to 80ms) Fig. 8 Notes *1 : Diagram shows the prevention of shoot-through via control logic. More dead time to account for switching delay needs to be added externally. *2 : When VDD decreases all gate output signals will go low and cut off all of 6 IGBT outputs. part. When VDD rises the operation will resume immediately. *3 : When the upper side gate voltage at VB1, VB2 and VB3 drops only, the corresponding upper side output is turned off. The outputs return to normal operation immediately after the upper side gat voltage rises. *4 : In case of over current detection, all IGBT s are turned off and the FAULT output is asserted. Normal operation resumes in 18 to 80ms after the over current condition is removed. No.A2228-7/15

Logic level table P(42,43,44) FAULT* HIN1,2,3 LIN1,2,3 U,V,W HIN1,2,3 (10,11,12) LIN1,2,3 (13,14,15) IC Driver Ho Lo U,V,W (34,35,36) (30,31,32) (26,27,28) 1 1 0 Vbus 1 0 1 0 1 0 0 Off 1 1 1 Off 0 X X Off *With pulled-up registor Fig.9 N(38,38,40) No.A2228-8/15

Application Circuit Example +5.0V RFault RTH CB + CB + CB + 1 VB1 2 VS1 4 VB2 5 VS2 7 VB3 8 VS3 P N U 44 43 42 40 39 38 36 35 34 CS + CI Vcc + - Control Circuit 10 HIN1 11 HIN2 12 HIN3 13 LIN1 14 LIN2 15 LIN3 V W 32 31 30 28 27 26 16 FAULT 17 ISO 18 TH NC 24 23 CD VDD=15V Missing pin 3, 6, 9, 25, 29, 33, 37, 41 Rpd RSD 19 VDD 20 VSS1 21 ISD 22 NC Fig.10 No.A2228-9/15

Recommended Operating Conditions at Tc = 25 C Parameter Symbol Conditions Ratings Min Typ Max Supply voltage VCC P to N 0 280 450 V Pre-driver supply voltage VD1, 2, 3 VB1 to VS1, VB2 to VS2, VB3 to VS3 12.5 15 17.5 VD4 VDD to VSS *1 13.5 15 16.5 Input ON voltage VIN(ON) HIN1, HIN2, HIN3, 3.0 - VDD Input OFF voltage VIN(OFF) LIN1, LIN2, LIN3 0-0.8 PWM frequency fpwm 1-20 khz Dead time DT Turn-off to turn-on (external) 2 - - μs Allowable input pulse width PWIN ON pulse width/off pulse width 1 - - μs Tightening torque MT M4 type screw 0.79-1.17 Nm *1 Pre-driver power supply (VD4=15±1.5V) must have the capacity of Io=20mA (DC), 0.5A (Peak). Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. Unit V V Usage Precautions 1. This IPM includes bootstrap diode and resistors. Therefore, by adding a capacitor CB, a high side drive voltage is generated; each phase requires an individual bootstrap capacitor. The recommended value of CB is in the range of 1 to 47μF, however this value needs to be verified prior to production. If selecting the capacitance more than 47μF (±20%), connect a resistor (about 20Ω) in series between each 3-phase upper side power supply terminals (VB1,2,3) and each bootstrap capacitor. When not using the bootstrap circuit, each upper side pre-drive power supply requires an external independent power supply. 2. It is essential that wirning length between terminals in the snubber circuit be kept as short as possible to reduce the effect of surge voltages. Recommended value of CS is in the range of 0.1 to 10μF. 3. ISO (pin17) is terminal for current monitor. When the pull-down resistor is used, please select it more than 5.6kΩ. 4. FAULT (pin16) is open DRAIN output terminal. (Active Low). Pull up resistor is recommended more than 5.6kΩ. 5. Inside the IPM, a thermistor used as the temperature monitor for internal subatrate is connected between VSS terminal and TH terminal, therefore, an external pull up resistor connected between the TH terminal and an external power supply should be used. The temperature monitor example application is as follows, please refer the Fig.11, and Fig.12 below. 6. The pull down resistor of 33kΩ is provided internally at the signal input terminals. An external resistor of 2.2k to 3.3kΩ should be added to reduce the influence of external wiring noise. 7. The over-current protection feature is not intended to protect in exceptional fault condition. An external fuse is recommended for safety. 8. When N and VSS terminal are short-circuited on the outside, level that over-current protection (ISD) might be changed from designed value as IPM. Please check it in your set ( N terminal and VSS terminal are connected in IPM). 9. The over-current protection function operates normally when an external resistor RSD is connected between ISD and VSS terminals. Be sure to connect this resistor. The level of the overcurrent protection can be changed according to the RSD value. 10. When input pulse width is less than 1.0μs, an output may not react to the pulse. (Both ON signal and OFF signal) This data shows the example of the application circuit, does not guarantee a design as the mass production set. No.A2228-10/15

The characteristic of thermistor STK5F1U3E2D-E Parameter Symbol Condition Min Typ. Max Unit Resistance R 25 Tc=25 C 97 100 103 kω Resistance R 100 Tc=100 C 4.93 5.38 5.88 kω B-Constant(25-50 C) B 4165 4250 4335 K Temperature Range -40 +125 C Fig.11 Variation of thermistor resistance with temperature Condition Pull-up resistor = 39kohm +/-1% Pull-up voltage of TH = 5V +/-0.3V Fig.12 Variation of temperature sense voltage with thermistor temperature No.A2228-11/15

Maximum Phase current STK5F1U3E2D-E 50 Motor Current vs. Frequency (Sine wave oparation,vcc=300v,cosθ=0.8,on Duty=96%) Phase Current : Io (A rms) 40 30 20 10 0 0 5 10 15 20 Switching Frequency : fc (KHz) Fig.13 Maximum sinusoidal phase current as function of switching frequency at Tc=100 C, Vcc=300V Switching waveform Turn on Fig. 14 IGBT Turn-on. Typical turn-on waveform at Tc=100 C, VCC=300V, Ic=25A Turn off Fig. 15 IGBT Turn-off. Typical turn-off waveform Tc=100 C, VCC=300V, Ic=25A No.A2228-12/15

CB capacitor value calculation for bootstrap circuit Calculate condition Item Symbol Value Unit Upper side power supply VBS 15 V Total gate charge of output power IGBT at 15V. Qg 0.47 μc Upper side power supply low voltage protection. UVLO 12 V Upper side power dissipation. IDmax 400 μa ON time required for CB voltage to fall from 15V to UVLO Ton-max - s Capacitance calculation formula CB must not be discharged below to the upper limit of the UVLO - the maximum allowable on-time (Ton-max) of the upper side is calculated as follows: VBS * CB Qg IDmax * Ton-max = UVLO * CB CB = (Qg + IDmax * Ton-max) / (VD UVLO) The relationship between Ton-max and CB becomes as follows. CB is recommended to be approximately 3 times the value calculated above. The recommended value of CB is in the range of 1 to 47μF, however, the value needs to be verified prior to production. Bootstrap Capacitance Cb (uf) Cb vs ton max 100 10 1 0.1 0.01 0.1 1 10 100 1000 ton max (ms) Fig.16 Ton-max vs CB characteristic No.A2228-13/15

Package Dimensions unit : mm HYBRID INTEGRATED MODULE CASE MODAW ISSUE O 4.6 6.0 22 R2.3 23 (68.0) 63.4 2.54 76.0 21 x 2.54 = 53.34 0.75 + 0.05 0.2 1 44 45.0 0.5 + 0.2 0.05 8.0 10.8 3.2 49.7 No.A2228-14/15

ORDERING INFORMATION Device Package Shipping (Qty / Packing) STK5F1U3E2D-E 610AC-DIP4-UL (Pb-Free) 6 / Fan-Fold ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC s product/patent coverage may be accessed at www.onsemi.com/site/pdf/patent-marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitabilityof its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Typical parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicals must be validated for each customer application by customer s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PS No.A2228-15/15

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: ON Semiconductor: STK5F1U3E2D-E